The Reflexxes Motion Libraries. An Introduction to Instantaneous Trajectory Generation

Size: px
Start display at page:

Download "The Reflexxes Motion Libraries. An Introduction to Instantaneous Trajectory Generation"

Transcription

1 ICRA Tutorial, May 6, 2013 The Reflexxes Motion Libraries An Introduction to Instantaneous Trajectory Generation Torsten Kroeger 1

2 Schedule 8:30-10:00 Introduction and basics 10:00-10:30 Coffee break 10:30-11:30 Reflexxes API Programming examples 11:30-11:45 Coffee break 11:45-12:30 Application examples Research and outlook 2

3 Introduction and Basics 3

4 Contents Online Trajectory Generation? Problem and Solution for One Degree of Freedom Extension to Multi-DOF Systems Results 4

5 Introduction Sensor integration on different motion control levels belongs to one of the keys for future advancements of robotic systems

6 Introduction Sensor integration belongs without any doubt to one of the key technologies for the future advancement of robotic systems. In general, we distinguish between: 1. Trajectory-following How can we motions calculate (without a sensors) motion 2. Sensor-guided motions -trajectory Force/torque if we control want a robot to - Visual servo control - react instantaneously to How can we In practice, realize this? unforeseen sensor signals? we need both: 6

7 ICRA

8 ICAR

9 Advanced Robotics

10 10

11 Advanced Robotics

12 12

13 Contents Online Trajectory Generation? Problem and Solution for One Degree of Freedom Extension to Multi-DOF Systems Results 13

14 Input and Output Values Target state of motion at instant Motion constraints at instant Motion state at instant Motion state at instant Type IX VII 14

15 Challenge: Find this function for every single Type! An on-line trajectory generator (OTG) for a system with one degree of freedom is a real function: Overview of all OTG types. 15

16 The Basic Idea There is a finite set of possible motion profiles, of which one transfers one single selected DOF from the initial state of motion to its target state of motion within the shortest possible time (time-optimally).! Velocity profiles Acceleration profiles Jerk profiles 16

17 Challenge: Find this function for every single Type! Overview of all OTG types. 17

18 Type IV OTG Kinematic motion constraints at time instant with - maximum velocity - maximum acceleration - maximum jerk Require (in state space): - current state of motion: - target state of motion: Ensure (in state space): - state of motion at time instant Such that, - is reached in the shortest possible time, and - that the boundary conditions are not breached. Target: 18

19 Reminder: Acceleration Profiles There is a finite set of possible motion profiles, of which one transfers one single selected DOF from the initial state of motion to its target state of motion within the shortest possible time (time-optimally).! Velocity profiles Acceleration profiles Jerk profiles 19

20 Set of all Type IV Acceleration Profiles A system of nonlinear equations can be set up for every acceleration profile. The solution contains all parameters for the calculation of. 20

21 Set of all Type IV Acceleration Profiles Each system of equations is solvable for a proper subset of. The union of all these subsets constitutes the. 21

22 Nonlinear Systems of Equations Two questions: - Which of the systems of equations delivers the desired solution? - How can we calculate, describe, and represent all the borders of each single subset? Decision trees 22

23 Decision Tree 23

24 Decision Tree Input: - current state of motion - target state of motion - kinematic motion constraints Output: - acceleration profile 24

25 Nonlinear Systems of Equations Example: Leads to a system of 12 nonlinear equations with 12 unknowns. 25

26 26 Nonlinear Systems of Equations

27 Position-Error Function (Step 1) 27

28 Derivative of Position-Error Function (Step 1) 28

29 29 Sample Type IV Trajectory for One-DOF

30 30 Sample Result for One DOF (1)

31 31 Sample Result for One DOF (2)

32 32 Solution of the System of Equations

33 Solution of the System of Equations If no (sensor) event happens, the output values from instant are used as input values for instant. Hold element 33

34 34 Solution of the System of Equations

35 Solution of the System of Equations If no (sensor) event happens, the output values from instant are used as input values for instant. Hold element 35

36 36 Solution of the System of Equations

37 Solution of the System of Equations If no (sensor) event happens, the output values from instant are used as input values for instant. Hold element 37

38 38 Solution of the System of Equations

39 Solution of the System of Equations If no (sensor) event happens, the output values from instant are used as input values for instant. Hold element 39

40 40 Solution of the System of Equations

41 is reached after 5340 ms. 41 Solution of the System of Equations

42 Contents Online Trajectory Generation? Problem and Solution for One Degree of Freedom Extension to Multi-DOF Systems Results 42

43 Reminder: The One-Dimensional Case Target state of motion at instant Motion constraints at instant Motion state at instant Motion state at instant Type IX 43

44 Extension to Multi-DOF Systems Vectors with elements Target state of motion at instant Motion constraints at instant Motion state at instant Motion state at instant Type IX VII 44

