Primal and Weakly Primal Sub Semi Modules

Size: px
Start display at page:

Download "Primal and Weakly Primal Sub Semi Modules"

Transcription

1 Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule The onep of pil ub odule h been inodued nd udied []Alo wekly pil ub odule hve been udied [2] Thoughou hi wok, we define pil nd wekly pil ub ei odule new genelizion of pie ub ei odule We how h hey enjoy of ny of he popeie of pie ub ei odule hei ubje Clifiion: 3C05 Key Wod: ubeiodule, Pil nd Wekly Pil ubeiodule Inoduion Thoughou will be ouive eiing wih nonzeo ideniy nd i n -eiodule Pil nd wekly pil idel ove ouive eiing hve been udied [4] The onep of pie ubeiodule h been inodued by G Yeilo, K Oel nd U Teki [3] Thoughou hi wokwe inveige viou popeie of pil nd wekly pil ubeiodulend hei genelizion We lo exploe he elionhip beween pilnd wekly pil ubeiodule well he elionhip beween weklypil ubeiodule ove nd wekly pil ubeioduleove,whee i he e of ll nelble eleen in oeove we define P-pil ubeiodule nd udy i elion wih pie ubeiodule ofeiodule nd ohe eiodule uue Finlly we eblih oneo-one oepondene beween P- wekly pil ubeiodule of n -eiodule nd he P -wekly pil ubeioduleof 2 Pil nd Wekly Pil ubeiodule G Yeilo,K Oelnd U Teki[3], defined h ube N of n -eiodule i lled ubeiodule of if fo n,n N nd, n+n N nd n N,n eleen i id o be pie o N if N(wih ) iplie h N,h i, ( N : ) =N nd N i pie ub-eiodule of he -eiodule if foeh nd, N iplie ( N : )o N We will denoe he e of ll eleen of h e no pie o N by (N) Definiion 2 A pope ubeiodule N of i lled pil ubeiodule of if (N) fo n idel of Le N pil ubeiodule nd P=(N),hen we y h N i P pil ubeiodule of Theoe22 Le be ouive eiing nd be n -eiodule If N i P pil ubeiodule of,hen P i pie idel Poofuppoe h, \P We will how h P If hee i uh h ( N, hen () N, o ( N : ) =N ine i pie o N, N iplie ( N : )=N Thi how N, h i i pie o N, o P equied Popoiion23 Le N be ubeiodule of n -eiodule If N i P-pil ubeiodule of,hen ( N : ) P Poof Le ( N : ) nd 0(ine0 P)ine N i pope ubeiodule of, ( N : ) i pope idel of, hee exi \N, wih N Thi how h i no pie o N, h i P 3

2 Cene fo Pooing Ide, UA wwwijneo Popoiion24Le be ouive eiing, n -eiodule N nd K -ubeiodule of wih K N nd P n idel of Then he following hold (i) I f K i P pil ubeiodule of N nd (N) P, hen K i P pil ubeiodule of (ii) Le (,P) be lol eiing If K i P pil ubeiodule of N nd N i pil ubeiodule of, hen K i pil ubeiodule of Poof (i) If i no pie o K,hen hee exi \K wih K If N,hen P o uppoe h N Theefoe, (N) p Now le P, we will how h h i no pie o K Thee exi n N\K uh h n K Thu n \K give i no pie o K Thu K i P pil ubeiodule of (ii)thi follow fo (i) Le be given eiing, be he e of ll ulipliively nelble eleen of nd ben - eiodule Then he eiodulegeneed by in, i he e of ll finie u +22++nn, whee i nd i,whih i denoed by If N i ubeioduleof, define N ={ ; N} Clely N i ubeiodule of G Yeilo, K Oelnd U Teki [3], defined h he k-loue of ub-eiodule N of -eiodule i +=2, fo oe i N, i=,2} nd ubeiodule N i lled k-ubeiodule if N equl N={ : i k-loue Le25 Aue h i eiing Le be -eiodule nd N be ubeiodule of he eiodule Then he following hold: (i) X if nd only If i n be wien in he fo (ii) (N ) = N x fo oe nd (iii) If N i pie ubeiodule of hen N i pie ubeiodule of - Poof (i) Le x Then hee e eleen nd i uh h x = i,wihi = i,heefoe x= i n i= ii whee i nd i Pu =2n fo uible eleen e,e2,,en, we hve i = ei The Convee Ipliion i Obviou e nen,whee ei (ii)(n ) N i ivil Fo he evee inluion, ifx N, hen x = nen nd, o =x N nd odingly, x=, whee =e + 2e2 + + (iii)aue h N i pie ubeiodule of nd N, N i pie ubeiodule,hen ( N : ) o N, h i ( N : N ) o N Theoe26Le be n -eiodule nd he e of ulipliively nelble ube of If K i Q pil ubeiodule of,hen K i Q pil ubeiodule of 32

