X-Ray Notes, Part III

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "X-Ray Notes, Part III"

Transcription

1 oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel ue o o Poo R.V. If he e vlue of he phoo ou fo pxel, he he l o oe o of fo h pxel wll e: S SR S The poly ey fuo fo he Poo R.V. : e p k k k! k k We wll ow ee he poly uo of eee phoo. Suppoe he e x-y phoo v he eeo e Poo h he eeo h effey, ee pevouly. We vew he eeo y o ye whh he phoo eee wh poly p :

2 oll 6 X-y oe 3: Pe whee Q k P { k phoo e eee} P Bol k k Poo k k k! k e p p k!! k! k k e p p k!! k k e p p e k! p k e p k! Poo p { k phoo e eee k phoo e e} P{ k phoo e e} Thu, he eee phoo e lo Poo ue, u wll hve poly he SR of he eee phoo ow: SR e Coe:. I lo ey o how h he ue of phoo h e o eee lo Poo poe wh pee poly -.. The u of Poo poee lo Poo. 3. Flly, f he e phoo e Poo, he he ue of phoo h eh he eeo wll lo e Poo. Aeuo poee h epeely ffe phoo wok exly ove.

3 oll 6 X-y oe 3: Pe 3 Ce Poo Poee Coe x-y phoo h e wh he eeo eee howe of phoo: We oel he ue of lh phoo,, he ue of o vle: X whee X he ue of lh phoo fo x-y phoo ue he ue of x-y phoo Poo. Fo ow, lo vewe he of lh oveo poe. We ow eee he he of : X X X X j j flly:

4 oll 6 X-y oe 3: Pe X X Th h wo opoe: he f epee he ve he ue of phoo fo ve u leh he eo epee he vo h oe fo he he leh of he u. Th lo e we : we ow we ew expeo fo he SR: SR Th l p of h expeo e houh of he SR eo e. If he vey le, he h poe wll eul eelly o lo of SR. Fo ol e Poo poee, e..: Z W whee Z Poo he: Z W Z Z W follow h: W W he SR e we :

5 oll 6 X-y oe 3: Pe 5 SR Fo ol e poee, h uo oue: SR 3... If y of he e e ll o eve loe o oe he he SR wll e eue. Thu, he e of eeo ye, po h he pou of ll of he kep le. Fo exple, we w >>, >>, 3 >>, xple Coe ll ee h poue 5 lh phoox-y phoo eee h ke ouhly lh phoo o ove lve hle ple o oevle he evelope fl h,. The SR euo fo wll he e: The e, whh le, oe oue o y lo of SR. The e he oue of SR euo. Ovell Sye Repoe SR xple Le oe he follow ye:

6 oll 6 X-y oe 3: Pe 6. The oue fuo e: exp whee h u of phoo.. The o fuo : exp whee exp epee he leo h we e y o ee. The o he o fuo C. 3. We ll ee he eoe epoe fuo he eo of lh pue y he peue of he fe op oupl: exp h.. Le,. 5. z: he oje fo fo he oue fo fo The e 5 lh phooeo,. e pue y he opl oupl, he opol 3 phoophoo he lh plfe,.5 fo he fe loe, opl oupl effee of he CCD. The fuo he ue : **exp exp ** exp ** ** h I Th ovoluo o ely olve he Foue o: exp, 8 exp exp, exp ρ δ ρ ρ δ ρ ρ v u v u I k o he e o: exp 8 I Fo h expeo, le he leo o fe he ye epoe wll e:

7 oll 6 X-y oe 3: Pe C whh eue y ou % fo he pu fuo. The ue of x-y phoo h fll wh pxel he e of he opl oupl : 8 The fl SR wh ou 3 : 8 CR whee he SR euo fo : wh he opol lh plfe, he SR euo fo : whh eoe oo pe of e ye e efe, fo exple efoe he low opoe lu he hu eye.

