Bounding the Locality of Distributed Routing Algorithms

Size: px
Start display at page:

Download "Bounding the Locality of Distributed Routing Algorithms"

Transcription

1 Bonding he Loliy of Diied Roing Algoihm [Exended A] Poenji Boe Shool of Compe Siene Cleon Univeiy Ow, Cnd Pz Cmi Dep. of Compe Siene Ben-Gion Univ. of he Negev Bee-Shev, Iel Sephne Dohe Dep. of Compe Siene Univeiy of Mnio Winnipeg, Cnd ABSTRACT We exmine ond on he loliy of oing. A lol oing lgoihm mke eqene of diied fowding deiion, eh of whih i mde ing only lol infomion. Speifilly, in ddiion o knowing he node fo whih mege i deined, n inemedie node migh lo know ) he gph oeponding o ll newok node wihin k hop of ielf, fo ome vle of k, ) he node fom whih he mege oigined, nd ) whih of i neigho l fowded he mege. O ojeive i o deemine whih of hee pmee e neey nd/o ffiien o pemi lol oing k vie on newok modelled y onneed ndieed gph. In pil, we elih igh ond on k fo he feiiliy of deeminii k-lol oing fo vio ominion of hee pmee, well oeponding ond on dilion (he wo-e io of l oe lengh o hoe ph lengh). Cegoie nd Sje Deipo C.2.1 [Compe Syem Ognizion]: Compe- Commniion Newok Newok Ahiee nd Deign; F.2.2 [Theoy of Compion]: Anlyi of Algoihm nd Polem Complexiy Nonnmeil Algoihm nd Polem; G.2.2 [Mhemi of Comping]: Diee Mhemi Gph Theoy Genel Tem Algoihm, Theoy Keywod diied lgoihm, lol oing, dilion 1. INTRODUCTION Lol Roing. Uni ommniion in newok i hieved y oing lgoihm h ompe eqene Pemiion o mke digil o hd opie of ll o p of hi wok fo peonl o loom e i gned wiho fee povided h opie e no mde o diied fo pofi o ommeil dvnge nd h opie e hi noie nd he fll iion on he fi pge. To opy ohewie, o eplih, o po on eve o o ediie o li, eqie pio peifi pemiion nd/o fee. PODC 09, Ag 10 12, 2009, Clgy, Ale, Cnd. Copyigh 2009 ACM /09/08...$5.00. of fowding deiion h deemine he oe followed y mege (e.g., pke) i vel o i deinion. In mny eing, enlized oing lgoihm o, moe genelly, oing lgoihm h eqie omplee knowledge of he newok opology e impil; eon inlde h he newok i oo lge, h he opology of he enie gph i nknown, o h he newok hnge dynmilly [13]. Alenively, lol oing lgoihm mke eie of diied fowding deiion, omped eh of he inemedie node long he oe. When node eeive mege, i ele po (i.e., one of i neigho) o whih o fowd he mege ing only lol infomion. In pil, eh node i only we of he e of he newok oniing of node wihin k hop fom ielf, fo ome k. Coneqenly, he oe nno e peomped eniely in genel. Fhemoe, mege ovehed nd lol memoy e ofen limied [11]. In pil, newok node nno e expeed o minin hioy of mege h hve ped hogh i (i.e., he newok i memoyle). Similly, he mege ovehed nno oe he e of node viied y he mege (i.e., he oing lgoihm i ele). Alhogh ighfowd flooding lgoihm i poile, h egy h ovio dwk, inlding high ffi lod [13], yli ehvio (if he newok i memoyle), nd eqiing knowledge of n ppe ond on he dimee of he newok o ene oh eminion nd efl delivey. In hi ppe we onide ingle-ph deeminii oing lgoihm. We epeen newok y onneed, nweighed, ndieed gph G = (V, E) wih niqe veex lel. A newok node (gph veex) i idenified y i lel. In ome newok, node lel my povide infomion o i neighohood in he newok (e.g., gid gph node n e lelled y i gid oodine). In genel, ppoe h he veex lelling i independen of he gph; h i, node lel doe no enode ddiionl infomion o he opology of he gph o he node neighohood. Eqivlenly, we onide oing lgoihm h eed on ny pemion of he veex lel of G. We me h evey node know i own lel well he lel of i neigho. A mege lo eqie deinion node, idenified y he node lel. Some o ll of he following ddiionl infomion my e ville o n inemedie node o ompe he nex node o whih mege hold e fowded: 1. oigin-wene: knowledge of he node fom whih he mege oigined,

2 T (n) oigin-we oigin-olivio pedeeo-we n/4 n/3 pedeeo-olivio n/2 n/2 Tle 1: Min el: hee exi k-lol oing lgoihm when k T (n), no k-lol oing lgoihm exi when k < T (n), whee n denoe he nme of newok node. B 1 k B 2 2. pedeeo-wene: knowledge of he inoming edge (po) long whih he mege w fowded o (eqivlenly, he neigho of h l fowded he mege), nd 3. k-loliy: knowledge of he k-neighohood of (i.e., he gph of G oniing of ll ph ooed wih lengh mo k). O ojeive i o deemine whih of hee pmee e neey nd/o ffiien o pemi lol oing k vie. Oveview of Rel. We idenify igh ond on he vle of he loliy pmee k fo he feiiliy of k- lol oing in eh of he fo ominion of onin: pedeeo-we o pedeeo-olivio, nd oigin-we o oigin-olivio. In eh e, le T (n) denoe he oeponding hehold. Th i, fo evey k < T (n), evey k- lol oing lgoihm i defeed y ome onneed gph on n veie. Similly, fo evey k T (n), hee exi k-lol oing lgoihm h eed on ll onneed gph on n veie. O min el i he idenifiion of he vle of T (n); ee Tle 1. In ddiion, we elih lowe ond of S(k) = 2 3k/n on he wo-e dilion of ny k-lol oing lgoihm nd how hi ond i igh fo hee of he fo ominion of onin. 2. MODELLING LOCAL ROUTING In hi eion we fomlize o model fo lol oing. k-lol Roing Fnion. Given gph G = (V, E), we employ ndd gph-heoei noion, whee fo eh veex v V, Adj(v) = { {, v} E} denoe he e of veie djen o v nd deg(v) = Adj(v) denoe i degee. Le di(, v) denoe he (nweighed) gph dine eween veie nd v. The k-neighohood of veex v V, denoed G k (v), i he gph of G h onin ll ph ooed v wih lengh mo k. A oing lgoihm i oigin-we, pedeeo-we, nd k-lol if i n e defined fnion f(,,, v, G k ()), whee V i he oigin node, V i he deinion node, he mege i enly node V, node eeived he mege fom i neigho v Adj(), G k () i he k-neighohood of node, nd f(,,, v, G k ()) en he neigho of o whih he mege hold e fowded (i.e., he po o whih node m fowd he pke). B 4 B 3 Fige 1: In hi exmple, G 8() oni of fo lol omponen, oeponding o he fo onneed omponen of G 8()\{}. B 1, B 3, nd B 4 e fonie omponen B 2 i no. B 1 nd B 3 e onined fonie omponen B 2 nd B 4 e no. Sy v = if he mege h no ye een fowded (i.e, he mege leve node fo he fi ime). Evey k- lol oing lgoihm A h oeponding oing fnion f. A eqene of ll o fnion f en eqene of fowding deiion h oepond o wlk hogh G oigining (i.e., he oe). We onide wo onin on k-lol oing lgoihm: n oiginolivio k-lol oing lgoihm i no povided he pmee, nd pedeeo-olivio k-lol oing lgoihm i no povided he pmee v. To implify noion fo pedeeo-we lgoihm, le f (v) denoe he lol oing fnion node fo given,,, nd G k (), whee f (v) = f(,,, v, G k ()). Th i, f (v) en he neigho of o whih he mege i fowded fnion of he neigho v fom whih i i eeived. Nlly, no ll oing fnion n e implemened effiienly lol oing lgoihm. The oing fnion model llow onge negive el o e elihed fo moe genel l of oing lgoihm, egdle of implemenion onen. Wih epe o poiive el, he oing lgoihm we peen n e implemened effiienly lolly; implemenion deil e no he fo of hi ppe. Le C denoe onneed omponen of G k () \ {}. We efe o C lol omponen of. If v C Adj(), hen we y C i ooed v (C n hve mliple oo). If C onin veex v h h di(, v) = k, hen (elive o ) C i fonie omponen, v i fonie veex, nd hoe ph fom o v i fonie ph. In ohe wod, C exend o he limi of knowledge: node v my hve neigho oide C, hi infomion i no known lolly. If C i fonie omponen of nd evey fonie ph in C pe hogh ome veex w, hen C i onined fonie omponen nd w i onin veex. See Fige 1. Evling Roing Algoihm. A oing lgoihm A defined y oing fnion f eed (ynonymoly,

