Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models

Size: px
Start display at page:

Download "Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models"

Transcription

1 104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 006 Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models C. C. Cheah, C. Liu, and J. J. E. Slotine Abstract Most research so far on robot trajectory control has assumed that the kinematics of the robot is known exactly. However, when a robot picks up tools of uncertain lengths, orientations, or gripping points, the overall kinematics becomes uncertain and changes according to different tasks. Recently, we derived a new adaptive Jacobian tracking controller for robots with uncertain kinematics and dynamics. This note extends the results to include redundant robots and adaptation to actuator parameters. Experimental results are presented to illustrate the performance of the proposed controller. Index Terms Actuator model, adaptive control, dynamics, robot kinematics, tracking control, uncertainty. I. INTRODUCTION Robot manipulators are required to handle various tools and, hence, the dynamic parameters of the robots vary during operation and are difficult to be predicted in advance. By exploring physical properties of the robot system, Takegaki and Arimoto [1] and Arimoto [] showed using Lyapunov s method that simple controllers such as the proportional-derivative (PD) and proportional integral-derivative (PID) feedback are effective for setpoint control despite the nonlinearity and uncertainty of the robot dynamics. To deal with trajectory tracking control, several adaptive robot control laws have been proposed and much progress has been obtained in respect to understanding how the robot can track a desired trajectory in the presence of uncertain dynamic parameters [3] [17]. However, most research on robot control has assumed that the exact kinematics and Jacobian matrix of the manipulator from joint space to Cartesian space are known. This assumption leads us to several open problems in the development of robot control laws today. In free motion [18], this implies that the exact lengths of the links, joint offsets and the object which the robot is holding, must be known. Unfortunately, no physical parameters can be derived exactly. Moreover, when the robot picks up objects or tools of different lengths, unknown orientations and gripping points, the overall kinematics are changing and, therefore, difficult to derive exactly. Therefore, the robot is not able to manipulate the tool to a desired position if the length or gripping point of the tool is uncertain. When the control problem is extended to the control of multifingered robot hands [19], such assumption also limits its potential applications because the kinematics is uncertain in many applications of robot hands. For example, the contact points of the robot fingers are uncertain and changing during manipulation. Similarly, in hybrid position force control [0], the assumption of exact kinematics also leads us to an open problem on how to control the robot if the kinematics and constraint are uncertain. To overcome the problem of uncertain kinematics, several approximate Jacobian setpoint controllers [1] [3] were proposed recently. The proposed controllers do not require the exact knowledge of kinematics and Jacobian matrix that is assumed in the literature of robot control. Using the approximate Jacobian control approach, other open problems such as force control with uncertainties [4] and control of robot fingers with uncertain contact points [5] can be resolved in a unified formulation. However, the results in [1] [3] are focusing on setpoint control of robot. In some applications, it is necessary to specify the motion in much more details than simply stating the desired final position. Thus, a desired trajectory should be specified. Recently, an adaptive Jacobian controller was proposed for trajectory tracking control of robot