45 Challenge: Find this function for every single Type! An on-line trajectory generator for a system with multiple degrees of freedom is a real function: Overview of all OTG types. 45

46 Extension to Multi-DOF Systems The resulting motion has to be time-synchronized in all degrees of freedom: - All (position controlled) degrees of freedom reach their target state of motion exactly at the same instant. 46

47 Extension to Multi-DOF Systems The on-line trajectory generation algorithm consists of three steps: Step 1: Step 2: Step 3: Calculate the minimum synchronization time Synchronization of all DOFs to and calculation of all trajectory parameters Calculation of 47

48 Step 1: Calculation of the Synchronization Time Calculation of the minimum execution time for every single DOF: 48

49 Step 1: Calculation of the Synchronization Time But: What would happen here? Type II 49

50 Step 1: Calculation of the Synchronization Time All inoperative time intervals have to be found and calculated. 50

51 Step 1: Calculation of the Synchronization Time Decision trees for the determination of all inoperative time intervals Step 1, Part C. Step 1, Part B. Step 1, Part D. Step 1, Part E. 51

52 Step 2: Synchronization There is a finite set of motion profiles of which one transfers the system's current state of motion to ist desired target state of motion!! This also holds for Step 2. 52

53 Step 2: Synchronization Step 1: - Decision trees: - Set-up and solve systems of equations for each DOF - Determination of the synchronization time Step 2: - Decision trees: - Set-up and solve systems of equations for each DOF - Result: parameters of the desired trajectory 53

54 Step 2: Synchronization 54

55 Step 2: Synchronization Each system of equations is solvable for a proper subset of. Step 1: Step 2: 55

56 Step 2: Synchronization Each system of equations is solvable for a proper subset of. 56

57 Step 2: Synchronization Determination of the system of equations by means of a further decision tree: Step 2. 57

58 Nonlinear Systems of Equations Example: Leads to a system of 14 nonlinear equations with 14 unknowns. 58

59 59 Nonlinear Systems of Equations

60 Position-Error Function (Step 2) 60

61 Position-Error Function (Step 2) 61

62 62 Sample Type IV Trajectory for One-DOF

63 Summary for Type IV Nassi-Shneiderman structogramm for Type IV on-line trajectory generation. 63

64 Further Reading 64

65 Further Reading 65

66 Contents Online Trajectory Generation? Problem and Solution for One Degree of Freedom Extension to Multi-DOF Systems Results 66

67 Arbitrary input values for four DOFs Results 67

68 Sensor-guarded Robot Motions Using a Distance Sensor 68

69 Physical Human-robot Interaction Copyright 2011 Stanford University. 69

70 Simple and Robust Visual Servo Control Copyright 2011 Stanford University. 70

71 Whole-Body Motion Control Copyright 2010 University of Texas at Austin. 71

72 Compliant Manipulation Primitives 72

73 Whole-Body Motion Control Copyright 2011 Stanford University. 73

74 Whole-Body Motion Control 74

75 Whole-Body Motion Control Copyright 2011 Stanford University. 75

76 ...not only walk, but also interact with the world... 76

77 ...not only walk, but also interact with the world... Copyright 2011 Stanford University. 77

78 The Reflexxes Motion Libraries Target-position-based Library (Type IV) 78

79 The Reflexxes Motion Libraries Target-velocity-based Library (Type IV) 79

80 Schedule 8:30-10:00 Introduction and basics 10:00-10:30 Coffee break 10:30-11:30 Reflexxes API Programming examples 11:30-11:45 Coffee break 11:45-12:30 Application examples Research and outlook 80

81 Reflexxes API 81

82 82

83 Programming Examples 83

84 84

85 Schedule 8:30-10:00 Introduction and basics 10:00-10:30 Coffee break 10:30-11:30 Reflexxes API Programming examples 11:30-11:45 Coffee break 11:45-12:30 Application examples Research and outlook 85

86 Application Examples 86

87 State of the Art in Technology Servo Drive Control No online synchronization with jerk-limitation for multi-axis systems 87

88 State of the Art in Research Robotics No online trajectory generation approach that - copes with arbitrary initial states - provides jerk-limited motions - considers the current dynamics 88

89 The Reflexxes Motion Libraries Motion generation in less than one millisecond. Instantaneous reactions to unforeseen sensor signals and events 89

90 Contents JediBot Visual servo control Hybrid switched-system control Playing Jenga 90

91 JediBot Copyright 2011 Stanford University. 91

92 Components 92

93 Visual Perception Copyright 2011 Stanford University. 93

94 Visual Perception Procedure 1) Filter on depth and color 2) RANSAC stick fitting 3) Extract sword end points 4) Filter on sword length Copyright 2011 Stanford University. 94