3 gnee delivey) if fo ll gph G nd ll oigin-deinion pi (, ) in G, he eqene of vle ened y f oepond o wlk fom o in G. Ohewie, A i defeed y ome gph G nd ome pi (, ) in G. A oing lgoihm A h dilion onded y δ if fo ll gph G nd ll oigin-deinion pi (, ) in G, A(, )/ di(, ) δ, whee A(, ) denoe he lengh of he oe fom o ened y A. 3. RELATED WORK In poiion-ed oing, newok node e emedded in ome pe (ypilly R 2 o R 3 ) nd eh node know i pil oodine (i.e., node e loion-we). Poiioned oing i lo known geo-oing, geogphi oing, o geomei oing. Mny een el eled o lol oing e poiion ed. We iefly deie ome of hee eled el nd di he inedependene eween poiion-ed nd poiion-olivio oing. Geedy oing [7] (fowd he mege o he neigho loe o he deinion), omp oing [11] (fowd he mege long he edge h fom he mlle ngle wih he line egmen o he deinion), nd geedy-omp oing [1] (pply geedy oing o he wo edge djen o he line egmen o he deinion) e hee well-known poiion-ed oing lgoihm, eh of whih eed on peifi le of gph i defeed y ome pln gph [2]. All hee lgoihm e pedeeo-olivio, oigin-olivio, nd 1-lol. To how h oing lgoihm fil on ome l of gph G, i ffie o idenify gph in G on whih he lgoihm yle infiniely wiho ehing he deinion. Songe negive el e hoe h pply o ll oing lgoihm, howing h no oing lgoihm eed on given l of gph. Boe e l. [1] how h evey poiion-ed, pedeeo-olivio, oigin-olivio, 1-lol oing lgoihm i defeed y ome onvex diviion. Fe oing [11] w one of he fi poiion-ed 1- lol oing lgoihm dioveed o eed on moe genel le of gph emedded in he plne. In ief, fe oing fowd he mege in lokwie dieion long he edge of fe, nd long he eqene of fe h inee he line egmen eween he oigin nd deinion node. Fowd poge i gneed y oing pmee h he fhe ineeion of he line egmen wih viied fe. A h, fe oing i no ele ine i eqie Θ(log n) i o e oed wih he mege. Fe oing eed on pln gph [11], on ni di gph [3], nd on d-qi ni di gph fo ny d [1/ 2, 1] [12]. See [3] nd [12] fo definiion of ni di gph nd qi ni di gph, epeively. Fe onide genelizion of fe oing o gph emedded on oi [9]. Alhogh o diion foe on deeminii oing lgoihm, we iefly noe h ndomized olion pemi k-lol oing on moe genel le of gph. Fly nd Wehofe onide he polem of ndomized lol oing on ni ll gph [8] nd how h ny ndomized poiion-ed lol oing lgoihm h expeed oe lengh Ω(l 3 ), whee l denoe he lengh of he hoe ph. Dohe e l. [6] how h fo evey fixed k, evey oiginwe, pedeeo-we, k-lol oing lgoihm fil on ome ni ll gph. The poof h wo p. Fi, he oeponding poiion-olivio el i poven: fo evey fixed k, evey oigin-we, pedeeo-we, k-lol oing lgoihm fil on ome gph. Nex, k-lol edion fom (nemedded) gph o ni ll gph i ed o how h if ome (poily poiion-ed) k-lol oing lgoihm eed on ni ll gph, hen ome (poiionolivio) k-lol oing lgoihm eed on ll gph. Thi inedependene eween poiion-ed nd poiionolivio oing lgoihm moive he qeion of exploing he ondy eween feiiliy nd impoiiliy of lol oing lgoihm fnion of he lol infomion ville. In hi ppe we onide he poiionolivio e. 4. WHEN LOCAL ROUTING IS IMPOSSI- BLE: NEGATIVE RESULTS In hi eion we peen negive el: evey k-lol oing lgoihm fil on ome gph when he degee of loliy k i le hn he given ond. Fo eh ominion of oigin-wene/olivione nd pedeeowene/olivione, we demone one-exmple oniing of e of gph h h ny k-lol oing lgoihm fil on le one of he gph in he e. 4.1 Popeie of Lol Roing Fnion The poof of Theoem 3 hogh 6 efe o Lemm 1 nd Coolly 2, whih genelize n oevion of Dohe e l. [6] howing h if k-lol oing lgoihm gnee delivey, hen eh lol oing fnion oepond o il pemion (nde ein ondiion). Rell h il pemion of n diin elemen i n odeing of hee elemen in yle. Lemm 1. Le denoe node h h 1. deg() 2, 2. fo ll {, } Adj(), nd elong o diffeen fonie omponen of, nd 3. neihe he oigin node no he deinion node i in G k (). If A i n oigin-we, pedeeo-we, k-lol oing lgoihm h gnee delivey, hen he lol oing fnion of A i il pemion of Adj(). Poof. Chooe ny k 1, ny node, nd ny k- neighohood G k () h h Popeie 1 hogh 3 hold. Sppoe A i ny k-lol oing lgoihm h gnee delivey nd h he lol oing fnion f i no il pemion. Ce 1. Sppoe f i no pemion. Th i, f i no jeive. Theefoe, hee exi ome v Adj() h h fo ll w Adj(), f (w) v. Le B 1 denoe he lol omponen of h onin v nd le B 2 denoe ny ohe lol omponen of. By Popey 2, eh lol omponen of exend o he fonie of G k (). Le G denoe gph h onin G k () h h node h degee one nd i he only node djen o B 1 oide G k (). Similly, le node hve degee one h h i i he only node djen o B 2 oide G k (). See Fige 2. Sine fo ll w Adj(), f (w) v, he mege will neve ene B 1 nd, oneqenly, will neve eh. Theefoe, lgoihm A fil on gph G, deiving ondiion.