8 oll 6 X-y oe 3: Pe 8 Copo See X-y Coe he follow oje wh x-y opque oe: he oupu e h look lke h: o whh we efe o C ΔS S o o oe o CR ΔS. ow, oe h he ee phoo hee oe fo of he ee phoo wll e fow wll eee ol phoo he fl e. The uo of he ee phoo wll look oeh lke he oje ovolve wh he fow e uo. The fl e wll e he u of he e phoo he ee phoo. By e S he ee phoo wll eue oh he o he o o oe o. How y phoo e ee? Deve fo ovk, Pole 3. Le look oje of leh l hv euo oeffe. Le e pe

9 oll 6 X-y oe 3: Pe 9 he ue phoo e upo he oje h he ue of phoo h hve o ee eph x x. The ue of ee phoo evl x wll e: x x he ol ue of ee phoo wll e: x l x x l l x x exp x x exp l oe h -exp-l he ol ue of phoo h e wh he oje. Ave oe X-Ry I Thee e wo k of ve oe h we wll oe. The f zeo-e ve oe, fo exple, eleo oe ze e. I h e, he e vlue oe he, u he ve oe. I o e, he ve oe wll e epee of he Poo vo he eeve phoo hu, he ve wll :

10 oll 6 X-y oe 3: Pe whee he ve of he ve oe he Poo ve. Thu, he SR : S SR The ohe k of ve oe h we wll oe e. Se e lo Poo ue, zeo e, we ve ue efoe, oe ffe he o. Coe he e whee we hve e phoo ee phoo l ffeee of Δ. The ol o w: ou eue o : C C Δ Δ We lo kow h he ve of he kou l wll e he u of he ve of he o oue Poo poee: hu, he eue o o oe o wll e: CR Δ C C The e CR euo fo o Ψ, whee e phoo o e phoo. Ψ he o of

11 oll 6 X-y oe 3: Pe SR Reuo To e e of how y phoo e ee ke he eeo, we look exple wh oop oje wh euo oeffe e opoe : F, he ue of ee phoo eee eh eel hke : z z z e z z We ke vey of upo:. Ioe olque. Aue pllel y eoey fo e ey 3. Aue eey epee. ele ulple e 5. Aue oop e Thu, fo he ue of ee phoo, oe fo, Fz, wll e pue: Ω z F z e Lz The ue of ee phoo he eeo wll he e:

12 oll 6 X-y oe 3: Pe G z z e z e e z z z z F L L z z L L L Ω Ω whee G eoe, oje epee fo whh h u of leh. Fo h we oje, G.5L h eul fo Ωz fo lo, l oje G. Theefoe: G Ψ If we ke ypl vlue fo euo oeffe fo we kev,.6, L we wll le G.L, he: Ψ.8 eul euo of SR of:.5 Ψ 5% euo SR. Se Reuo G The o oo wy of eu e houh he ue of e euo : whee he e ou of oe hh el lke P, W h wll lok y phoo h ke. The wok pplly y u ow o he epe le fo ee phoo, Ω:

13 oll 6 X-y oe 3: Pe 3 We efe e euo fo: Ω' z z R Ω z z whee Ω z he epe le of he e euo. I o o eu he e, h lo eul euo of e phoo. We efe effey of he y oe e phoo loke y eue y he flle el: equo, h wll e: The CR wll ow e: exp f h CR C R C RΨ whee R Ψ he ew SR euo fo.

14 oll 6 X-y oe 3: Pe The Relohp of Poo Poe o he xpoel R.V. Le T e expoel R.V. h ee he e ewee eve Poo poe. The evo follow. Rell h he poly h eve ou evl Δ wll e p λδ. Alo, oe h he poly h o eve ou evl Δ wll e q - λδ. ow, uppoe he we w o kow wh he poly h o eve oue ewee. Th he e y h we hve Δ vevl whh o eve ou. If hee evl e epee h y h he phoo o e wh eh ohe o e o oe oup o wheve, he poly h o eve oue ewee wll e q : Δ { o eve ou, } Δ P λ we eee h fuo Δ : P λδ λ λ { o eve ou, } λδ e The poly ey fuo of T, f, ee he poly h eve ou e poly uo fuo of T el of f ee he poly h eve ou y e wll e equl o: l Δ λ e, fo F P{ o eve ou, }, fo < he poly ey fuo he evve of h fuo: λ λe, fo f, fo < The expoel R.V. ouou R.V. of he e ewee eve ee : whh h e ve of: T ~ xpoelλ T λ T λ