manipulators [6], [7]. The controller does not require the exact knowledge of kinematics and Jacobian matrix that is assumed in the literature of tracking control. However, it is assumed in [6] and [7] that the actuator model is known exactly. Since the actuator model may be uncertain in practice, calibration is necessary to identify the exact parameters of the actuator in implementing the robot controllers. In addition, the actuator parameters could change as temperature varies due to overheating of motor or changes in ambient temperature. Hence, in the presence of the modeling uncertainty or calibration error, the convergence of the tracking error may not be guaranteed. This note extends the algorithm of [6] to include redundant robots and adaptation to actuator parameters. A new adaptive Jacobian controller is proposed for trajectory tracking of robot with uncertain kinematics, dynamics and actuator model. Experimental results are presented to illustrate the performance of the proposed controller. II. ROBOT DYNAMICS AND KINEMATICS If a direct current (dc) motor driven by an amplifier is used as actuator at each joint of the robot, the dynamics of the robot with n degree of degrees of freedom can be expressed as [], [8] M (q)q + B + 1 M _ (q) +S(q; _q) _q + g(q) =Ku (1) where M (q) R nn is the inertia matrix, B R nn is a matrix of damping coefficients, u R n is either a voltage or current inputs to the amplifiers, K R nn is a diagonal transmission matrix that relates the actuator input u to the control torque S(q; _q)_q = 1 _M (q)_q _qt M (q)_q and g(q) R n is the gravitational force. Several important properties of the dynamic equation described by (1) are given as follows [], [4], [8], [9]. Property 1: The inertia matrix M (q) is symmetric and uniformly positive definite for all q R n. Property : The matrix S(q; _q) is skew-symmetric so that T S(q; _q) =0for all R n. Property 3: The dynamic model as described by (1) is linear in a set of physical parameters d =( d1 ; 111; dp ) T as T Manuscript received October 1, 004; revised July 5, 005 and November 30, 005. Recommended by Associate Editor F. Bullo. C. C. Cheah and C. Liu are with School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore , Republic of Singapore ( ECCCheah@ntu.edu.sg). J. J. E. Slotine is with Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA 0139 USA ( jjs@mit.edu). M (q)q + B + 1 M _ (q) +S(q; _q) _q + g(q) =Y d (q; _q; _q; q) d where Y d (1) R np is called the dynamic regressor matrix. } In most applications of robot manipulators, a desired path for the end-effector is specified in task space or operation space such as Carte /$ IEEE

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE sian space or visual space [], [1], [30]. Let x R m be a task space vector defined by x = h(q) where m n, h(1) R m is a transformation describing the relation between the joint space and task space. The task-space velocity _x is related to joint-space velocity _q as _x = J(q)_q () where J(q) R mn is the Jacobian matrix from joint space to task space. If cameras are used to monitor the position of the end-effector, the task space is defined as image space in pixels. Let r represent the position of the end-effector in Cartesian coordinates and x represent the vector of image feature parameters [3]. The image velocity vector _x is related to the joint velocity vector _q as [3] _x = J I (r)je(q)_q where J I (r) is the image Jacobian matrix [3] and J e (q) is the manipulator Jacobian matrix of the mapping from joint space to Cartesian space. In the presence of uncertainties in the camera parameters, the exact image Jacobian matrix and the manipulator Jacobian matrix cannot be obtained. If a position sensor is used to monitor the position of the end-effector, the task space is defined as Cartesian space and, hence, J(q) =J e (q) where J e (q) is the manipulator Jacobian. A property of the kinematic equation described by () is stated as follows [6]. Property 4: The right hand