3 Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Poof Le N=K nd P=Q I i enough o how h (N)=PFi,le (N) Thee exi \N uh h N Then fo K nd \ K we ge Q,hene p On he ohe hnd,fo evey p,we hve Q, o hee exi K uh h K Then by le 25 (ii), K, o K wih k \ K N wih \ ( K ) Thi how h i no pie o N, h i (N) Definiion 27 Le be ouive eiing nd be n -ubieodule A pope ubeiodule N of i lled wekly pie ubeiodule if wheneve 0 N, fo oe nd, hen eihe N o N Le be ouive eiing nd N be ubeiodule of n - eiodule An eleen i lled wekly pie o N if 0 N( ) iplie h N Ohewie i no wekly pie o NDenoe By w(n) he e of eleen of h e no wekly pie o N Le N be ubeiodule of he -eiodule Then 0 i lwy wekly pie o N nd if i pieo N,hen i wekly pie o N, bu he onve i no neeily ue Definiion28 Le be ouive eiing wih non -zeo ideniy nd le N be popeubeiodule of n -eiodule N i lled wekly pil if he e P=w(N) {0} fo n idel of P i lled he (wekly) djoin idel of N nd we lo y N i P wekly pil ubeiodule of We nex give evel heizion of wekly pil ubeiodule Theoe29Le P be n idel of ouive eiing, n - eiodule nd N ubeiodule of Then he following eequivlen : (i) N i P wekly pil (ii) Fo evey P {0}, ( N : N (0 : ; nd fo evey 0 P, N ( 0 : ( N : Poof ( i) ( ii) uppoe h N i P wekly pil ubeiodule of Le P {0} = w(n) nd le ( N : If = 0 hen ( 0 : If 0, ine i wekly pie o N, we ge N o N ( 0 :, ine N ( 0 : N fo ny ubeiodule, we hve ( N : N (0 : Now uppoe h P {0} = w(n), i no wekly pie o N, ohee exi \N uh h 0 N, ( N : \ ( N(0 : ) ( ii) ( i) I follow fo (ii) h w(n) = P {0} Hene N i P wekly pil Theoe 20 Le be ouive eiing, be n -eiodule, nd N i ubeiodule of if N i P wekly pil ubeiodule of hen P i wekly pie idel of Poof uppoe h, b P wih b 0 we will how h b P If hee i wih 0 (b) N, hen 0 ( N : b) N (0 : b) by Theoe 29, whee ( 0 : b), 0 A P, hen i wekly pie o N, hene N h i b i wekly pie o N, b P Conequenly P i wekly pie idel of Le be ouive eiing An -eiodule i lled fihful(ep, yli) if Ann() =0, h i ( 0 : ) 0(ep, n be geneed by ingle eleen ie; = (x) = x) Popoiion 2 Le N be fihful k-ubeiodule of n -eiodule If N i P wekly pil ubeiodule of, hen ( N : ) P Poof Aue h N i P wekly pil ine N i pope ubeiodule of N, hen ( N : ) i pope idel of, hee exi \N Le non- zeo eleen ( N : ), hen N If 0 nd N give h i no wekly pie o N, h i P 33