95 Defense Mode Computation of the defense point at ~15 Hz During the defense mode, the camera is part of the feedback control loop. The Reflexxes Motion Library assures continuous executable trajectories. 95

96 Attack and Contact Modes Perform random attack motion towards the opponent Joint torque sensors to detect contact After contact: switch back to contact strategy (and recoil) 96

97 Four Different Control Strategies Defense: Block attack motions of the opponent Attack: Execute one attack motion towards the opponent Contact: Instantaneously recoil Hover: No opponent detected Selection variable Target state 97

98 Hybrid Switched-system Control 98

99 Attack and Contact Modes 99

100 Defense Mode 100

101 Results Sample trajectory with mode switchings 101

102 Contents JediBot Visual servo control Hybrid switched-system control Playing Jenga 102

103 Control Scheme 103

104 Important Features Guaranteed continuity and jerk limitation Position Velocity Acceleration Constraints 104

105 Results 105

106 Results 106

107 Image Processing and Robustness Output of the vision system Continuous motion in case of - outliers - insufficient image quality - obstacles in front of the camera - camera failures - misbehavior of the image processing system Physical & artificial workspace limitations 107

108 Results 108

109 Contents JediBot Visual servo control Hybrid switched-system control Playing Jenga 109

110 Introduction and Motivation Simplified hybrid switched-control scheme a for one-dof system: State of motion: 110

111 Problem Issues Force/torque control - What happens if a stable contact cannot be established? - How do we safely react to sensor failures? Visual servo control - What happen if no valid motion signal can be generated? - What happens if a camera is covered by an obstacle, or how can we safely react to camera failures? General instability issues - How do we react after inappropriate switching procedures? - How do we react to incorrect/wrong task parameters? - How do we react if control submodules were chosen incorrectly? 111

112 Introduction and Motivation Simplified hybrid switched-control scheme a for one-dof system: Particularity: The two OTG modules can take over control at any time. 112

113 Detecting an Unstable System Switching rate too high Amplitude exceeds maximum value A motion state variable transformed to the frequency domain is greater than a certain frequency Sensor value out of range Robot system tends to leave its workspace or heads towards a singularity during a sensor-guided motion Maximum actuator forces or torques reached Sensor malfunctions 113

114 Stabilizing hybrid switched-systems (velocity target) Velocity-acceleration plane in state space: ICRA

115 Stabilizing hybrid switched-systems Velocity-acceleration plane in state space: ICRA

116 Unforeseen Switching of Reference Frames 116

117 Unforeseen Switching of State Spaces 117

118 Instantaneous Controller Switching Copyright 2010 Stanford University. 118

119 Contents JediBot Visual servo control Hybrid switched-system control Playing Jenga 119

120 Manipulation Primitives Selection Matrix classical selection matrix adaptive selection matrix dof x y z level dof x y z x x y y z z Position Velocity Distance Force/Torque Further device Position Velocity Distance Force/Torque Further device An example: Level 0 Level 1 Level 2 Force in z-direction Force Vision Velocity 120

121 Schnittstelle zur Bewegungsplanung 121 Hybrid Switched-System Control

122 Playing Jenga! 122 ICRA 2006

123 Research and Outlook 123

124 Contents ROS and MoveIt! Integrating dynamic models Human-robot collision avoidance Highly responsive proximity sensing 124

125 ROS and MoveIt! Copyright 2011 Stanford University. 125

126 ROS and MoveIt! Automatically computing intermediate motion states 126

127 Contents ROS and MoveIt! Integrating dynamic models Human-robot collision avoidance Highly responsive proximity sensing 127

128 Integrating Dynamic Models Copyright 2013 Stanford University. 128

129 Contents ROS and MoveIt! Integrating dynamic models Human-robot collision avoidance Highly responsive proximity sensing 129

130 Human-robot Collision Avoidance End effector repulsive vector repulsive velocity Collision avoidance for the robot body Repulsive vector Cartesian constraints Joint velocity limit Smooth, jerk limited motions feeling of safety 130

131 Safe Coexistence Collision avoidance in depth space 131

132 Human-robot Collision Avoidance Collision avoidance algorithm, which : is directly used in depth space deploys real sensors (not hypothetic) considers multiple obstacles whole robot body uses obstacle motions for prediction (fast) benefits from Reflexxes framework (smooth motions, instantaneous reactions) runs in real-time 132

133 Contents ROS and MoveIt! Integrating dynamic models Human-robot collision avoidance Highly responsive proximity sensing 133

134 Highly Responsive Proximity Sensing 134

135 Schedule 8:30-10:00 Introduction and basics 10:00-10:30 Coffee break 10:30-11:30 Reflexxes API Programming examples 11:30-11:45 Coffee break 11:45-12:30 Application examples Research and outlook 135