4 oing egy il pemion eed fil B 1 v k B 2 1 (P 1P 3P 4) G 1, G 3 G 2 2 (P 1P 4P 3) G 1, G 2 G 3 3 (P 1P 3P 4) G 2, G 3 G 1 4 (P 1P 3P 4) G 1, G 2 G 3 5 (P 1P 4P 3) G 2, G 3 G 1 6 (P 1P 4P 3) G 1, G 3 G 2 Tle 2: Eh oing egy oepond o il pemion of he neigho of. Fige 2: G k () oni of fonie omponen, eh of whih i ooed niqe neigho of. Thi exmple ille he gph oned in Ce 1 fo given G k () when k = 8. Ce 2. Sppoe f i pemion no dengemen ( dengemen i omplee pemion). Theefoe, f (v) = v fo ome v Adj(). Le G e gph defined in Ce 1, wih he exepion h node nd e inehnged. I follow h he mege will neve ene ny lol omponen ohe hn B 1 nd, oneqenly, will neve eh. Theefoe, lgoihm A fil on gph G, deiving ondiion. Ce 3. Sppoe f i dengemen no il pemion. Theefoe, f nno e expeed ingle pemion yle. Le ( 1... k ) nd ( 1... j) denoe ny wo pemion yle of f. Oeve h { 1,... k } nd { 1,..., j} e dijoin e of Adj(). Le G e gph defined in Ce 1, wih he exepion h node i djen o lol omponen B 1 ooed node in { 1,... k } nd i djen o lol omponen B 2 ooed node in { 1,..., j}. I follow h he mege will neve ene B 2 nd, oneqenly, will neve eh. Theefoe, lgoihm A fil on gph G, deiving ondiion. All hee e deive ondiion nd o mpion m e fle. Theefoe, he lol oing fnion f m e il pemion. In ohe wod, wiho ddiionl infomion on whih o e lol oing deiion, n inemedie node m y ll poiiliie nd eqenilly fowd he mege o eh of i neigho. When node h degee wo, only one il pemion i poile: mege eeived fom one neigho of m e fowded o he oppoie neigho. If node h degee j, hen (j 1)! il pemion e poile. If oing lgoihm A i oigin olivio, hen Lemm 1 give: Coolly 2. Le denoe node h h 1. deg() 2, 2. fo ll {, } Adj(), nd elong o diffeen fonie omponen of, nd 3. he deinion node i no in G k (). If A i n oigin-olivio, pedeeo-we, k-lol oing lgoihm h gnee delivey, hen he lol oing fnion of A i il pemion on Adj(). Poof. Given ny node, ny k 1, nd ny k-neighohood G k (), if Popeie 1 hogh 3 hold ( defined in Lemm 1), hen he lol oing fnion f i il pemion y Lemm 1. Sine A i oigin olivio, fnion f emin onn fo ny given G k () nd, egdle of. In pil, f i il pemion egdle of whehe o no i onined in G k (). The el follow. Theoem 3 hogh 6 elih lowe ond oeponding o eh of he fo ominion of k-lol oing lgoihm: oigin-we/olivio nd pedeeo-we/olivio. 4.2 Pedeeo Awe nd Oigin Awe Theoem 3. Fo evey k < (n + 1)/4, evey oiginwe, pedeeo-we, k-lol oing lgoihm fil on ome onneed gph. Poof. Chooe ny k < (n + 1)/4, k Z +. Theefoe, k {1,..., }, whee = (n 3)/4. Le G 1, G 2, nd G 3 denoe he gph illed in Fige 3, h h eh ph P 1 hogh P 4 oni of veie h e lelled onienly elive o node in ll hee gph. In eh gph, G k () i ee oniing of fo ph of lengh k ooed, none of whih onin no. In ddiion o he 4 node in ph P 1 hogh P 4, eh gph inlde node,, nd. Depending on he vle of n mod 4, eween zeo nd hee ex node emin; hee e dded eween nd P 1 o ing he ol nme of node o n. Any efl oing lgoihm m p he mege o P 1 o node. Sine h degee fo, i lol oing fnion i one of ix poile il pemion y Lemm 1. The emining node hve degee mo wo. Theefoe, when he mege i ped o node on ph h doe no onin no, y Lemm 1, he mege m onine fowd nil i en gin o. A hown in Tle 2, fo eh of he ix poile oing egie, he mege neve ene he ph onining in le one of he gph G 1, G 2, o G 3. Th i, fo evey oing egy A, hee exi gph on whih A fil. 4.3 Pedeeo Awe nd Oigin Olivio Uing n gmen imil o he poof of Theoem 3, we now how h he lowe ond on he loliy pmee k inee o (n + 1)/3 fo oigin-olivio k-lol oing lgoihm: Theoem 4. Fo evey k < (n + 1)/3, evey oiginolivio, pedeeo-we, k-lol oing lgoihm fil on ome onneed gph.

5 P 1 P 1 P 1 P 3 P 3 P 3 P 4 G P 1 4 G 4 d d d P 1 P 3 G 3 d P 4 Fige 3: The k-neighohood G k () i idenil in gph G 1, G 2, nd G 3. In hi exmple, ppoe n mod 4 = 0. Coneqenly, one ex node i dded eween nd P 1 h h he ol nme of node i n. G 1 G 2 G 3 P 3 P 1 P 3 P 1 P 3 P 1 P 3 P 1 Fige 4: The k-neighohood G k () i idenil in gph G 1, G 2, nd G 3. In hi exmple, ppoe n mod 3 = 0. Coneqenly, one ex node i dded nex o h h he ol nme of node i n. Poof. Chooe ny k < (n + 1)/3, k Z +. Theefoe, k {1,..., }, whee = (n 2)/3 }. Le G 1, G 2, nd G 3 denoe he gph illed in Fige 4, h h eh ph P 1 hogh P 3 oni of veie h e lelled onienly elive o node in ll hee gph. In eh gph, G k () i ee oniing of hee ph of lengh k ooed, none of whih onin. In ddiion o he 3 node in ph P 1 hogh P 3, eh gph inlde node nd. Depending on he vle of n mod 3, eween zeo nd wo ex node emin; hee e dded eween nd he oeponding ph P i nee o o ing he ol nme of node o n. Sine node h degee hee, i lol oing fnion i one of wo poile il pemion y Coolly 2. A oing egy m peify he dieion in whih mege iniilly leve node (hee dieion e poile). The emining node hve degee mo wo. Theefoe, when he mege i ped o node on ph h doe no onin, y Coolly 2, he mege m onine fowd nil i en gin o node. A hown in Tle 3, fo eh of he ix poile oing egie, he mege neve ene he ph onining in le one of he gph G 1, G 2, o G 3. Th i, fo evey oing egy A, hee exi gph on whih A fil. 4.4 Pedeeo Olivio nd Oigin Awe When knowledge of he pedeeo node i wihheld, he lowe ond on he loliy pmee k inee o n/2 fo pedeeo-olivio k-lol oing lgoihm: Theoem 5. Fo evey k < n/2, evey oigin-we, G 1 G 2 Fige 5: illion in ppo of Theoem 5 pedeeo-olivio, k-lol oing lgoihm fil on ome onneed gph. Poof. Chooe ny k < n/2, k Z +. Theefoe, k {1,..., }, whee = n/2 1. Le G 1 denoe ph of n veie wih he oigin node loed he ( + 1) veex nd he deinion node loed he f end. Le G 2 denoe he nlogo gph pon moving node o he oppoie end of he ph. Le he emining node e lelled onienly elive o node in oh gph. See Fige 5. The k-neighohood G k () i idenil in G 1 nd G 2. If lgoihm A end he mege igh, hen A fil on gph G 2 ine i m evenlly end he mege lef, whih poin i ehvio eome yli. Similly, if lgoihm A end he mege lef, hen i fil on gph G 1.