4 Cene fo Pooing Ide, UA wwwijneo o we ue h = 0 N fihful ubeiodule hee exi n N wih n 0Now (n + ) N wih + n N ine N i k-ubeiodule hi iplie h i no weklypie o N, h i P Thu ( N : ) P equied Theoe 22 Le be ouive eiing, N i k-ubeiodule of fihful yli -eiodule, If N i P wekly pil of hen ( N : ) i P wekly pil idel of PoofLe = x fo oe x, nd e I = ( N : ) We will how h w(i) = w(n) Fo evey w(i), hee exi \I uh h 0 I, x 0 ohewie ( 0 : x) (0 : ) 0, ine i fihful x \N, i follow h i no wekly pie o N, h i w(n) Now ue h w(n), hen 0 N fo oe \N, we n wie = x fo oe, 0 x N, 0 I wih \I, hi how i no wekly pie o I Hene w(i),w(i) = w(n) equied We nex give ondiion fo wekly pil ubeiodule o be pil ubeiodule Theoe 23 Le be ouive eiing nd P i k-idel of If k-ubeiodule N of - eiodule i P wekly pil of wih ( N : ) P nd N ( N : ) 0 Then N i pil ubeiodule of PoofI i enough o how h P = (N) Fo evey 0 P, i no wekly pie o N, o i no pie o N, h i (N) Now ue h (N) Thee exi \N uh h N If 0 hen i no wekly pie o N h i P o ue h = 0 Ce()uppoe h N 0, y n 0 0 fo oe n0 N Now 0 ( + n 0 ) Nwih + n \N, iplie h i no wekly pie o N, nd hene P e(2) uppoe h N = 0 If ( N : ) 0, hen 0 fo oe ( N : ) Now 0 ( + N wih \N iplie h + i no wekly pie o N, h i + P nd hene P ine P i k-idelif ( N : ) = 0 ine N ( N : ) 0, hee i (N : ) nd n N wih n 0 Now 0 (+)(+n) N wih +n \N how h + P wih P iplie P, ine P i k-idel Theefoe (N) Pnd o (N) = P whih iplie h N i P-pil Theoe 24 Le be ouive eiing nd be n -eiodule Then fihful k wekly pie ubeiodule N of i wekly pil Poof Le N be k wekly pie ubeiodule of wih Ann ( N) 0 e P = ( N : ) N pope ubeiodule o h ( N : ) fo evey P\{0},hee exi \N uh h N If 0, hen w(n) o we n ue = 0 N i fihful ubeiodule, hee exi n N wih n 0, 0 (n + ) N wih n + \N, iplie h i no wekly pie, h i w(n) Now ue h w(n), hee exi \N wih 0 N A N i wekly pie we ge ( N : ) \{0}, hene w(n) P\{0} We hve ledy how h P = w(n) {0} Hene N i P wekly pil Theoe 25 Le be ouive eiing, be he e of ulipliively nelbleelen of, nd N k- ubeiodule of If N i P wekly pil of wih P = Then he following hold (i) If 0 / N, hen N (ii) ( N : ) = N : ) ( Poof (i) uppoe h 0 / N nd \N, hen hee exi n N nd wih wih N, hene i no weklypie o N whih i ondiion 0 (ii) Le ( N : ) fo evey, N, by (i) N n, 0 = n 34

5 Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Thi iplie h ( N : ), h i ( N : ) nd hene ( N : ) ( N : ) The ohe oninen i obviou Popoiion 26 Le be ouive eiing, he e of ulipliively nelble eleen of nd N be k ubeiodule of eiodule If N i P wekly pil wih P hen he following hold (i) N i P wekly pil ubeiodule of -eiodule (ii) N = N Poof (i)le 0 P hen by Theoe 20, P i wekly pie idel nd 0 P by [4, le 8] Thee exi \N uh h 0 N, we u hve 0 N, by popoiion 426 N, hen i no wekly pie o N, o P \{0} w(n) Now uppoe h w( N ), hen 0 N fo oe \ N, hen 0 N, by Popoiion 25, 0 N wih \N, hi how P\{0}, hen P \{0} (ii) Le N If = 0 hen N If 0, hen 0 N by Popoiion 25 N The ohe oninen i obviou Theoe 27 Le be n -eiodule nd he e of ulipliively nelble eleen of If K i Q wekly pil ubeioduleof, henk i (Q ) wekly pil ubeiodule of Poof e N = K nd P = Q By [4, popiion 30], P i wekly pie idel of I i enough o 0 how h w(n) = P\{0} Fo evey w(n) hee exi \N uh h 0 N, Knd \K h Q\{0} o P\{0} Thi how w(n) P\{0} Now le P\{0}, hen Q\{0} K i Q wekly pil ubeiodule of 0 wih K, hen 0 equied, hee exi \K K,0 N wih \N Thu w(n), h i P\{0} w(n) Theoe 28 Le P be wekly pie idel of ouive eiing nd le be n -eiodule Aue h i ulipliively nelble ube of wih P = Then hee exi one-o-one oepodene beweenhe P-wekly pil ubeiodule of nd he P wekly pil ubeiodule of Poof Thi follow fo Popoiion 26 nd Theoe 27 efeene J Dun, Pil odule, Co Algeb 997; 25: EbhiiAni nd A YouefinDni, Wekly pil ubodule, Tkng Jounl of hei 2009; 40: G Yeilo, K Oel nd U Teki On pie ubeiodule Inenionl Jounl of Algeb (200); 4: EbhiiAni,On Pil nd wekly pil idel ove ouive eiing, Gl 2008; 43:

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

1 Adjusted Parameters

1 Adjusted Parameters 1 Adjued Parameer Here, we li he exac calculaion we made o arrive a our adjued parameer Thee adjumen are made for each ieraion of he Gibb ampler, for each chain of he MCMC The regional memberhip of each

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

Today: Max Flow Proofs

Today: Max Flow Proofs Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

How to Solve System Dynamic s Problems

How to Solve System Dynamic s Problems How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion

More information

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that Divisibility DEFINITION: If a and b ae integes with a 0, we say that a divides b if thee is an intege c such that b = ac. If a divides b, we also say that a is a diviso o facto of b. NOTATION: d n means

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

r r r r r EE334 Electromagnetic Theory I Todd Kaiser 334 lecoagneic Theoy I Todd Kaise Maxwell s quaions: Maxwell s equaions wee developed on expeienal evidence and have been found o goven all classical elecoagneic phenoena. They can be wien in diffeenial

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD

. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD Ie J Mh & Mh Sci Vol 8 No 2 (1985) 373-388 373 ON FUNDAMENTAL SETS OVER A FINITE FIELD YOUSEF ABBAS d JOSEH J LIANG Dee of Mheic Uiveiy of Souh Floid T, Floid 33620 USA (Received Mch 3, 1983) ABSTRACT

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Moments of Generalized Order Statistics from a General Class of Distributions

Moments of Generalized Order Statistics from a General Class of Distributions ISSN 684-843 Jol of Sttt Vole 5 28. 36-43 Moet of Geelzed Ode Sttt fo Geel l of Dtto Att Mhd Fz d Hee Ath Ode ttt eod le d eel othe odel of odeed do le e ewed el e of geelzed ode ttt go K 995. I th e exlt

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

4. UNBALANCED 3 FAULTS

4. UNBALANCED 3 FAULTS 4. UNBALANCED AULTS So fr: we hve tudied lned fult ut unlned fult re more ommon. Need: to nlye unlned ytem. Could: nlye three-wire ytem V n V n V n Mot ommon fult type = ingle-phe to ground i.e. write

More information

rad / sec min rev 60sec. 2* rad / sec s

rad / sec min rev 60sec. 2* rad / sec s EE 559, Exa 2, Spig 26, D. McCalley, 75 iute allowed. Cloed Book, Cloed Note, Calculato Peitted, No Couicatio Device. (6 pt) Coide a.5 MW, 69 v, 5 Hz, 75 p DFG wid eegy yt. he paaete o the geeato ae give

More information

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments Advace i Pue Maheaic 9-53 doi: 36/ap3 Pubihed Oie May (hp://wwwscirpog/oua/ap) New Reu o Ociaio of eve Ode Neua Diffeeia Equaio wih Deviaig Ague Abac Liahog Li Fawei Meg Schoo of Maheaica Sye Sciece aiha

More information

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1 Week : DTMC Alictions Rnking Web ges & Slotted ALOHA etwok efonce - Outline Aly the theoy of discete tie Mkov chins: Google s nking of web-ges Wht ge is the use ost likely seching fo? Foulte web-gh s Mkov

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Method for Approximating Irrational Numbers

Method for Approximating Irrational Numbers Method fo Appoximating Iational Numbes Eic Reichwein Depatment of Physics Univesity of Califonia, Santa Cuz June 6, 0 Abstact I will put foth an algoithm fo poducing inceasingly accuate ational appoximations

More information

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr.