136 Thank You! Acknowledgements Fabrizio Flacco Jose Padial Andre Gaschler Thomas Schlegl Christian Hurnaus Adam Tomiczek Robert Katzschmann Friedrich Wahl Oussama Khatib Taizo Yoshikawa Ken Oslund 136

137 Thank You Very Much for Your Attention! Enjoy ICRA 2013 and your stay in Karlsruhe...! 137

138 ICRA Tutorial, May 6, 2013 The Reflexxes Motion Libraries An Introduction to Instantaneous Trajectory Generation Torsten Kroeger 138

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems 2 Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems Paul Lambrechts Digital Motion Control (4K4), 23 Faculty of Mechanical Engineering, Control Systems Technology Group /42 2

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

A new large projection operator for the redundancy framework

A new large projection operator for the redundancy framework 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA A new large projection operator for the redundancy framework Mohammed Marey

More information

Robust Control of Cooperative Underactuated Manipulators

Robust Control of Cooperative Underactuated Manipulators Robust Control of Cooperative Underactuated Manipulators Marcel Bergerman * Yangsheng Xu +,** Yun-Hui Liu ** * Automation Institute Informatics Technology Center Campinas SP Brazil + The Robotics Institute

More information

Lecture 14: Kinesthetic haptic devices: Higher degrees of freedom

Lecture 14: Kinesthetic haptic devices: Higher degrees of freedom ME 327: Design and Control of Haptic Systems Autumn 2018 Lecture 14: Kinesthetic haptic devices: Higher degrees of freedom Allison M. Okamura Stanford University (This lecture was not given, but the notes

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

Robotics I. June 6, 2017

Robotics I. June 6, 2017 Robotics I June 6, 217 Exercise 1 Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics Robotics I Kinematics, Dynamics and Control of Robotic Manipulators Velocity Kinematics Dr. Christopher Kitts Director Robotic Systems Laboratory Santa Clara University Velocity Kinematics So far, we ve

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

Lecture «Robot Dynamics»: Dynamics 2

Lecture «Robot Dynamics»: Dynamics 2 Lecture «Robot Dynamics»: Dynamics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL 1 KHALED M. HELAL, 2 MOSTAFA R.A. ATIA, 3 MOHAMED I. ABU EL-SEBAH 1, 2 Mechanical Engineering Department ARAB ACADEMY

More information

Neural Network Control of Robot Manipulators and Nonlinear Systems

Neural Network Control of Robot Manipulators and Nonlinear Systems Neural Network Control of Robot Manipulators and Nonlinear Systems F.L. LEWIS Automation and Robotics Research Institute The University of Texas at Arlington S. JAG ANNATHAN Systems and Controls Research

More information

ARTISAN ( ) ARTISAN ( ) Human-Friendly Robot Design

ARTISAN ( ) ARTISAN ( ) Human-Friendly Robot Design Human-Friendly Robot Design Torque Control: a basic capability dynamic performance compliance, force control safety, interactivity manipulation cooperation ARTISAN (1990-95) ARTISAN (1990-95) 1 intelligence

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES

ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES By YUNG-SHENG CHANG A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Stiffness estimation for flexible transmissions

Stiffness estimation for flexible transmissions SICURA@SIDRA 2010 13 Settembre L Aquila Stiffness estimation for flexible transmissions Fabrizio Flacco Alessandro De Luca Dipartimento di Informatica e Sistemistica Motivation Why we need to know the

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

Lecture «Robot Dynamics»: Dynamics and Control

Lecture «Robot Dynamics»: Dynamics and Control Lecture «Robot Dynamics»: Dynamics and Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

Selection of Servomotors and Reducer Units for a 2 DoF PKM

Selection of Servomotors and Reducer Units for a 2 DoF PKM Selection of Servomotors and Reducer Units for a 2 DoF PKM Hermes GIBERTI, Simone CINQUEMANI Mechanical Engineering Department, Politecnico di Milano, Campus Bovisa Sud, via La Masa 34, 20156, Milano,

More information

Algorithms and Numerical Methods for Motion Planning and Motion Control: Dynamic Manipulation Assignments

Algorithms and Numerical Methods for Motion Planning and Motion Control: Dynamic Manipulation Assignments Algorithms and Numerical Methods for Motion Planning and Motion Control: Dynamic Manipulation Assignments Anton Shiriaev Department of Engineering Cybernetics Norwegian University of Science and Technology

More information

ANALYSIS OF CONSENSUS AND COLLISION AVOIDANCE USING THE COLLISION CONE APPROACH IN THE PRESENCE OF TIME DELAYS. A Thesis by. Dipendra Khatiwada

ANALYSIS OF CONSENSUS AND COLLISION AVOIDANCE USING THE COLLISION CONE APPROACH IN THE PRESENCE OF TIME DELAYS. A Thesis by. Dipendra Khatiwada ANALYSIS OF CONSENSUS AND COLLISION AVOIDANCE USING THE COLLISION CONE APPROACH IN THE PRESENCE OF TIME DELAYS A Thesis by Dipendra Khatiwada Bachelor of Science, Wichita State University, 2013 Submitted