6 oing egy il pemion iniil dieion eed fil 1 (P 1P 3) owd G 1, G 3 G 2 2 (P 1P 3) owd G 1, G 2 G 3 3 (P 1P 3) owd G 2, G 3 G 1 4 (P 1P 3) owd G 1, G 2 G 3 5 (P 1P 3) owd G 2, G 3 G 1 6 (P 1P 3) owd G 1, G 3 G 2 Tle 3: Eh oing egy oepond o il pemion of he neigho of pied wih n iniil dieion. 4.5 Pedeeo Olivio nd Oigin Olivio Finlly, if we fhe onin he knowledge ville o inemedie node, hen he lowe ond on he loliy pmee k doe no inee: Theoem 6. Fo evey k < n/2, evey oigin-olivio, pedeeo-olivio, k-lol oing lgoihm fil on ome onneed gph. Poof. The lowe ond of n/2 follow y Theoem Dilion We now onide lowe ond on dilion fo k-lol oing lgoihm. Theoem 7. Fo ny k < n/2, no k-lol oing lgoihm n gnee dilion le hn 2n 3k 1. (1) k + 1 Poof. Chooe ny n nd ny k < n/2. Le P denoe he e of ph of lengh n wih veex e {,, v 1,..., v n 2}. Chooe ny k-lol oing A h eed on ll ph in P. Sppoe he oigin nd deinion node e lelled nd, epeively. Le d P (i) = mx{di(, v) v V i}, whee V i denoe he e of veie of P o whih lgoihm A h ped he mege ding he fi i ep. Th, d P (i) i. Chooe ny i {0,..., n 2k 2}. Oeve h hee exi ph P 1 nd in P h h fo ll v V i, ) G k (v) i idenil in P 1 nd, ) G k (v) h wo fonie omponen, neihe of whih onin, nd ) lie oppoie endpoin of ph P 1 nd elive o. The node of V i oepond o ph onining mo i + 1 node; eh endpoin of he ph h n nexploed fonie omponen (k node eh) nd node emin o of igh. Smming hee give i k + 1 n node. When he mege ehe he oeponding node dine d P1 (i) = d P2 (i), A end he mege in he me dieion in P 1 nd, i.e., owd in one ph nd wy fom in he ohe. In he le e, A m evenlly p he mege k o efoe i n eh. Rening he mege o eqie le i + 2 ep nd ehing eqie le k + 1 ddiionl ep. Theefoe, he ol nme of ep i le 2i + k + 3. Thi give A(, ) 2n 3k 1 when i = n 2k 2. Sine di(, ) n e lile k + 1, he el follow. The ond on dilion (1) i pehp moe lely expeed y king he limi he nme of node ppohe infiniy (nd k = n fo ome onn ). We denoe hi limi y S(k): 2n 3k 1 S(k) = lim = 2n n k + 1 k 3. Of pil inee e he vle of k {n/4, n/3, n/2}, fo whih he oeponding ond on dilion e 5 (when k = n/4), 3 (when k = n/3), nd 1 (when k n/2). Thee ond e igh fo k = n/3 nd k = n/2 hown in Theoem 14, 16, nd WHEN LOCAL ROUTING IS POSSIBLE: ROUTING STRATEGIES In hi eion we peen poiive el: hee exi efl k-lol oing lgoihm when he degee of loliy k exeed he given ond. We deie k-lol oing lgoihm fo eh ominion of oigin-wene/olivione nd pedeeo-wene/olivione. 5.1 Pedeeo Awe nd Oigin Awe We deie n (n/4)-lol pedeeo-we nd oiginwe oing lgoihm. Given ny k n/4, he lgoihm egin wih k-lol pepoeing ep o idenify he edge on whih oing ke ple. Evey node G ild gph of G k () y deleing n edge fom evey yle h onin in G k (). The ode in whih he yle e oken i impon. By o mpion h node hve niqe lel, we oin n odeing on he edge of G. In pil, ny e of edge h minimm edge. The node onide evey yle h onin i in G k () nd delee he minimm edge e mong ll yle. See Fige 6. The node hen ompe ll emining yle in G k () \ {e} h onin nd delee he minimm edge mong hee yle. Thi poe i epeed nil no yle onining emin. The finl gph denoed G k() i pnning gph of G k () in whih i veex. Conide he lol omponen in G k(). The edge in G k() joining o lol omponen e lled oing edge. If lol omponen in G k() i fonie omponen, he omponen i lled ive. Ohewie, oh he omponen nd oing edge e lled pive. The nme of ive edge djen o veex i i ive degee. Sine n ive edge join o omponen wih le n/4 veie, node n hve ive degee mo 3. An edge {, } i lled onien povided h oh nd onide he edge eween hem o e ive. A node i lled onien povided h ll of i ive edge e onien. Ohewie, he node i lled inonien Oevion 8. An inonien node h ive degee 1.