15 oll 6 X-y oe 3: Pe 5 eoyle Popey The expoel R.V. eoyle, e h uo ey of eve e he fuue o ffee y p eve, h, y po e, he e ul he ex eve expoel R.V. wh pee λ. Th he e y h ju eue we hve ee eve lo e, we e o oe lkely o hve eve oo. Ju lke he le flly. Speflly, { T > T > } P{ T > } P whh y ve h eve h oue y e, he poly h eve wll o ou y e wll e e he poly h o eve ou,. Poof: P { T > T > } F F exp λ exp λ exp λ F P { T > }

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

Advanced Radiology Reporting and Analytics with rscriptor vrad results after 10 million radiology reports

Advanced Radiology Reporting and Analytics with rscriptor vrad results after 10 million radiology reports Av Ry R Ay wh vr 10 y I, w, v, - y y h, v, z yz y. I wh vy y v y hh-qy y z. A h h h N L P (NLP) h w y y. h w w vr Jy 2014 h h h 10 y. F h - w vr hv wk h v h qy wkw. h wh h h. I I /v h h wk wh vy y v w

More information

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) = 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt

More information

K owi g yourself is the begi i g of all wisdo.

K owi g yourself is the begi i g of all wisdo. I t odu tio K owi g yourself is the begi i g of all wisdo. A istotle Why You Need Insight Whe is the last ti e ou a e e e taki g ti e to thi k a out ou life, ou alues, ou d ea s o ou pu pose i ei g o this

More information

Review for the Midterm Exam.

Review for the Midterm Exam. Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

Introduction to Robotics (Fag 3480)

Introduction to Robotics (Fag 3480) Intouton to Robot (Fg 8) Vå Robet Woo (Hw Engneeeng n pple Sene-B) Ole Jkob Elle PhD (Mofe fo IFI/UIO) Føtemnuen II Inttutt fo Infomtkk Unvetetet Olo Sekjonlee Teknolog Intevenjonenteet Olo Unvetetkehu

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé Ešlc a pðå u LR abé 1z Ešlc a l e j 2z Sm l e j 3z Ešlc a l WL e J k N k Nl hhle (NË j, b e, hôl, fe L X, j h Cm eðl CaÉ c pçf ZÑ b L A a BhnÉL) WL e g e eðl (STD Code pq) j h Cm eðl C- jm 4z Hm L - 1z

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

Time to Say Goodbye. (Con Te Partirà) Words and Music by Francesco Sartori, Lucia Ql!arantotto and Frank Peterson Arranged by Mac Huff

Time to Say Goodbye. (Con Te Partirà) Words and Music by Francesco Sartori, Lucia Ql!arantotto and Frank Peterson Arranged by Mac Huff 4 08744668 SATB US $95 Reoded by ANDREA BOCELL (4 Time to Say Goodbye (Con Te Patià) Wods and Musi by Faneso Satoi Luia Ql!aantotto and Fank Peteson Aanged by Ma Huff Available fo SATB and SSAA 08744670

More information

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

IJRET: International Journal of Research in Engineering and Technology eissn: pissn: IJRE: Iiol Joul o Rh i Eii d holo I: 39-63 I: 3-738 VRIE OF IME O RERUIME FOR ILE RDE MOWER EM WI DIFFERE EO FOR EXI D WO E OF DEIIO VI WO REOLD IVOLVI WO OMOE. Rvihd. iiv i oo i Mhi R Eii oll RM ROU ih

More information

0n Stokes' Problem for a Non-Newtonian Fluid. K. R. Rajagopal, Pittsburgh, Pennsylvania, and T. Y. Na, Dearborn, Michigan. (Received August 30, 1982)

0n Stokes' Problem for a Non-Newtonian Fluid. K. R. Rajagopal, Pittsburgh, Pennsylvania, and T. Y. Na, Dearborn, Michigan. (Received August 30, 1982) Acts ]Vfeehaniea 48, 233--239 (1983) ACTA MECHANCA by Spriager-Verlag 1983 0n Stokes' Problem for a Non-Newtonian Fluid By K. R. Rajagopal, Pittsburgh, Pennsylvania, T. Y. Na, Dearborn, Michigan (Received