More information

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration;

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration; Robotics I April, 6 Consider a planar R robot with links of length l = and l =.5. he end-effector should move smoothly from an initial point p in to a final point p fin in the robot workspace so that the

More information

Near-Hover Dynamics and Attitude Stabilization of an Insect Model

Near-Hover Dynamics and Attitude Stabilization of an Insect Model 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeA1.4 Near-Hover Dynamics and Attitude Stabilization of an Insect Model B. Cheng and X. Deng Abstract In this paper,

More information

DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH ACCELERATION FEEDBACK

DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH ACCELERATION FEEDBACK DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH ACCELERATION FEEDBACK Feng Tian Department of Mechanical Engineering Marquette University Milwaukee, WI 53233 USA Email: feng.tian@mu.edu Kevin

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Motion Tasks for Robot Manipulators on Embedded 2-D Manifolds

Motion Tasks for Robot Manipulators on Embedded 2-D Manifolds Motion Tasks for Robot Manipulators on Embedded 2-D Manifolds Xanthi Papageorgiou, Savvas G. Loizou and Kostas J. Kyriakopoulos Abstract In this paper we present a methodology to drive the end effector

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

available online at CONTROL OF THE DOUBLE INVERTED PENDULUM ON A CART USING THE NATURAL MOTION

available online at   CONTROL OF THE DOUBLE INVERTED PENDULUM ON A CART USING THE NATURAL MOTION Acta Polytechnica 3(6):883 889 3 Czech Technical University in Prague 3 doi:.43/ap.3.3.883 available online at http://ojs.cvut.cz/ojs/index.php/ap CONTROL OF THE DOUBLE INVERTED PENDULUM ON A CART USING

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

Robots in games and competition. Each ball volley playing robot. Japan. Instructor (Oussama Khatib):I love the people.

Robots in games and competition. Each ball volley playing robot. Japan. Instructor (Oussama Khatib):I love the people. IntroductionToRobotics-Lecture07 Instructor (Oussama Khatib):Okay. Let s get started. So for this segment come on. Interesting. This is really an interesting development. In 99, a robot playing volleyball,

More information

Variable Radius Pulley Design Methodology for Pneumatic Artificial Muscle-based Antagonistic Actuation Systems

Variable Radius Pulley Design Methodology for Pneumatic Artificial Muscle-based Antagonistic Actuation Systems 211 IEEE/RSJ International Conference on Intelligent Robots and Systems September 25-3, 211. San Francisco, CA, USA Variable Radius Pulley Design Methodology for Pneumatic Artificial Muscle-based Antagonistic

More information

EXPERIMENTAL COMPARISON OF TRAJECTORY TRACKERS FOR A CAR WITH TRAILERS

EXPERIMENTAL COMPARISON OF TRAJECTORY TRACKERS FOR A CAR WITH TRAILERS 1996 IFAC World Congress San Francisco, July 1996 EXPERIMENTAL COMPARISON OF TRAJECTORY TRACKERS FOR A CAR WITH TRAILERS Francesco Bullo Richard M. Murray Control and Dynamical Systems, California Institute

More information

Potential Field Methods

Potential Field Methods Randomized Motion Planning Nancy Amato Fall 04, Univ. of Padova Potential Field Methods [ ] Potential Field Methods Acknowledgement: Parts of these course notes are based on notes from courses given by

More information

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

More information

Statistical Visual-Dynamic Model for Hand-Eye Coordination

Statistical Visual-Dynamic Model for Hand-Eye Coordination The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Statistical Visual-Dynamic Model for Hand-Eye Coordination Daniel Beale, Pejman Iravani

More information

Force-feedback control and non-contact sensing: a unified approach

Force-feedback control and non-contact sensing: a unified approach Force-feedback control and non-contact sensing: a unified approach Bernard Espiau, Jean-Pierre Merlet, Claude Samson INRIA Centre de Sophia-Antipolis 2004 Route des Lucioles 06560 Valbonne, France Abstract

More information

Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models

Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models 104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 006 Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models C. C. Cheah, C. Liu, and J.