7 B 1 B 1 B 1 B 1 v 1 v 1 v 1 v 1 v 1 v 3 v 2 B 3 B 2 v 3 v 2 B 3 B 2 v 3 v 2 B 3 B 2 v 3 v 2 B 3 B 2 v 3 v 2 A B C D E Fige 6: k-lol pepoeing. Sppoe he en node h hee neigho, v 1 hogh v 3, nd G k () onin yle h inlde veie v 1,, nd v 2 (A). The pepoeing ep lifie one of he edge on he yle non-oing edge (mgen). The eleed edge my e din fom (B) o djen o (C nd D). The hoie of oing edge doe no ffe node no on he yle (e.g., v 3) ine he edge of he yle ll lie in he me lol omponen fom he poin of view of he oeponding veex (E); in pil, none of he yle edge e djen o v 3. Rle S3 Rle S2 Rle U2 Rle S1 Rle U3 Fige 7: Algoihm 1, Ce 2: Mege eeived/fowded y. Rle U1 One eh node h idenified i oing edge, imple e of le deemine he fowding deiion. The e of he oing lgoihm elie on he popey h eh node h ive degee mo 3. Noie h he lowe ond gmen of he poof of Theoem 3 oni of gph h hve one node wih ive degee 4; hi nno o when k > n/4. The oing lgoihm oni of fo e olined elow. Fige 8: Algoihm 1, Ce 3: Mege eeived/fowded y node h nno ee nd n poily ee in n ive omponen. Algoihm 1: (n/4)-lol, oigin-we, pedeeowe oing lgoihm. Ce 1. Sppoe di(, ) k. Th i, G k (). The lgoihm fowd he mege o ny neigho of on hoe ph fom o nil he mege ive. Ce 2. Sppoe di(, ) > k nd =. Fowding deiion e illed in Fige 7. Ce 3. Sppoe di(, ) > k,, nd eihe di(, ) > k o i in n ive omponen of. Fowding deiion e illed in Fige 8. Ce 4. Sppoe di(, ) > k,, nd i in pive omponen of. Fowding deiion e illed in Fige 9. Rle US3 Rle US2 Lemm 9. Algoihm 1 eflly delive he mege fom he oigin node o he deinion node. Poof. Sppoe, fo ke of ondiion, h mege fom doe no eh. Sine he nme of node in G i finie, he mege m vii epeing eqene of node of G. Denoe y X = x 1,..., x m he eqene of Fige 9: Algoihm 1, Ce 4: Mege eeived/fowded y node h nno ee nd ee in pive omponen.

8 node viied, whee R = x i,..., x m i epeing eqene of node fo ome 1 i < m. Clim 1: All node in eqene R e onien. Thi follow fom he popey h n inonien node n only eeive nd fowd mege mo one. Thee i e I of node in G h e inviile o ll node in X. By inviile, we men h x X, G k (x) I =. In pil, I. Conide hoe ph fom o node v V \I. By onion, v m e on he fonie of ome veex x j X, i.e., di(x j, v) = k n/4. Ohewie, ll neigho of v wold e viile o x j, ondiing he f h v i he loe viile veex o. Fhemoe, no node on hoe ph eween x j nd v n ppe in X. Sine v i fonie veex of x j, he fonie omponen of x j onining v m e ive. Howeve, x j neve fowd he mege o hi omponen. Coneqenly, x j h ive degee le 2, whih y Oevion 8 implie h x j i onien node. Le e = {x j, y} denoe he oeponding ive edge (long whih he mege i no fowded). To oin ondiion, we how h in ll e, x j limely fowd he mege long edge e. Clim 2: x j 1 x j+1. Only fowding le S1, S2, U1, nd US2 wold hve x j 1 = x j+1. In ll fo e, he mege i fowded o ll ive edge djen o x j, ondiing he f h v i he loe viile veex o. Clim 1 nd 2 imply h x j h ive degee 3. Conide he ndieed gph S of G h oni only of he edge followed y he lgoihm in he epeing eqene R. Oeve h y onion, S h mximm degee 3. Ce 1. Sppoe S onin no yle. Th i, S i ee. Roo hi ee x j. When x j fowd he mege o x j+1, he mege i ped ino he ee of S ooed x j+1. By Clim 2, ine S i ee, ll ph fom node in he ee ooed x j+1 o node in he ee ooed x j 1 m go hogh x j. Thi implie h ome poin in he eqene R, he node x j+1 fowd he mege o x j, whih will hen fowd i o y, deiving ondiion. Ce 2. Sppoe S onin imple yle. By Clim 1, ll edge in he yle e onien. Evey yle of lengh mo 2k onin le one pive edge. Theefoe, he yle m onin gee hn 2k n/2 veie. The node x j m lie on h yle, ohewie, in Ce 1, fowding he mege long x j+1 will e i o en o x j vi he edge {x j+1, x j}, deiving ondiion. We now how h he mege nno e ped ond hi yle. The key o eking he yle i he loion of he oigin node. Conide wo e: eihe node i inviile o evey node in he yle o i i viile o le one node in he yle. Ce 2. Sppoe i no viile o ny node in he yle. Theefoe, when iniilly fowd he mege, he mege follow ph fom o ome node on he yle. Thi ph onin le k n/4 diin node h e no p of he yle ine no node of he yle n ee. The yle onin moe hn n/2 diin node nd he ph fom x j o v onin le n/4 node, none of whih e viied y he eqene X. Theefoe, we oin he deied ondiion ine hee e exly n node in G. Ce 2. Sppoe i viile o ome x k on he yle. Conide wo fhe e. Ce 21. Sppoe i onined in he yle. Node m hve ive degee 2 o 3. If i h ive degee 2, hen Rle S2 implie h he mege i en long he yle in wo diffeen dieion, ondiing he f h he mege i no fowded long edge {x j, y}. If h ive degee 3, hen only one of hee pi of node djen o n e involved in he yle. Le exmine eh pi in n. Fo wh follow, onide he lelling given in Fige 7. The node nd nno e involved in he yle ee when he mege i eeived y fom, i i fowded o nd when i i eeived fom y, i i lo fowded o. Node nd nno e involved in he yle ee iniilly fowd he mege o, whih implie h o omplee he yle, i m eeive he mege fom. Howeve, when eeive mege fom, i i fowded o. Theefoe, oding o Rle S3, if p of he yle, hen on he yle, i eeive he mege fom nd fowd i o o vie ve. Howeve, iniilly fowd he mege o nd he mege en o. Thi implie h none of he node in he ive omponen of ooed e p of he yle. Thi omponen h ize le n/4. Moeove, none of hee node n e p of he ph fom x j o v. Theefoe, we gin ondi he f h G h n node. Ce 22. Sppoe i no onined in he yle. The gmen i nlogo o Ce 21 pon iing le US2 nd US3 fo le S2 nd S3, epeively. Lemm 10. Algoihm 1 h dilion mo 8. Poof. If mege fom i en o nd i viile o, hen he ph followed y Algoihm 1 h dilion 1. When i no viile o, hen he lengh of he hoe ph fom o i le n/ By looking he poof of Lemm 9, we ee h if mege follow yle, hen i vii evey edge of he yle one. Ohewie, i vii evey edge mo wie. Thi implie h he lengh of he ph followed y Algoihm 1 i mo 2n. Sine he lengh of he hoe ph i le n/4 + 1, we ge he deied el. Theoem 11. Fo evey k n/4, hee exi n oiginwe, pedeeo-we, k-lol oing lgoihm h eed on ll onneed gph while gneeing dilion mo Pedeeo Awe nd Oigin Olivio We deie (n/3)-lol pedeeo-we nd oiginolivio oing lgoihm. Chooe ny inege k n/3. Theefoe, 3k + 1 > n. Sine fonie omponen onin le k node, evey node h mo wo fonie omponen. In pil, i h mo wo onined fonie omponen. Le denoe he en node. The lgoihm eqie k-lol pepoeing ep imil o h deied in Algoihm 1 o idenify e of ive edge in G k () whih we denoe y G k(). Anlogoly, fe pplying he pepoeing ep, evey ive neigho of i he oo of niqe onined omponen of in G k() (hee n e mo wo). The following lgoihm i hen pplied o G k() o mke he fowding deiion. Algoihm 2: (n/3)-lol, oigin-olivio, pedeeo-we oing lgoihm.