side of () is linear in a set of kinematic parameters k =( k1 ; 111; kq ) T, such as link lengths and joint offsets. Hence, () can be expressed as _x = J(q)_q = Y k (q; _q) k (3) where Y k (q; _q) R mq is called the kinematic regressor matrix. } Remark 1: In the presence of kinematic uncertainty, inverse kinematics cannot be used to derive the desired trajectory in joint space. In addition, when the dynamics equation is expressed in task space by using () and its derivative, we have where l 1 and l are the link lengths, l 0 and q 0 are the length and grasping angle of the object, respectively, s 1 = sin(q 1 ), s 1 = sin(q 1 + q ), s 1o = sin(q 1 + q + q o ), c 1 = cos(q 1 ), c 1 = cos(q 1 + q ), and c 1o = cos(q1 + q + q o). In presence of kinematic uncertainty, the parameters l 1, l, l o, and q 0 are unknown. The inverse Jacobian matrix J 01 (q) can be obtained as J 01 1 (q) = l 1 l s + l 1 l o s o l c 1 + l oc 1o l s 1 + l os 1o 0(l 1 c 1 + l c 1 + l o c 1o ) 0(l 1 s 1 + l s 1 + l o s 1o ) which is nonlinear in the unknown parameters l 1, l, l o, and q 0. Therefore, the standard adaptive controller by Slotine and Li [4] cannot be applied directly to overcome the uncertainty in both kinematics and dynamics. Hence, in the presence of kinematic uncertainty, the adaptive method [4] results in tracking error or even unstable response in the end-effector s motion. The nonlinearity and uncertainty of the robot kinematics pose a difficult and challenging adaptive tracking control problem which remains unsolved for almost two decades. III. ADAPTIVE JACOBIAN TRACKING CONTROL In this section, we present an adaptive Jacobian tracking controller for robot with uncertain kinematics, dynamics, and actuator model. The main idea of the derivation is to introduce an adaptive sliding vector based on estimated task-space velocity, so that kinematic, dynamic, and actuator adaptation can be performed concurrently. In the presence of kinematic uncertainty, the parameters of the Jacobian matrix is uncertain and, hence, (3) can be expressed as ^_x = ^J(q; ^ k )_q = Y k (q; _q)^ k (4) where ^_x R m denotes an estimated task-space velocity, ^J(q; ^ k ) R mn is an approximate Jacobian matrix, and ^ k R q denotes a set of estimated kinematic parameters. Let us define a vector _x r R m as _x r = _x d 0 (x 0 x d ) (5) where x d R m is a desired trajectory, _x d = dx d =dt R m is the desired velocity specified in task space, and is a positive constant. Differentiating (5) with respect to time, we have M (q)j 01 (q)x + 0M (q)j 01 (q) J(q)+B _ + 1 M _ (q)+s(q; _q) x r =xd 0 (_x 0 _x d ) (6) J 01 (q)_x+g(q) =Ku: The aforementioned equation cannot be expressed in a form as in Property 3 because J 01 (q) is not linear in the unknown kinematic parameters. In addition, the mapping between force and torque using Jacobian transpose is also uncertain due to the unknown kinematic parameters. For example, for a two link nonredundant robot holding an object, the Jacobian matrix J(q) from joint space to Cartesian space can be derived as 0(l 1s 1 + l s 1 + l o s 1o ) 0(l s 1 + l o s 1o ) J(q) = l 1 c 1 + l c 1 + l o c 1o l c 1 + l o c 1o where x d = d _x d =dt R m is the desired acceleration in task space. Next, define an adaptive task-space sliding vector using (4) as ^s x = ^_x 0 _xr = ^J(q; ^ k )_q 0 _x r (7) where ^J(q; ^ k )_q = Y k (q; _q)^ k as indicated in (4). The above vector is adaptive in the sense that the parameters of the approximate Jacobian matrix is updated by a parameter update law (18). Differentiating (7) with respect to time, we have _^s x = ^x 0 x r = ^J(q; ^ k )q + _^J(q; ^ k )_q 0 x r (8)