More information

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot Taylor S. Clawson, Sawyer B. Fuller Robert J. Wood, Silvia Ferrari American Control Conference Seattle, WA May 25, 2016

More information

Motion Tasks and Force Control for Robot Manipulators on Embedded 2-D Manifolds

Motion Tasks and Force Control for Robot Manipulators on Embedded 2-D Manifolds Motion Tasks and Force Control for Robot Manipulators on Embedded 2-D Manifolds Xanthi Papageorgiou, Savvas G. Loizou and Kostas J. Kyriakopoulos Abstract In this paper we present a methodology to drive

More information

A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators

A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators des FA 4.13 Steuerung und Regelung von Robotern A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators Alessandro De Luca Dipartimento di Informatica e Sistemistica

More information

Trajectory planning and feedforward design for electromechanical motion systems version 2

Trajectory planning and feedforward design for electromechanical motion systems version 2 2 Trajectory planning and feedforward design for electromechanical motion systems version 2 Report nr. DCT 2003-8 Paul Lambrechts Email: P.F.Lambrechts@tue.nl April, 2003 Abstract This report considers

More information

Automatic Control Motion planning

Automatic Control Motion planning Automatic Control Motion planning (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations 2 Electric motors are used in many different applications,

More information

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point. Forward kinematics: X e = c 1 + c 12 Y e = s 1 + s 12 = s 1 s 12 c 1 + c 12, = s 12 c 12 Illustrate the column vector of the Jacobian in the space at the end-effector point. points in the direction perpendicular

More information

Non-Iterative Object Detection Methods in Electrical Tomography for Robotic Applications

Non-Iterative Object Detection Methods in Electrical Tomography for Robotic Applications Non-Iterative Object Detection Methods in Electrical Tomography for Robotic Applications Stephan Mühlbacher-Karrer, Juliana P. Leitzke, Lisa-Marie Faller and Hubert Zangl Institute of Smart Systems Technologies,

More information

Catastrophe and Stability Analysis of a Cable-Driven Actuator

Catastrophe and Stability Analysis of a Cable-Driven Actuator Catastrophe and Stability Analysis of a Cable-Driven Actuator James S. Sulzer, Michael A. Peshkin and James L. Patton Abstract Recent work in human-robot interaction has revealed the need for compliant,

More information

Contact Distinction in Human-Robot Cooperation with Admittance Control

Contact Distinction in Human-Robot Cooperation with Admittance Control Contact Distinction in Human-Robot Cooperation with Admittance Control Alexandros Kouris, Fotios Dimeas and Nikos Aspragathos Robotics Group, Dept. of Mechanical Engineering & Aeronautics University of

More information

Position with Force Feedback Control of Manipulator Arm

Position with Force Feedback Control of Manipulator Arm Position with Force Feedback Control of Manipulator Arm 1 B. K. Chitra, 2 J. Nandha Gopal, 3 Dr. K. Rajeswari PG Student, Department of EIE Assistant Professor, Professor, Department of EEE Abstract This

More information

FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS. Nael H. El-Farra, Adiwinata Gani & Panagiotis D.

FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

Complexity Metrics. ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010.

Complexity Metrics. ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010. Complexity Metrics ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010 Outline Introduction and motivation The notion of air traffic complexity Relevant characteristics

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems 1 Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems Mauro Franceschelli, Andrea Gasparri, Alessandro Giua, and Giovanni Ulivi Abstract In this paper the formation stabilization problem

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Lecture Notes (CS327A) Advanced Robotic Manipulation Oussama Khatib Stanford University Spring 2005 ii c 2005 by Oussama Khatib Contents 1 Spatial Descriptions 1 1.1 Rigid Body Configuration.................

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

1 Trajectory Generation

1 Trajectory Generation CS 685 notes, J. Košecká 1 Trajectory Generation The material for these notes has been adopted from: John J. Craig: Robotics: Mechanics and Control. This example assumes that we have a starting position

More information

5.2 Conservation of Momentum in One Dimension

5.2 Conservation of Momentum in One Dimension 5. Conservation of Momentum in One Dimension Success in the sport of curling relies on momentum and impulse. A player must accelerate a curling stone to a precise velocity to collide with an opponent s

More information

MCE493/593 and EEC492/592 Prosthesis Design and Control

MCE493/593 and EEC492/592 Prosthesis Design and Control MCE493/593 and EEC492/592 Prosthesis Design and Control Control Systems Part 3 Hanz Richter Department of Mechanical Engineering 2014 1 / 25 Electrical Impedance Electrical impedance: generalization of

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

A HYBRID SYSTEM APPROACH TO IMPEDANCE AND ADMITTANCE CONTROL. Frank Mathis

A HYBRID SYSTEM APPROACH TO IMPEDANCE AND ADMITTANCE CONTROL. Frank Mathis A HYBRID SYSTEM APPROACH TO IMPEDANCE AND ADMITTANCE CONTROL By Frank Mathis A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

More information

Bilateral teleoperation system for a mini crane

Bilateral teleoperation system for a mini crane Scientific Journals of the Maritime University of Szczecin Zeszyty Naukowe Akademii Morskiej w Szczecinie 19, 7 (129), 63 69 ISSN 1733-867 (Printed) Received:.12.18 ISSN 2392-378 (Online) Accepted: 12.3.19