9 Ce 1. Sppoe di(, ) k. Th i, G k (). The lgoihm fowd he mege o ny neigho of on hoe ph fom o nil he mege ive. Ce 2. Sppoe di(, ) > k. Fowding deiion e illed y Rle U1 nd U2 in Fige 8. If he mege oigined o ived vi n inonien edge, hen he lgoihm fowd he mege long ny ive edge of. Lemm 12. Algoihm 2 eflly delive he mege o he deinion node. Poof. (Skeh) Sine 3k + 1 > n, node nno hve hee o moe ive omponen. Theefoe, eh node h ive degee mo 2. Sppoe Algoihm 2 doe no delive he mege o node. The mege m vii epeing eqene of node of G. Uing n gmen imil o ( imple hn) he poof of Lemm 9, we deive ondiion y howing h hi epeing eqene m inlde node h h n ive omponen h i no viied (nd evenlly led o node ). Sine eh node h ive degee mo 2, hi omponen m e viied oding o le U2. Lemm 13. Algoihm 2 h dilion mo 3. We omi he poof of Lemm 13 de o pe onin. Theoem 14 follow fom Lemm 12 nd 13: Theoem 14. Fo evey k n/3, hee exi n oiginolivio, pedeeo-we, k-lol oing lgoihm h eed on ll onneed gph while gneeing dilion mo Pedeeo Olivio nd Oigin Olivio We deie (n/2)-lol pedeeo-olivio nd oiginolivio oing lgoihm. Chooe ny k n/2. Theefoe, 2k + 1 n. Sine fonie omponen onin le k node, evey node h mo wo fonie omponen. Le denoe he en node. Algoihm 3: (n/2)-lol, oigin-olivio, pedeeo-olivio oing lgoihm. Ce 1. Sppoe di(, ) k. Th i, G k (). The lgoihm fowd he mege o ny neigho of on hoe ph fom o nil he mege ive. Ce 2. Sppoe h zeo o wo fonie omponen. Sine 2k + 1 n, he enie newok i onined in G k () nd, heefoe, d(, ) k. Roing poeed in Ce 1. Ce 3. Sppoe h one nonined fonie omponen. Sine evey nonined fonie omponen onin le 2k veie, he enie newok i onined in G k () nd, heefoe, d(, ) k. Roing poeed in Ce 1. Ce 4. Sppoe di(, ) > k nd h one onined fonie omponen. Le v denoe he onin veex in G k () h i fhe fom. The lgoihm fowd he mege o ny neigho of h ede he dine o v. Thi poede onine nil he lgoihm ene Ce 1, 2, o 3. Lemm 15. Algoihm 3 eflly delive he mege o he deinion node long hoe ph fom o. Poof. In Ce 1 hogh 3, he dine fom he en node o he deinion, di(, ), deee y one ni eh ime he mege i fowded. In Ce 4, oeve h di(, ) = di(, v) + di(v, ). Theefoe deee in di(, v) implie n eql deee in di(, ). I follow h he oe fom o h lengh di(, ). Theefoe, Algoihm 3 find hoe ph fom o. Theoem 16 follow fom Lemm 15: Theoem 16. Fo evey k n/2, hee exi n oiginolivio, pedeeo-olivio, k-lol oing lgoihm h eed on ll onneed gph nd find hoe ph fom he oigin o he deinion. Algoihm 3 n e defined nlogoly o Algoihm 1 nd 2. Th i, when node, he me pepoeing ep old e inlded o lify edge ive o pive. Upon doing o, node h ive degee mo 3 in Algoihm 1 (k n/4), ive degee mo 2 in Algoihm 2 (k n/3), nd ive degee mo 1 in Algoihm 3 (k n/2). Ignoing pedeeo- nd oiginwene/olivione, hi end gge h he loliy pmee k i inveely popoionl o he nme of poile fowding deiion h k-lol oing lgoihm m onide eh node. 5.4 Pedeeo Olivio nd Oigin Awe A we now how, n oigin-we k-lol oing lgoihm doe no eqie gee loliy pmee k hn doe n oigin-olivio k-lol oing lgoihm o gnee delivey. Theoem 17. Fo evey k n/2, hee exi n oiginwe, pedeeo-olivio, k-lol oing lgoihm h eed on ll onneed gph nd find hoe ph fom he oigin o he deinion. Poof. Fo evey k-lol oigin-olivio oing lgoihm A hee i oeponding k-lol oigin-we lgoihm A whoe oing fnion mhe h of A. In ohe wod, poviding knowledge of he oigin nno hinde n oigin-olivio oing lgoihm. The el follow y Theoem DIRECTIONS FOR FUTURE RESEARCH Dieed Gph. The el of hi ppe onen k- lol oing on ndieed gph. Of oe, he nlogo qeion n e poed in he eing of dieed gph, mny of whih emin open. Peliminy inveigion of lol oing on dieed gph hve een mde y Chávez e l. [5] who deie 1-lol oing lgoihm fo Elein gph nd oepln gph nd Fe e l. [10] who how h evey 1-lol oing lgoihm eqie Ω(n) i of memoy on dieed gph (i.e., no ele 1-lol oing lgoihm exi). Uing Addiionl Memoy. Relxing onin nd lloing ddiionl memoy he mege ovehed o oe e infomion llow moe genel olion o he lol oing polem. Bvemn [4] how h hee exi poiion-olivio 1-lol oing lgoihm ing Θ(log n) e i h eed on ll gph. An ineeing open

10 qeion i o deemine whehe hee i oeponding lowe ond. Alenively, doe hee exi poiionolivio, oigin-we, pedeeo-we, k-lol oing lgoihm wih o(log n) e i fo k O(1)? In genel, n we idenify igh ond on memoy eqiemen fo deeminii k-lol oing nde vio model? Aknowledgemen The ho wih o hnk Theee Biedl who oeved h o oigin-olivio nd pedeeo-olivio (n/2)-lol oing lgoihm (Algoihm 3) idenifie hoe ph. 7. REFERENCES [1] P. Boe, A. Bodnik, S. Clon, E. D. Demine, R. Fleihe, A. López-Oiz, P. Moin, nd I. Mno. Online oing in onvex diviion. Inenionl Jonl of Compionl Geomey nd Appliion, 12(4): , [2] P. Boe nd P. Moin. Online oing in inglion. SIAM Jonl on Comping, 33(4): , [3] P. Boe, P. Moin, I. Sojmenović, nd J. Ui. Roing wih gneed delivey in d ho wiele newok. Wiele Newok, 7(6): , [4] M. Bvemn. On d ho oing wih gneed delivey. In Poeeding of he ACM SIGACT-SIGOPS Sympoim on Piniple of Diied Comping (PODC), volme 27, pge 418, [5] E. Chávez, S. Doev, E. Knki, J. Opny, L. Sho, nd J. Ui. Roe diovey wih onn memoy in oiened pln geomei newok. Newok, 48(1):7 15, [6] S. Dohe, D. Kikpik, nd L. Nynn. On oing wih gneed delivey in hee-dimenionl d ho wiele newok. Wiele Newok, To ppe. [7] G. G. Finn. Roing nd ddeing polem in lge meopolin-le inenewok. Tehnil Repo ISI/RR , Infomion Siene Inie, [8] R. Fly nd R. Wenhofe. Rndomized 3D geogphi oing. In Poeeding of he IEEE Confeene on Compe Commniion (INFOCOM), pge , [9] M. Fe. Lol oing on oi. In Poeeding of he Confeene on Ad-Ho, Moile, nd Wiele Newok, volme 4686 of Lee Noe in Compe Siene, pge Spinge, [10] M. Fe, E. Knki, nd J. Ui. Memoy eqiemen fo lol geomei oing nd vel in digph. In Poeeding of he Cndin Confeene on Compionl Geomey (CCCG), volme 20, [11] E. Knki, H. Singh, nd J. Ui. Comp oing on geomei newok. In Poeeding of he Cndin Confeene on Compionl Geomey (CCCG), volme 11, pge 51 54, [12] F. Khn, R. Wenhofe, nd A. Zollinge. Ad-ho newok eyond ni dik gph. In Join Wokhop on Fondion of Moile Comping, pge 69 78, [13] I. Sojmenović. Poiion ed oing in d ho newok. IEEE Commniion Mgzine, 40(7): , 2002.