More information

Get Funky this Christmas Season with the Crew from Chunky Custard

Get Funky this Christmas Season with the Crew from Chunky Custard Hol Gd Chcllo Adld o Hdly Fdy d Sudy Nhs Novb Dcb 2010 7p 11.30p G Fuky hs Chss Sso wh h Cw fo Chuky Cusd Fdy Nhs $99pp Sudy Nhs $115pp Tck pc cluds: Full Chss d buff, 4.5 hou bv pck, o sop. Ts & Codos

More information

Mass-Spring Systems Surface Reconstruction

Mass-Spring Systems Surface Reconstruction Mass-Spng Syses Physally-Based Modelng: Mass-Spng Syses M. Ale O. Vasles Mass-Spng Syses Mass-Spng Syses Snake pleenaon: Snake pleenaon: Iage Poessng / Sae Reonson: Iage poessng/ Sae Reonson: Mass-Spng

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

The European. Ombudsman. for business

The European. Ombudsman. for business G O D O Th E Ob f b EN Whh b SME, wh h EU b, h E Ob b f h EU. If b h fwk f EU-f j, f f fw wh h EU h f,, bb, f, h E Ob h. E O R E Ob Pb f b b wh h EU : L C Pb wh f Lk f /f f P U V f f h I h, h E Ob f b.

More information

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise Hi ue Hi ue -ay Deecio Pole Coide he ole of decidig which of hyohei i ue aed o oevig a ado vaiale (veco). he efoace cieia we coide i he aveage eo oailiy. ha i he oailiy of decidig ayhig ece hyohei H whe

More information

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin technical poof TP A.4 Pot-impact cue ball tajectoy fo any cut anle, peed, and pin uppotin: The Illutated Pinciple of Pool and Billiad http://billiad.colotate.edu by Daid G. Alciatoe, PhD, PE ("D. Dae")

More information

+8A STATUS CVBS TXT (A9) STATUS AUDIO IN AUDIO OUT +8SC VOLUME PAL C CHROMA DECODER P Y +8A B Y. 4.43MHz PAL / SECAM CHROMA. 64uS. 4.

+8A STATUS CVBS TXT (A9) STATUS AUDIO IN AUDIO OUT +8SC VOLUME PAL C CHROMA DECODER P Y +8A B Y. 4.43MHz PAL / SECAM CHROMA. 64uS. 4. LOK IAAM V INT AT AT AT AUIO OUT 0 0 P P P V EXT FL AT OVE AUIO IN V INT V EXT IF (OUN) AE AN V L/L' 0 AW /I' / L A A FM AM OUN AM +A FM TATU + EXTENAL AM / L TATU TATU AUIO IN 0 A A AM 0 FM + VOLUME +A

More information

of the contestants play as Falco, and 1 6

of the contestants play as Falco, and 1 6 JHMT 05 Algeba Test Solutions 4 Febuay 05. In a Supe Smash Bothes tounament, of the contestants play as Fox, 3 of the contestants play as Falco, and 6 of the contestants play as Peach. Given that thee

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

NUMERICAL SCHEMES FOR NONLINEAR PREDICTOR FEEDBACK

NUMERICAL SCHEMES FOR NONLINEAR PREDICTOR FEEDBACK UMEIAL SHEMES FO OLIEA PEDIO FEEDBAK Io Kfyll * d Molv Kc ** * Dep. of Evoel E. eccl Uvey of ee 73 Geece el: fyl@eve.c. ** Dep. of Meccl d Aeopce E. Uvey of lfo S Deo L Joll A 993- U.S.A. el: c@cd.ed Ac

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors ecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: eeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shcley uai Quai-eualiy i cducive maeial C 35 Sig 2005 Faha

More information

D. J. WH1 "HARD, Editor and Owner,.f business, Jane 28, l'-1"'-'. Liabilities. VOL. NO. 95, <i.i-ic'i.iiis gecui I PITT SUPERIOR COURT-