More information

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors NASA Technical Memorandum 110316 Virtual Passive Controller for Robot Systems Using Joint Torque Sensors Hal A. Aldridge and Jer-Nan Juang Langley Research Center, Hampton, Virginia January 1997 National

More information

Control of constrained spatial three-link flexible manipulators

Control of constrained spatial three-link flexible manipulators Control of constrained spatial three-link flexible manipulators Sinan Kilicaslan, M. Kemal Ozgoren and S. Kemal Ider Gazi University/Mechanical Engineering Department, Ankara, Turkey Middle East Technical

More information

Absolute map-based localization for a planetary rover

Absolute map-based localization for a planetary rover Absolute map-based localization for a planetary rover Bach Van Pham, Artur Maligo and Simon Lacroix LAAS/CNRS, Toulouse Work developed within the ESA founded Startiger activity Seeker Outline" On the importance

More information

Formal verification of One Dimensional Time Triggered Velocity PID Controllers Kenneth Payson 12/09/14

Formal verification of One Dimensional Time Triggered Velocity PID Controllers Kenneth Payson 12/09/14 Formal verification of One Dimensional Time Triggered Velocity PID Controllers 12/09/14 1: Abstract This paper provides a formal proof of the safety of a time triggered velocity PID controller that are

More information

Mobile Manipulation: Force Control

Mobile Manipulation: Force Control 8803 - Mobile Manipulation: Force Control Mike Stilman Robotics & Intelligent Machines @ GT Georgia Institute of Technology Atlanta, GA 30332-0760 February 19, 2008 1 Force Control Strategies Logic Branching

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Unifying Behavior-Based Control Design and Hybrid Stability Theory

Unifying Behavior-Based Control Design and Hybrid Stability Theory 9 American Control Conference Hyatt Regency Riverfront St. Louis MO USA June - 9 ThC.6 Unifying Behavior-Based Control Design and Hybrid Stability Theory Vladimir Djapic 3 Jay Farrell 3 and Wenjie Dong

More information

Robotics 2 Robot Interaction with the Environment

Robotics 2 Robot Interaction with the Environment Robotics 2 Robot Interaction with the Environment Prof. Alessandro De Luca Robot-environment interaction a robot (end-effector) may interact with the environment! modifying the state of the environment

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

Linear Feedback Control Using Quasi Velocities

Linear Feedback Control Using Quasi Velocities Linear Feedback Control Using Quasi Velocities Andrew J Sinclair Auburn University, Auburn, Alabama 36849 John E Hurtado and John L Junkins Texas A&M University, College Station, Texas 77843 A novel approach

More information

Motion Control of a Robot Manipulator in Free Space Based on Model Predictive Control

Motion Control of a Robot Manipulator in Free Space Based on Model Predictive Control Motion Control of a Robot Manipulator in Free Space Based on Model Predictive Control Vincent Duchaine, Samuel Bouchard and Clément Gosselin Université Laval Canada 7 1. Introduction The majority of existing

More information

DEOS AUTOMATION AND ROBOTICS PAYLOAD

DEOS AUTOMATION AND ROBOTICS PAYLOAD w e. c r e a t e. s p a c e. Kayser-Threde GmbH Space Industrial Applications DEOS AUTOMATION AND ROBOTICS PAYLOAD 11th Symposium on Advanced Space Technologies in Robotics and Automation ESA/ESTEC, Noordwijk,

More information

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill.

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. 2.3.2. Steering control using point mass model: Open loop commands We consider

More information

Aerial Robotics. Vision-based control for Vertical Take-Off and Landing UAVs. Toulouse, October, 2 nd, Henry de Plinval (Onera - DCSD)

Aerial Robotics. Vision-based control for Vertical Take-Off and Landing UAVs. Toulouse, October, 2 nd, Henry de Plinval (Onera - DCSD) Aerial Robotics Vision-based control for Vertical Take-Off and Landing UAVs Toulouse, October, 2 nd, 2014 Henry de Plinval (Onera - DCSD) collaborations with P. Morin (UPMC-ISIR), P. Mouyon (Onera), T.

More information

Demonstrating the Benefits of Variable Impedance to Telerobotic Task Execution

Demonstrating the Benefits of Variable Impedance to Telerobotic Task Execution Demonstrating the Benefits of Variable Impedance to Telerobotic Task Execution Daniel S. Walker, J. Kenneth Salisbury and Günter Niemeyer Abstract Inspired by human physiology, variable impedance actuation

More information

Recap. CS514: Intermediate Course in Operating Systems. What time is it? This week. Reminder: Lamport s approach. But what does time mean?