3 106 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 006 where ^x denotes the derivative of ^_x. In the redundant case, the null space of the approximate Jacobian matrix can be used to minimize a performance index [13], [31]. Next, let where 1x = x 0 x d, 1_x = _x 0 _x d, and K v R mm and K p R mm are symmetric positive definite gain matrices, ii) a dynamic adaptation law _q r = ^J + (q; ^ k )_x r + I n 0 ^J + (q; ^ k ) ^J(q; ^ k ) (9) where ^J + (q; ^ k )= ^J T (q; ^ k )( ^J(q; ^ k ) ^J T (q; ^ k )) 01 is the generalized inverse of the approximate Jacobian matrix, and R n is minus the gradient of the convex function to be optimized. In this note, we assume that the robot is operating in a finite task space such that the approximate Jacobian matrix is of full rank. From (9), we have iii) a kinematic adaptation law _^ d = 0L d Y T d (q; _q; _q r; q r)s (17) _^ k = L k Y T k (q; _q)(k v1_x + K p1x) (18) and iv) an actuator adaptation law q r = ^J + (q; ^ k )x r + _^J + (q; ^ k )_x r + I n 0 ^J + (q; ^ k ) ^J(q; ^ k ) _ 0 _^J + (q; ^ k ) ^J(q; ^ k ) 0 ^J + (q; ^ k ) _^J(q; ^k ) : (10) and Hence, we have an adaptive sliding vector in joint space as From (9) and (11), we note that s = _q 0 _q r (11) _s =q 0 q r: (1) ^J(q; ^ k )s =(^_x 0 _x d )+(x 0 x d )=^s x: (13) Substituting (11) and (1) into (1), the equations of motion can be expressed as M (q)_s + B + 1 M _ (q)+s(q; _q) s + M (q)q r + B + 1 _M (q)+s(q; _q) _q r + g(q) =Ku: (14) From Property 3, the last five terms of (14) are linear in a set of dynamics parameters d and, hence, can be expressed as _ ^ a = 0L a Y a ( o )s (19) where L k R qq and L d R pp are symmetric positive definite matrices, L a R nn is a positive definite and diagonal matrix, Y a ( o )=diagf0 o1 ; 0 o ;...; 0 on g, and oi denotes the ith element of the vector o which is defined as o = ^J T (q; ^ k )(K v 1_x + K p 1x) 0 Y d (q; _q; _q r ; q r )^ d : (0) In the adaptive control law (16), a constant ^K01 is used to transform the control torque to an approximate actuator input. The first term is an approximate Jacobian transpose feedback law of the task-space velocity and position errors; the second term is an estimated dynamic compensation term; and the last term is used to compensate for the uncertainty introduced by the constant estimated transmission matrix ^K. The estimated dynamic parameters ^ d is updated using (17), and the estimated kinematic parameters ^ k of the approximate Jacobian matrix ^J(q; ^ k ) is updated using (18). The linear parameterization of the kinematic parameters is obtained from (3). The key novelties are that the algorithm is now augmented by a kinematic adaptation law (18) and an actuator adaptation law (19) and that a specific choice of _q r is exploited throughout. In the proposed controller, x is measured from a position sensor. Many commercial sensors are available for measurement of x, such as vision systems, electromagnetic measurement systems, position sensitive detectors, or laser trackers. The closed-loop dynamics is obtained by substituting (16) into (15) to give M (q)_s + B + 1 M _ (q)+s(q; _q) s + Y d (q; _q; _q r; q r)1 d M (q)q r + B+ 1 _M (q)+s(q; _q) so the dynamic (14) can be written as _q r + g(q)=y d (q; _q; _q r; q r) d M (q)_s + B + 1 M _ (q)+s(q; _q) s + Y d (q; _q; _q r ; q r ) d = Ku: (15) The algorithm we will now derive is composed of i) a control law based on an approximate transmission matrix ^K R nn as u = 0 ^K 01 ^JT (q; ^k )(K v 1_x + K p 1x) + ^K 01 Y d (q; _q; _q r; q r)^ d + ^K 01 Y a( o)^ a (16) + ^J T (q; ^ k )(K v1_x + K p1x) +(K ^K 01 0 I) o 0 K ^K 01 Y a ( o )^ a =0 (1) where o is defined in (0) and 1 d = d 0 ^ d. The estimated kinematic parameters ^ k of the approximate Jacobian matrix ^J(q; ^ k ) is updated by the parameter update (18) and then used in the inverse approximate Jacobian matrix ^J + (q; ^ k ), _q r, and q r in the dynamic regressor matrix. Note that ^ k (like q and _q) is just part of the states of the adaptive control system and, hence, can be used in the control variables even if it is nonlinear in the variables (provided that a linear parameterization can be found elsewhere in the system model i.e., (3)). Since ^J(q; ^ k ) and its inverse ^J + (q; ^ k ) are updated by q and ^ k, _^J(q; ^k ) and _^J + (q; ^ k ) are functions of q, _q, ^ k, 1x, and 1_x because _^k is described by (18).