D. J. WH1 HARD, Editor and Owner,.f business, Jane 28, l'-1'-'. Liabilities. VOL. NO. 95, <i.i-ic'i.iiis gecui I PITT SUPERIOR COURT- e^ RN RFLOR N ow e og o b] Fo o ok o e p efo) f po k e p W or fo Le Dge _ H o p ook K»»)»» o p fko No be?») b OX LL D D o e o D WH HRD O f be e 2 L OL NO 9500000 o o o $090 5» 6 OR < ge 05000 p f L Fe

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers Spl d Dly U f XPCS F El L Wjh Rk LCLS Wkhp: Appl f Ch X-y h LCLS 70008 70008 Spl d Dly U f XPCS F El L Pg Spl pul XPCS Cp f h dly u Expl up Pf f h dly u Clu Oulk 70008 Spl d Dly U f XPCS F El L Pg Spl

More information

4.1. Probability Density Functions

4.1. Probability Density Functions STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

More information

Well-Posedness of Feedback Loop:

Well-Posedness of Feedback Loop: ntena Stabiity We-oedne of Feedback Loop: onide the foowing feedback ytem - u u p d i d y Let be both pope tanfe function. Howeve u n d di 3 3 ote that the tanfe function fom the extena igna n d d to u

More information

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur = 3.4 Geen s Theoem Geoge Geen: self-taught English scientist, 793-84 So, if we ae finding the amount of wok done ove a non-consevative vecto field F, we do that long u b u 3. method Wok = F d F( () t )

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

1.1 Generalized Matrices

1.1 Generalized Matrices Asian ]3ulletln II (1980) 17-28 AN ILLUSTRATION OF THE DUALITY TECHNIQUE IN SEMI-CONTINUOUS LINEAR PROGRAMMING* F. DE VYLDER We give a complete parametric solution of the following problem Find a claml

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

Chapter 5: Your Program Asks for Advice.

Chapter 5: Your Program Asks for Advice. Chte 5: You Pogm Asks fo Advce. Pge 63 Chte 5: You Pogm Asks fo Advce. Ths chte ntoduces new tye of ves (stng ves) nd how to get text nd numec esonses fom the use. Anothe Tye of Ve The Stng Ve: In Chte

More information

RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE PROBLEM IN AN ANNULUS

RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE PROBLEM IN AN ANNULUS Electonic Jounal of Diffeential Equations, Vol. 04 (04), o. 9, pp. 0. ISS: 07-669. UL: http://ejde.math.txstate.edu o http://ejde.math.unt.edu ftp ejde.math.txstate.edu ADIAL POSITIVE SOLUTIOS FO A OPOSITOE

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Induction. Induction and Recursion. Induction is a very useful proof technique

Induction. Induction and Recursion. Induction is a very useful proof technique Iductio Iductio is vey useul poo techique Iductio d Recusio CSC-59 Discete Stuctues I compute sciece, iductio is used to pove popeties o lgoithms Iductio d ecusio e closely elted Recusio is desciptio method

More information

APPLICATION OF MAC IN THE FREQUENCY DOMAIN

APPLICATION OF MAC IN THE FREQUENCY DOMAIN PPLICION OF MC IN HE FREQUENCY DOMIN D. Fotsch and D. J. Ewins Dynamics Section, Mechanical Engineeing Depatment Impeial College of Science, echnology and Medicine London SW7 2B, United Kingdom BSRC he

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anyone who can contemplate quantum mechanics without getting dizzy hasn t undestood it. --Niels Boh Lectue 17, p 1 Special (Optional) Lectue Quantum Infomation One of the most moden applications of QM

More information

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II)

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) BY J. F. STEFFENSEN in Copenhagen i. In a former paper with the same title 1 (quoted below as "I") polar coordinates r

More information

Fleet Management Limited A Caravel Group Company

Fleet Management Limited A Caravel Group Company INDEX Fleet Management Limited AA TANK VESSELS HOURS DEVIATION COMPARISON PAGE NO HOURS DEVIATION COMPARISON PAGE NO LEVEL DEVIATION VESSELS PAGE NO HOURS DEVIATION PAGE NO VETTING INSPECTION DEFICIENCIES

More information

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre Ch. : Invee Kinemati Ch. : Velity Kinemati The Inteventinal Cente eap: kinemati eupling Apppiate f ytem that have an am a wit Suh that the wit jint ae ae aligne at a pint F uh ytem, we an plit the invee

More information

ALGEBRAS WITH THE SPECTRAL EXPANSION PROPERTY

ALGEBRAS WITH THE SPECTRAL EXPANSION PROPERTY ALGEBRAS WITH THE SPECTRAL EXPANSION PROPERTY BY BRUCE ALAN BARNES Introduction Assume that A is the algebra of all completely continuous operators on a Hilbert space. If T is a normal operator in A, then

More information

This brief note explains why the Michel-Levy colour chart for birefringence looks like this...