Recap. CS514: Intermediate Course in Operating Systems. What time is it? This week. Reminder: Lamport s approach. But what does time mean? CS514: Intermediate Course in Operating Systems Professor Ken Birman Vivek Vishnumurthy: TA Recap We ve started a process of isolating questions that arise in big systems Tease out an abstract issue Treat

More information

Trajectory tracking & Path-following control

Trajectory tracking & Path-following control Cooperative Control of Multiple Robotic Vehicles: Theory and Practice Trajectory tracking & Path-following control EECI Graduate School on Control Supélec, Feb. 21-25, 2011 A word about T Tracking and

More information

Balancing of an Inverted Pendulum with a SCARA Robot

Balancing of an Inverted Pendulum with a SCARA Robot Balancing of an Inverted Pendulum with a SCARA Robot Bernhard Sprenger, Ladislav Kucera, and Safer Mourad Swiss Federal Institute of Technology Zurich (ETHZ Institute of Robotics 89 Zurich, Switzerland

More information

Objectives. Fundamentals of Dynamics: Module 9 : Robot Dynamics & controls. Lecture 31 : Robot dynamics equation (LE & NE methods) and examples

Objectives. Fundamentals of Dynamics: Module 9 : Robot Dynamics & controls. Lecture 31 : Robot dynamics equation (LE & NE methods) and examples \ Module 9 : Robot Dynamics & controls Lecture 31 : Robot dynamics equation (LE & NE methods) and examples Objectives In this course you will learn the following Fundamentals of Dynamics Coriolis component

More information

Multi-Priority Cartesian Impedance Control

Multi-Priority Cartesian Impedance Control Multi-Priority Cartesian Impedance Control Robert Platt Jr. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology rplatt@csail.mit.edu Muhammad Abdallah, Charles

More information

Ch. 5: Jacobian. 5.1 Introduction

Ch. 5: Jacobian. 5.1 Introduction 5.1 Introduction relationship between the end effector velocity and the joint rates differentiate the kinematic relationships to obtain the velocity relationship Jacobian matrix closely related to the

More information

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control Khaled M. Helal, 2 Mostafa R.A. Atia, 3 Mohamed I. Abu El-Sebah, 2 Mechanical Engineering Department ARAB ACADEMY FOR

More information

Directional Redundancy for Robot Control

Directional Redundancy for Robot Control ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL Directional Redundancy for Robot Control Nicolas Mansard, François Chaumette, Member, IEEE Abstract The paper presents a new approach

More information

IROS 16 Workshop: The Mechatronics behind Force/Torque Controlled Robot Actuation Secrets & Challenges

IROS 16 Workshop: The Mechatronics behind Force/Torque Controlled Robot Actuation Secrets & Challenges Arne Wahrburg (*), 2016-10-14 Cartesian Contact Force and Torque Estimation for Redundant Manipulators IROS 16 Workshop: The Mechatronics behind Force/Torque Controlled Robot Actuation Secrets & Challenges

More information

for Articulated Robot Arms and Its Applications

for Articulated Robot Arms and Its Applications 141 Proceedings of the International Conference on Information and Automation, December 15-18, 25, Colombo, Sri Lanka. 1 Forcefree Control with Independent Compensation for Articulated Robot Arms and Its

More information

Kinematics and Force Analysis of a Five-Link Mechanism by the Four Spaces Jacoby Matrix

Kinematics and Force Analysis of a Five-Link Mechanism by the Four Spaces Jacoby Matrix БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ. ULGARIAN ACADEMY OF SCIENCES ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА PROLEMS OF ENGINEERING CYERNETICS AND ROOTICS София. 00. Sofia Kinematics and Force Analysis

More information

INSTRUCTIONS TO CANDIDATES:

INSTRUCTIONS TO CANDIDATES: NATIONAL NIVERSITY OF SINGAPORE FINAL EXAMINATION FOR THE DEGREE OF B.ENG ME 444 - DYNAMICS AND CONTROL OF ROBOTIC SYSTEMS October/November 994 - Time Allowed: 3 Hours INSTRCTIONS TO CANDIDATES:. This

More information

Controlling the Apparent Inertia of Passive Human- Interactive Robots

Controlling the Apparent Inertia of Passive Human- Interactive Robots Controlling the Apparent Inertia of Passive Human- Interactive Robots Tom Worsnopp Michael Peshkin J. Edward Colgate Kevin Lynch Laboratory for Intelligent Mechanical Systems: Mechanical Engineering Department

More information

Constrained Motion Strategies for Robotic Systems

Constrained Motion Strategies for Robotic Systems Constrained Motion Strategies for Robotic Systems Jaeheung Park Ph.D. Candidate in Aero/Astro Department Advisor: Professor Khatib Artificial Intelligence Laboratory Computer Science Department Stanford

More information

Visual Self-Calibration of Pan-Tilt Kinematic Structures

Visual Self-Calibration of Pan-Tilt Kinematic Structures Visual Self-Calibration of Pan-Tilt Kinematic Structures Bartosz Tworek, Alexandre Bernardino and José Santos-Victor Abstract With the increasing miniaturization of robotic devices, some actuators are

More information