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr. How dk me, xion wlls, nd gvion poduion led o obsevble Enopy geneion in he Ely Univese D. Andew Bekwih he D Albembein opeion in n equion of moion fo emegen sl fields implying Non-zeo sl field V && Penose

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Circular Motion Problem Solving

Circular Motion Problem Solving iula Motion Poblem Soling Aeleation o a hange in eloity i aued by a net foe: Newton nd Law An objet aeleate when eithe the magnitude o the dietion of the eloity hange We aw in the lat unit that an objet

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

Introduction Common Divisors. Discrete Mathematics Andrei Bulatov

Introduction Common Divisors. Discrete Mathematics Andrei Bulatov Intoduction Common Divisos Discete Mathematics Andei Bulatov Discete Mathematics Common Divisos 3- Pevious Lectue Integes Division, popeties of divisibility The division algoithm Repesentation of numbes

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Sharif University of Technology - CEDRA By: Professor Ali Meghdari Shaif Univesiy of echnology - CEDRA By: Pofesso Ali Meghai Pupose: o exen he Enegy appoach in eiving euaions of oion i.e. Lagange s Meho fo Mechanical Syses. opics: Genealize Cooinaes Lagangian Euaion

More information

Notes on MRI, Part II

Notes on MRI, Part II BME 483 MRI Noe : page 1 Noe on MRI, Par II Signal Recepion in MRI The ignal ha we deec in MRI i a volage induced in an RF coil by change in agneic flu fro he preceing agneizaion in he objec. One epreion

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vecto Vecto have Diection and Magnitude Mike ailey mjb@c.oegontate.edu Magnitude: V V V V x y z vecto.pptx Vecto Can lo e Defined a the oitional Diffeence etween Two oint 3 Unit Vecto have a Magnitude

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

Permutations and Combinations

Permutations and Combinations Pemutations and Combinations Mach 11, 2005 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication Pinciple

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

1. Kinematics of Particles

1. Kinematics of Particles 1. Kinemics o Picles 1.1 Inoducion o Dnmics Dnmics - Kinemics: he sud o he geome o moion; ele displcemen, eloci, cceleion, nd ime, wihou eeence o he cuse o he moion. - Kineics: he sud o he elion eising

More information

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Faulty of Siees ad Matheatis, Uivesity of Niš, Sebia Available at: http://www.pf.i.a.yu/filoat Filoat 22:2 (28), 59 64 SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE Saee Ahad Gupai Abstat. The sequee

More information

KINGS UNIT- I LAPLACE TRANSFORMS

KINGS UNIT- I LAPLACE TRANSFORMS MA5-MATHEMATICS-II KINGS COLLEGE OF ENGINEERING Punalkulam DEPARTMENT OF MATHEMATICS ACADEMIC YEAR - ( Even Semese ) QUESTION BANK SUBJECT CODE: MA5 SUBJECT NAME: MATHEMATICS - II YEAR / SEM: I / II UNIT-

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

@FMI c Kyung Moon Sa Co.

@FMI c Kyung Moon Sa Co. Annals of Fuzzy Mahemaics Infomaics Volume, No. 2, (Apil 20), pp. 9-3 ISSN 2093 930 hp://www.afmi.o.k @FMI c Kyung Moon Sa Co. hp://www.kyungmoon.com On lacunay saisical convegence in inuiionisic fuzzy

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Σr2=0. Σ Br. Σ br. Σ r=0. br = Σ. Σa r-s b s (1.2) s=0. Σa r-s b s-t c t (1.3) t=0. cr = Σ. dr = Σ. Σa r-s b s-t c t-u d u (1.4) u =0.

Σr2=0. Σ Br. Σ br. Σ r=0. br = Σ. Σa r-s b s (1.2) s=0. Σa r-s b s-t c t (1.3) t=0. cr = Σ. dr = Σ. Σa r-s b s-t c t-u d u (1.4) u =0. 0 Powe of Infinite Seie. Multiple Cauchy Poduct The multinomial theoem i uele fo the powe calculation of infinite eie. Thi i becaue the polynomial theoem depend on the numbe of tem, o it can not be applied

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

A NOTE ON PRE-J-GROUP RINGS

A NOTE ON PRE-J-GROUP RINGS Qaar Univ. Sci. J. (1991), 11: 27-31 A NOTE ON PRE-J-GROUP RINGS By W. B. VASANTHA Deparmen of Mahemaic, Indian Iniue of Technology Madra - 600 036, India. ABSTRACT Given an aociaive ring R aifying amb

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information