Lecture 11: Safra s Determinization Construction

Lecture 11: Safra s Determinization Construction Lece 11: Sf Deeminizion Concion In hi lece we hll ee concion de o S. Sf h n nondeeminiic Büchi omon of ize n ino n eivlen deeminiic Rin omon of ize 2 O(nlogn). A n immedie coolly we ee h we cn comlemen

More information

Bounding the Locality of Distributed Routing Algorithms

Bounding the Locality of Distributed Routing Algorithms Nonme mncrip No. (will e inered y he edior) Bonding he Locliy of Diried Roing Algorihm Proenji Boe Pz Crmi Sephne Drocher Received: de / Acceped: de Arc We exmine ond on he locliy of roing. A locl roing

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

Primal and Weakly Primal Sub Semi Modules

Primal and Weakly Primal Sub Semi Modules Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

International Journal of Mathematical Archive-5(6), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(6), 2014, Available online through   ISSN Inenaional Jonal o Mahemaical Achive-6, 0, 09-8 Availale online hogh www.ijma.ino ISSN 9 06 EXISENCE OF NONOSCILLAORY SOLUIONS OF A CLASS OF NONLINEAR NEURAL DELAY DIFFERENIAL EQUAIONS OF HIRD ORDER K

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

Dividing Algebraic Fractions

Dividing Algebraic Fractions Leig Eheme Tem Model Awe: Mlilig d Diidig Algei Fio Mlilig d Diidig Algei Fio d gide ) Yo e he me mehod o mlil lgei io o wold o mlil meil io. To id he meo o he we o mlil he meo o he io i he eio. Simill

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

Throughput-optimal broadcast on directed acyclic graphs

Throughput-optimal broadcast on directed acyclic graphs houghpu-opiml ods on dieed yli gphs he MI Fuly hs mde his ile openly ville. Plese she how his ess enefis you. You soy mes. Ciion As Pulished Pulishe Sinh, Ahishek, Geogios Pshos, Chih-ping Li, nd Eyn Modino.

More information

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues?

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues? CS514: Inmi Co in Oing Sm Poo Kn imn K Ooki: T liion o h i O h h k h o Goi oool Dii monioing, h, n noiiion gmn oool, h 2PC n 3PC Unling hm: om hing n ong om o onin, om n mng ih k oi To, l look n liion

More information

EE 410/510: Electromechanical Systems Chapter 3

EE 410/510: Electromechanical Systems Chapter 3 EE 4/5: Eleomehnl Syem hpe 3 hpe 3. Inoon o Powe Eleon Moelng n Applon of Op. Amp. Powe Amplfe Powe onvee Powe Amp n Anlog onolle Swhng onvee Boo onvee onvee Flyb n Fow onvee eonn n Swhng onvee 5// All

More information

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis   2/3/2007 Physics 253 Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

More information

An Algorithm for Integrated Pin Assignment and Buffer Planning Λ

An Algorithm for Integrated Pin Assignment and Buffer Planning Λ An Algoihm fo Ineged Pin Aignmen nd Buffe Plnning Λ Hu Xing, Xioing Tng, nd D.F. Wong Univeiy of Tex Auin, Auin, TX Silion Peeive, A Cdene Comny, Sn Cl, CA fxingh, ng, wongg@.uex.edu ABSTRACT The uffe

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Ch.4 Motion in 2D. Ch.4 Motion in 2D Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk Equions fom he Fou Pinipl Kinei Ses of Meil Bodies Copyigh 005 Joseph A. Rybzyk Following is omplee lis of ll of he equions used in o deied in he Fou Pinipl Kinei Ses of Meil Bodies. Eh equion is idenified

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006 Homewok 5 fo BST 63: Sisicl Theoy I Soluions, 9//6 Due Time: 5:PM Thusy, on 9/8/6. Polem ( oins). Book olem.8. Soluion: E = x f ( x) = ( x) f ( x) + ( x ) f ( x) = xf ( x) + xf ( x) + f ( x) f ( x) Accoing

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM PHYS 0 Suen Nme: Suen Numbe: FAUTY OF SIENE Viul Miem EXAMINATION PHYSIS 0 Ino PHYSIS-EETROMAGNETISM Emines: D. Yoichi Miyh INSTRUTIONS: Aemp ll 4 quesions. All quesions hve equl weighs 0 poins ech. Answes

More information

A parallel index for semistructured data

A parallel index for semistructured data A pllel index fo emiuued d Bin F. Coope Λ Dep. of Compue Siene Snfod Univeiy Snfod, CA 9435 USA oopeb@nfod.edu Nel Smple y Dep. of Compue Siene Snfod Univeiy Snfod, CA 9435 USA nmple@nfod.edu Mohe Shdmon

More information

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s CSE Alorihm Rihr Anron Dijkr lorihm Sinl Sor Shor Ph Prolm Gin rph n r r Drmin in o ry r rom Iniy hor ph o h r Epr onily hor ph r Eh r h poinr o pror on hor ph Conr Shor Ph Tr rom Wrmp - - I P i hor ph

More information

1.2. Paths, Cycles, and Trails

1.2. Paths, Cycles, and Trails 2301-670 Grph heory 1.2 Ph, Cyle, n Trl 1 emeer 2550 1 1.2. Ph, Cyle, n Trl 1.2.2. Defnon. Le G e grph. A lk l 0, e 1, 1,, e k, k of ere n ege h h, for 1 k, he ege e h en pon -1 n. A rl lk h no repee ege.