This brief note explains why the Michel-Levy colour chart for birefringence looks like this... This bief note explains why the Michel-Levy colou chat fo biefingence looks like this... Theoy of Levy Colou Chat fo Biefingent Mateials Between Cossed Polas Biefingence = n n, the diffeence of the efactive

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

Students Elect New Queen; Court Reigns Campus Night. Outing Club Plans Climb. Voting for Campus Queen took. JLper peristyle, but a s U. of Conn.

Students Elect New Queen; Court Reigns Campus Night. Outing Club Plans Climb. Voting for Campus Queen took. JLper peristyle, but a s U. of Conn. GE 8 WC j j g E D g W C g R 08 WC E x g g N g W C C C g x E COLLEGE NEW RDY NOVEBER 3 96 U + K D C 62 X Og g 8-0 B Z D E 62 K B g g D W 62 K B g C E B 62 3-5 E N Q C Rg C Ng Og C C Vg C Q L] - = * L U

More information

Online-routing on the butterfly network: probabilistic analysis

Online-routing on the butterfly network: probabilistic analysis Online-outing on the buttefly netwok: obabilistic analysis Andey Gubichev 19.09.008 Contents 1 Intoduction: definitions 1 Aveage case behavio of the geedy algoithm 3.1 Bounds on congestion................................

More information

Ëâ,a E :lëë, ËgËEggEËËgË ËiË

Ëâ,a E :lëë, ËgËEggEËËgË ËiË 4 Ë s F Ë3 ËËs *s ôl s{ëaëëëëë {) è) (ll '* ËË Ë Ër rëë s: 5 Ë ËË Ë3s âëëëësëëëë ô r.9 fë;uëë;ëë *Ë =ËfËâ$âË$[Ë$ Ë ËË FêËËËËËrËËËË.Ë:eË*cs srrëf rl $Ël*ËË s66- Ë3 ËËË ËËs.4 Ëâ, :lëë, ËËËËË ËË.Ë $ËFj ËÉË......l"*ÂlÉËËr

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Hepatitis B vaccination of men who have sex with men in the Netherlands: should we vaccinate more men, younger men, or high-risk men?

Hepatitis B vaccination of men who have sex with men in the Netherlands: should we vaccinate more men, younger men, or high-risk men? Hep B vnon of en who hve ex wh en n he eheln: houl we vne oe en younge en o hgh-k en? M ou Robn vn Hou Sun Hhné Roel ounho J vn Seenbegen Mj Kezh APPEDI A.. Moel equon The oel w evelope by Kezh e l ] o

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae,

More information

Burkina Faso Disaster Risk Management COUNTRY NOTE

Burkina Faso Disaster Risk Management COUNTRY NOTE ublic isclosure uthorized ublic isclosure uthorized ublic isclosure uthorized ublic isclosure uthorized Report No. 60 - urkina aso isaster Risk Management OUNRY NOE May 17, 2011 : Environment and NRM R

More information

Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process

Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process Λ4flΛ4» ν ff ff χ Vol.4, No.4 211 8fl ADVANCES IN MATHEMATICS Aug., 211 Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process HE

More information

Two-Pion Exchange Currents in Photodisintegration of the Deuteron

Two-Pion Exchange Currents in Photodisintegration of the Deuteron Two-Pion Exchange Cuens in Phoodisinegaion of he Deueon Dagaa Rozędzik and Jacek Goak Jagieonian Univesiy Kaków MENU00 3 May 00 Wiiasbug Conen Chia Effecive Fied Theoy ChEFT Eecoagneic cuen oeaos wihin