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE Since K, ^K, and Y a( o) are diagonal matrices, the last two terms of (1) can be expressed as (K ^K 01 0 I) o 0 K ^K 01 Y a ( o )^ a = Y a ( o )( a 0 K ^K 01 ^ a ) () where ai =10 (k i=^k i) and k i and ^k i are the ith diagonal elements of K and ^K, respectively. Substituting () into (1), we have M (q)_s + B + 1 _M (q)+s(q; _q) s + Y d (q; _q; _q r; q r)1 d + ^J T (q; ^ k )(K v1_x + K p1x) +Y a( o)1 a =0 (3) Proof: Since M (q) is uniformally positive definite, V in (4) is positive definite in s, 1x, 1 k, 1 d, and 1 a. Since V _ 0, V is also bounded, and, therefore, s, 1x, 1 k, 1 d, and 1 a are bounded vectors. This implies that ^ k, ^ d, and ^ a are bounded, x is bounded if x d is bounded, and ^s x = ^J(q; ^ k )s is bounded. Since 1x is bounded, _x r in (5) is also bounded if _x d is bounded. Therefore, _q r in (9) is also bounded if the approximate Jacobian matrix is of full rank. From (11), _q is bounded and the boundedness of _q means that _x is bounded since the Jacobian matrix is bounded. Hence, 1_x is bounded and x r in (6) is also bounded if x d is bounded. From (18), _^ k is, therefore, bounded since 1x, 1_x, and _q are bounded and Y k (1) is a trigonometric function of q. Therefore, q r in (10) is bounded. From the closed-loop (3), we can conclude that _s is bounded. The boundedness of _s imply the boundedness of q as seen from (1). From (8), _^s x is, therefore, bounded. Finally, differentiating (6) with respect to time and rearranging yields where 1 a = a 0 K ^K 01 ^ a and, hence, 1 _ a = 0K ^K 01 _^ a. Let us define a Lyapunov-like function candidate as V = 1 M (q)s st + 1 1T d L 01 1 d d + 1 1T k L 01 1 k k 1x + 1_x = _^s x + _ Y k (q; _q; q)1 k 0 Y k (q; _q) _^ k which means that 1x =x 0 x d is also bounded. To apply Barbalat s lemma, let us check the uniform continuity of _V. Differentiating (8) with respect to time gives T a L 01 a ^KK 01 1 a + 1 1xT (K p + K v)1x (4) where 1 k = k 0 ^ k. Differentiating with respect to time and using Property 1, wehave _V = s T M (q)_s + 1 M _ (q)s 0 1 T st d L 01 _^ d d 0 1 T k L 01 _^ k k V = 0s T B _s 0 1 _x T K v1x 0 1x T K p1_x: This shows that V is bounded since 1x, 1_x, and 1x are all bounded. Hence, _ V is uniformly continuous. Using Barbalat s lemma, we have 1x = x 0 x d! 0, 1_x = _x 0 _x d! 0, and s! 0 as t!1.444 Remark : If the kinematic parameter update (18) is modified as 01 T a L 01 a _^ a +1x T (K p + K v )1 _x: Substituting M (q)_s from (3), _^ k from (18), _^ d from (17), and _^ a from (19) into the aforementioned, using Property and (13), yields _V = 0s T Bs 0 ^s T x (K v1_x + K p1x) +1x T (K p + K v)1 _x 01 T k Y T k (q; _q)(k v 1_x + K p 1x): (5) From (7), (3), and (5), we have _^ k = 0PY T k (q; _q)p (^_x 0 _x) +L k Y T k (q; _q)(k v 1_x + K p 1x) where P is a symmetric positive definite matrix, this adds to V _ minus the P square norm of Y k (q; _q)1 k. Hence, Y k (q; _q)1 k also converges to zero. In addition, if the persistent excitation condition is satisfied, the convergence of ^ k to k can be achieved. Remark 3: From (6), the adaptive sliding vector can be expressed as where ^s x =1_x + 1x 0 Y k (q; _q)1 k (6) Y k (q; _q)1 k = J(q)_q 0 ^J(q; ^ k )_q = _x 0 ^_x: (7) Substituting (6) into (5) yields _V = 0s T Bs 0 1_x T K v 1_x 0 1x T K p 1x 0: (8) We are now in a position to state the following theorem. Theorem: The adaptive Jacobian tracking control law (16) and the parameter update laws(17) (19) guarantee the stability and result in the convergence of position and velocity tracking errors of the adaptive control system, that is x 0 x d! 0 and _x 0 _x d! 0 as t!1. ^s x =1_x + 1x + Y k (q; _q)^ k 0 Y k (q; _q) k : (9) Hence, the signs of the parameter update laws in (18) and (17) are different because the last term in (16) is positive, while the last term in the aforementioned is negative. Remark 4: As seen from (11) and (9), if Y k (q; _q)1 k also converges to zero, the convergence of 1x and 1_x to zero implies that _q converges to _q r (even if B =0). Remark 5: In this note, we assume that the robot is operating in a finite task space such that the approximate Jacobian matrix is of full rank. Note from (9) that ^J + (q; ^ k ) is used only in the definition of control variable _q r. Therefore, we should be able to control this by bounding the variable or using a singularity-robust inverse of the approximate Jacobian matrix [31]. A projection algorithm can be used to ensure that ^ k remains bounded in an appropriate region [3]. Hence, singularities only depend on q, not ^ k. It may also be possible to avoid boundary singularities by originally overestimating the size of the robot.