More information

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion. Chpe Kinemic in One Dimenin Kinemic del wih he cncep h e needed decibe min. Dynmic del wih he effec h fce he n min. Tgehe, kinemic nd dynmic fm he bnch f phyic knwn Mechnic.. Diplcemen. Diplcemen.0 m 5.0

More information

Robust Network Coding for Bidirected Networks

Robust Network Coding for Bidirected Networks Rou Nework Coding for Bidireed Nework A. Sprinon, S. Y. El Rouyhe, nd C. N. Georghide Ar We onider he prolem of nding liner nework ode h gurnee n innneou reovery from edge filure in ommuniion nework. Wih

More information

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.) i ell orie o go ih he picure. L, up ng i gro ve el ur Pren, ho phoo picure; u oher ell ee hey (T l. chi u b o on hi pge y ur ki kn pl. (We ee Hi i H b o b o kn e hem orie.) Compre h o ho creion; He ell

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

Add the transfer payments and subtract the total taxes from (1): Using these definitions, the above becomes: The Saving and Investment Equation:

Add the transfer payments and subtract the total taxes from (1): Using these definitions, the above becomes: The Saving and Investment Equation: San Fanio Sae Univei Mihael Ba ECON 30 Fall 06 Poblem e 5 Conumpion-Saving Deiion and Riadian Equivalene. (0 poin. Saving and Invemen equaion. a. Deive he aving and invemen equaion. The fomula fo GDP uing

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction Appendi E: Mnipuling Fions Te ules fo mnipuling fions involve lgei epessions e el e sme s e ules fo mnipuling fions involve numes Te fundmenl ules fo omining nd mnipuling fions e lised elow Te uses of

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott 085850 SATB div cppell US $25 So Goes Wods nd Vusic by By Joel Anged by Bob Chilco he king's singes L he colou of song A H EXCLUSVELY DSTRBUTED BY LEONARD (Fom The King's Singes 25h Annivesy Jubilee) So

More information

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Shortest Paths. CSE 421 Algorithms. Bottleneck Shortest Path. Negative Cost Edge Preview. Compute the bottleneck shortest paths

Shortest Paths. CSE 421 Algorithms. Bottleneck Shortest Path. Negative Cost Edge Preview. Compute the bottleneck shortest paths Shor Ph CSE Alorihm Rihr Anron Lr 0- Minimm Spnnin Tr Ni Co E Dijkr lorihm m poii o For om ppliion, ni o mk n Shor ph no wll in i rph h ni o yl - - - Ni Co E Priw Topoloil Sor n or olin h hor ph prolm

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Kornit Digital Ltd. 5 David Navon St. P.O.B. 8406, Magshimim, Israel, 56910, Tel: , Fax: Cataloge No.

Kornit Digital Ltd. 5 David Navon St. P.O.B. 8406, Magshimim, Israel, 56910, Tel: , Fax: Cataloge No. E. EIPIO E PPOE /MM/YYYY K- L L L. MI MP LIE.... LO FILE 0 0 0 0 0 0 MP 0 MP P L + G 0 H00- (MP) P 00 J P ( 0) L J0 MOIO ( 0) - L 0v v v G 0v L E ' LK ' G/ 0 0 0 J P/ (MF 0PI) 0 J P/ (MF 0PI) 0 G/ F MP

More information

Solvability of nonlinear Klein-Gordon equation by Laplace Decomposition Method

Solvability of nonlinear Klein-Gordon equation by Laplace Decomposition Method Vol. 84 pp. 37-4 Jly 5 DOI:.5897/JMCSR4.57 icle Nbe: 63F95459 ISSN 6-973 Copyigh 5 hos ein he copyigh of his icle hp://www.cdeicjonls.og/jmcsr ficn Jonl of Mheics nd Cope Science Resech Fll Lengh Resech

More information

Motion on a Curve and Curvature

Motion on a Curve and Curvature Moion on Cue nd Cuue his uni is bsed on Secions 9. & 9.3, Chpe 9. All ssigned edings nd execises e fom he exbook Objecies: Mke cein h you cn define, nd use in conex, he ems, conceps nd fomuls lised below:

More information

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force Insucos: ield/mche PHYSICS DEPARTMENT PHY 48 Em Sepeme 6, 4 Nme pin, ls fis: Signue: On m hono, I he neihe gien no eceied unuhoied id on his eminion. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP O

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA WO INERFIL OLLINER GRIFFIH RS IN HERMO- ELSI OMOSIE MEDI h m MISHR S DS * Deme o Mheml See I Ie o eholog BHU V-5 I he oee o he le o he e e o eeg o o olle Gh e he ee o he wo ohoo mel e e e emee el. he olem

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

D zone schemes

D zone schemes Ch. 5. Enegy Bnds in Cysls 5.. -D zone schemes Fee elecons E k m h Fee elecons in cysl sinα P + cosα cosk α cos α cos k cos( k + π n α k + πn mv ob P 0 h cos α cos k n α k + π m h k E Enegy is peiodic

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

v T Pressure Extra Molecular Stresses Constitutive equations for Stress v t Observation: the stress tensor is symmetric

v T Pressure Extra Molecular Stresses Constitutive equations for Stress v t Observation: the stress tensor is symmetric Momenum Blnce (coninued Momenum Blnce (coninued Now, wh o do wih Π? Pessue is p of i. bck o ou quesion, Now, wh o do wih? Π Pessue is p of i. Thee e ohe, nonisoopic sesses Pessue E Molecul Sesses definiion:

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

3.1 Velocity: m s. x t. dx dt. x t (1) 3.2 Acceleration: v t. v t. dv dt. (2) s. 3.3 Impulse: (3) s. lim. lim

3.1 Velocity: m s. x t. dx dt. x t (1) 3.2 Acceleration: v t. v t. dv dt. (2) s. 3.3 Impulse: (3) s. lim. lim . unen n eie quniie n uni unen Phi quniie e hoe h n e ie efine, n fo whih he uni e hoen ii, inepenen of ohe phi quniie. o. unen uni Uni So Dienion engh Mee Tie Seon T M Kiog g M uen ineni Apee A igh ineni

More information

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr.

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr. How dk me, xion wlls, nd gvion poduion led o obsevble Enopy geneion in he Ely Univese D. Andew Bekwih he D Albembein opeion in n equion of moion fo emegen sl fields implying Non-zeo sl field V && Penose

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

ALG 5.3 Flow Algorithms:

ALG 5.3 Flow Algorithms: ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Coupled Mass Transport and Reaction in LPCVD Reactors

Coupled Mass Transport and Reaction in LPCVD Reactors ople Ma Tanpo an eaion in LPV eao ile A in B e.g., SiH 4 in H Sepaae eao ino o egion, inaafe & annla b - oniniy Eqn: : onveion-iffion iffion-eaion Eqn Ampion! ile peie i in majo aie ga e.g., H isih 4!

More information

How to Order. Description. Metric thread (M5) Rc NPT G

How to Order. Description. Metric thread (M5) Rc NPT G Ai Fil AF0 o I ymol Ai Fil Ai Fil ih Auo AF0 Ho o Od AF Md o Od (f o pg 334 hough o 336 fo dils.) Opion/mi-sndd: l on h fo o f. Opion/mi-sndd symol: Whn mo hn on spifiion is uid, indi in lphnumi od. Exmpl)

More information

H STO RY OF TH E SA NT

H STO RY OF TH E SA NT O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

More information

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T. Che 5. Dieeil Geome o Sces 5. Sce i meic om I 3D sce c be eeseed b. Elici om z =. Imlici om z = 3. Veco om = o moe geel =z deedig o wo mees. Emle. he shee o dis hs he geoghicl om =coscoscossisi Emle. he

More information