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

AN ALGORITHM FOR CALCULATING THE CYCLETIME AND GREENTIMES FOR A SIGNALIZED INTERSECTION

AN ALGORITHM FOR CALCULATING THE CYCLETIME AND GREENTIMES FOR A SIGNALIZED INTERSECTION AN AGORITHM OR CACUATING THE CYCETIME AND GREENTIMES OR A SIGNAIZED INTERSECTION Henk Taale 1. Intoducton o a snalzed ntesecton wth a fedte contol state the cclete and eentes ae the vaables that nfluence

More information

TRV Problem With IEEE C By Thomas Field Southern Company Services

TRV Problem With IEEE C By Thomas Field Southern Company Services RV Problem With IEEE C37.013-1997 By homas Field Southern Company Services Question Asked of IEEE about Standard C37.013-1997 How do I use the values in ables 5, 6, 7, and 8 along with Figure 15 to draw

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Classification and Ordering of Portfolios and of New Insured Unities of Risks

Classification and Ordering of Portfolios and of New Insured Unities of Risks Classification and Odeing of Potfolios and of New Insued Unities of Risks Augusto Feddi, Giulia Sagenti Univesity of Rome La Sapienza Depatment of Actuaial and Financial Sciences 36th Intenational ASTIN

More information

1. Summation. Let X be a set Finite summation. Suppose Y is a set and + : Y Y Y. is such that

1. Summation. Let X be a set Finite summation. Suppose Y is a set and + : Y Y Y. is such that 1. Summation. Let X be a set. 1.1. Finite summation. Suppose Y is a set and is such that + : Y Y Y (i) x + (y + z) (x + y) + z wheneve x, y, z Y ; (ii) x + y y + x wheneve x, y Y ; (iii) thee is 0 Y such

More information

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I FINALTERM EXAMINATION 011 Clculus &. Anlyticl Geometry-I Question No: 1 { Mrks: 1 ) - Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...

More information

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by A GENERALIZATION OF A CONJECTURE OF MELHAM EMRAH KILIC 1, ILKER AKKUS, AND HELMUT PRODINGER 3 Abstact A genealization of one of Melha s conectues is pesented Afte witing it in tes of Gaussian binoial coefficients,

More information

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball Al f Effc f Ru Ac f Tjc f Tl T Bll Juk Nu Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Ak Nkh Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Yhku Hkw Mchcl Scc Egg, Gu Schl f

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

Research Article An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA

Research Article An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA Hindawi Publihing Corporation pplied Matheatic Volue 2013, rticle ID 658635, 7 page http://dx.doi.org/10.1155/2013/658635 Reearch rticle n Extenion of Cro Redundancy of Interval Scale Output and Input

More information

Mutual Inductance. If current i 1 is time varying, then the Φ B2 flux is varying and this induces an emf ε 2 in coil 2, the emf is

Mutual Inductance. If current i 1 is time varying, then the Φ B2 flux is varying and this induces an emf ε 2 in coil 2, the emf is Mutua Inductance If we have a constant cuent i in coi, a constant magnetic fied is ceated and this poduces a constant magnetic fux in coi. Since the Φ B is constant, thee O induced cuent in coi. If cuent

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

Passivity-Based Control of Saturated Induction Motors

Passivity-Based Control of Saturated Induction Motors Passivity-Base Contol of Satuate Inuction otos Levent U. Gökee, embe, IEEE, awan A. Simaan, Fellow, IEEE, an Chales W. Bice, Senio embe, IEEE Depatment of Electical Engineeing Univesity of South Caolina

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

Hidden Markov Model and Its Applications in Speech Recognition A Tutorial

Hidden Markov Model and Its Applications in Speech Recognition A Tutorial Reogo ehes Hdde ov odel d Is Alos Reogo A ol seeh Fee Alyss seeh e eeseo e Reogo oly eogo deso B.H. Jg Geog Ise of ehology Rles ees odels d Jg BIRS l 0/0/007 Ssl e Reogo ole ole See: o eogze/lssfy ow osevo

More information

2. T H E , ( 7 ) 2 2 ij ij. p i s

2. T H E , ( 7 ) 2 2 ij ij. p i s M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L Y S I S O F T E M P E R A T U R E D I S T R I B U T I O N I N C O M P O S I T E P L A T E S D U R I N G T H E R M A