5 108 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 006 Fig. 1. Path and position errors of first experiment. Fig.. Path and position errors of second experiment. Remark 6: Following [13], a simplification of the computation of (10) can be written as q r = ^J + (q; ^ k ) x r 0 _^J(q; ^ k )_q r +(I n 0 ^J + (q; ^ k ) ^J(q; ^ k ) effector. The task-space velocities are obtained from differentiation of the measured position. The robot is required to hold an object with uncertain length and grasping angle and follow a circular trajectory specified in Cartesian space as _ + _^J T (q; ^ k ) ^J +T (q; ^ k )( _q r 0 ) X d =0:33 + 0:1 sin(0:54 + 3t); Y d =0:41 + 0:1 cos(0:54 + 3t): where the derivative of the generalized inverse is not required. IV. EXPERIMENTAL RESULTS To illustrate the performance of the adaptive Jacobian tracking controller, we implemented the proposed controller on a two-link direct drive robot [6], using a personal computer (PC) with Pentium II processor. The controller is running in Microsoft Windows NT together with VenturCom s RTX, a hard real-time extension. The sampling period is set as 3 ms. A position sensitive detector (PSD) camera manufactured by Hamamatsu is used to measure the position of the robot end The relationship between the velocities in task space and the velocities of the joints is given by _x = J(q)_q 0s1 _q1 0s1(_q1 + _q) 0c1(_q1 + _q) = c 1 _q 1 c 1(_q 1 + _q ) 0s 1(_q 1 + _q ) l 1 l + l o c o l o s o (30)

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE where l 1 and l are the link lengths, l 0 and q 0 are the length and grasping angle of the object, respectively, c 1 =cosq 1, s 1 =sinq 1, c 1 = cos(q 1 + q ), s 1 = sin(q 1 + q ), c 1o = cos(q 1 + q + q o ), s 1o = sin(q 1 + q + qo), co = cos qo, and so = sin qo,. The proposed controller in the Theorem was implemented on the robot holding an object with uncertain length and grasping angle. The length of the object was approximately set as 0.06 m and the grasping angle was approximately set as 45. The object length and grasping angle were estimated as ^l o (0) = 0:1 m and ^qo(0) = 0, respectively, and the link lengths were set as ^l1 (0) = 0:5 mand ^l (0) = 0:7 m. The initial position of the robot end effector was specified as (X(0); Y(0)) = (0:8; 0:5). The actuator model is estimated as ^K = [:45; 0:95]. Experimental results with L a =diagf0:15; 0:10g, L k = diagf0:13; 0:15; 0:015g, L d = diagf0:01; 0:00; 0:00; 0:00; 0:015; 0:01; 0:01g, K v = diagf; g, Kp = diagf40; 380g, and = 1: are presented in Fig. 1. As seen from the results, the tracking errors converge with updating of the estimated actuator, kinematic, and dynamic parameters. In the second experiment, we varied the actual length and grasping angle of the object. The length of the object was approximately set as 0.1 m and the grasping angle was approximately set as 60. The experiment results are shown in Fig.. V. CONCLUSION We have proposed an adaptive Jacobian controller for the tracking control of robot with uncertain kinematics, dynamics, and actuator model. Novel parameter update laws are proposed to update uncertain kinematics, dynamics, and actuator parameters. We have shown that the robot end effector is able to track a desired trajectory with the uncertain parameters being updated online by the proposed parameter update laws. Experimental results illustrate the performance of the proposed controller. REFERENCES [1] M. Takegaki and S. Arimoto, A new feedback method for dynamic control of manipulators, ASME J. Dynam. Syst., Meas. Control, vol. 10, pp , [] S. Arimoto, Control Theory of Nonlinear Mechanical