More information

AN ANALYSIS OF THE GREEDY HEURISTIC FOR INDEPENDENCE SYSTEMS

AN ANALYSIS OF THE GREEDY HEURISTIC FOR INDEPENDENCE SYSTEMS Annals of Discrete Mathematics 2 (1978) 65-74. @ North-Holland Publishing Company AN ANALYSIS OF THE GREEDY HEURISTIC FOR INDEPENDENCE SYSTEMS Bernhard KORTE and Dirk HAUSMANN Institut fur Okonometrie

More information

Methods for solving the radiative transfer equation. Part 3: Discreteordinate. 1. Discrete-ordinate method for the case of isotropic scattering.

Methods for solving the radiative transfer equation. Part 3: Discreteordinate. 1. Discrete-ordinate method for the case of isotropic scattering. ecture Metos for sov te rtve trsfer equto. rt 3: Dscreteorte eto. Obectves:. Dscrete-orte eto for te cse of sotropc sctter..geerzto of te screte-orte eto for ooeeous tospere. 3. uerc peetto of te screte-orte

More information

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs N-B Oh Dw f Sv f P Tcc Cc Gh (Ex Ac) M. S Rh, N E, T Nhz G Sch f If Scc, Th Uvy, A-y 05, S 980-8579, J. {,}@hz.c.h.c. h@c.h.c. Ac. A h h wh fx. I - h w f h, ch vx w ch w hz vc. A h hv - h w f f h - h w.

More information

LECTURE 12. Special Solutions of Laplace's Equation. 1. Separation of Variables with Respect to Cartesian Coordinates. Suppose.

LECTURE 12. Special Solutions of Laplace's Equation. 1. Separation of Variables with Respect to Cartesian Coordinates. Suppose. 50 LECTURE 12 Special Solutions of Laplace's Equation 1. Sepaation of Vaiables with Respect to Catesian Coodinates Suppose è12.1è èx; yè =XèxèY èyè is a solution of è12.2è Then we must have è12.3è 2 x

More information

Splay Trees Handout. Last time we discussed amortized analysis of data structures

Splay Trees Handout. Last time we discussed amortized analysis of data structures Spla Tees Handout Amotied Analsis Last time we discussed amotied analsis of data stuctues A wa of epessing that even though the wost-case pefomance of an opeation can be bad, the total pefomance of a sequence

More information

Ouldali AbdelAziz *.Benzerrouk Hamza **

Ouldali AbdelAziz *.Benzerrouk Hamza ** Copso ewee eeded l le d Sg-os l les ppled o eged go sse INS el Ngo SseGS Glol osog sse w selee All Ouldl AdelAzz * Bezeou z ** *Ml pole sool o Alge-eleo sses oo e-l: Azz_ouldl@oo **Sd Dl Ues o Bld- Alge-Cool

More information

r (p) = p J e- pf h (t) dt,

r (p) = p J e- pf h (t) dt, Mathematics. - Modern operational calculus based on the two-sided Laplace integral. I. By BALTH. VAN DER POL and H. BREMMER. (Laboratorium voor Wetenschappelijk Onderzoek, N.V. Philips' Gloeilampenfabrieken,

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE (tl Sh*q +sss$!! ll ss s ;s$ll s ; B 3 $ Sest -9[*; s$t 1,1 - e^ -" H u$xdx fd $A sfle *9,9* '. s. \^ >X!l P s H 2.ue ^ O - HS 1- -l ( l[[l[e lff* l$[fl$l1l3f[ U, -.1 $tse;es s TD T' ' t B $*l$ \l - 1

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

SAMPLE LABORATORY SESSION FOR JAVA MODULE B. Calculations for Sample Cross-Section 2

SAMPLE LABORATORY SESSION FOR JAVA MODULE B. Calculations for Sample Cross-Section 2 SAMPLE LABORATORY SESSION FOR JAVA MODULE B Calulations fo Sample Coss-Setion. Use Input. Setion Popeties The popeties of Sample Coss-Setion ae shown in Figue and ae summaized below. Figue : Popeties of

More information