Systems A Passivity-Based and Circuit-Theoretic Approach. Oxford, U.K.: Clarendon Press, [3] J. J. Craig, P. Hsu, and S. S. Sastry, Adaptive control of mechanical manipulators, Int. J. Robot. Res., vol. 6, no., pp. 16 8, [4] J. J. E. Slotine and W. Li, On the adaptive control of robot manipulators, Int. J. Robot. Res., no. 6, pp , [5], Adaptive manipulator control: a case study, IEEE Trans. Autom. Control, vol. 33, no. 11, pp , Nov [6] R. H. Middleton and G. C. Goodwin, Adaptive computed torque control for rigid link manipulators, Syst. Control Lett., vol. 10, pp. 9 16, [7] D. E. Koditschek, Adaptive techniques for mechanical systems, in Proc. 5th Yale Workshop Applications of Adaptive Systems Theory, New Haven, CT, 1987, pp [8] J. T. Wen and D. Bayard, New class of control laws for robotic manipulators Part. Adaptive case, Int. J. Control, vol. 47, no. 5, pp , [9] B. Paden and R. Panja, A globally asymptotically stable PD+ controller for robot manipulator, Int. J. Control, vol. 47, no. 6, pp , [10] R. Kelly, R. Carelli, and R. Ortega, Adaptive motion control design of robot manipulators. An input-output approach, Int. J. Control, vol. 50, no. 6, pp , [11] R. Ortega and M. W. Spong, Adaptive motion control of rigid robots: a tutorial, Automatica, vol. 5, no. 6, pp , [1] N. Sadegh and R. Horowitz, Stability and robustness analysis of a class of adaptive controllers for robotic manipulators, Int. J. Robot. Res., vol. 9, no. 3, pp. 74 9, [13] G. Niemeyer and J. J. E. Slotine, Performance in adaptive manipulator control, Int. J. Robot. Res., vol. 10, no., pp , [14] H. Berghuis, R. Ortega, and H. Nijmeijer, A robust adaptive robot controller, IEEE Trans. Robot. Autom., vol. 9, no. 6, pp , Dec [15] L. L. Whitcomb, A. Rizzi, and D. E. Koditschek, Comparative experiments with a new adaptive controller for robot arms, IEEE Trans. Robot. Autom., vol. 9, no. 1, pp , Feb [16] K. W. Lee and H. Khalil, Adaptive output feedback control of robot manipulators using high gain observer, Int. J. Control, vol. 67, no. 6, pp , [17] P. Tomei, Robust adaptive friction compensation for tracking control of robot manipulators, IEEE Trans. Autom. Control, vol. 45, no. 11, pp , Nov [18] S. Arimoto, Robotics research toward explication of everyday physics, Int. J. Robot. Res., vol. 18, no. 11, pp , [19] A. Bicchi, Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity, IEEE Trans. Robot. Autom., vol. 16, no. 6, pp , Dec [0] T. Yoshikawa, Force control of robot manipulators, in Proc. IEEE Conf. Robotics and Automation, San Francisco, CA, 000, pp. 0 6, Invited session on robot control. [1] C. C. Cheah, S. Kawamura, and S. Arimoto, Feedback control for robotic manipulators with an uncertain Jacobian matrix, J. Robot. Syst., vol. 1, no., pp , [] C. C. Cheah, M. Hirano, S. Kawamura, and S. Arimoto, Approximate Jacobian control for robots with uncertain kinematics and dynamics, IEEE Trans. Robot. Autom., vol. 19, no. 4, pp , Aug [3] W. E. Dixon, Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics, in Proc. Amer. Control Conf., Boston, MA, 004, pp [4] C. C. Cheah, S. Kawamura, and S. Arimoto, Stability of hybrid position and force control for robotic manipulator with uncertain kinematics and dynamics, Automatica, vol. 39, no. 5, pp , 003. [5] C. C. Cheah, H. Han, S. Kawamura, and S. Arimoto, Grasping and position control of multi-fingered robot hands with uncertain jacobian matrices, in Proc. IEEE Int. Conf. Robotics Automation, Leuven, Belgium, 1998, pp [6] C. C. Cheah, C. Liu, and J. J. E. Slotine, Approximate jacobian adaptive control for robot manipulators, in Proc. IEEE Int. Conf. Robotics Automation, New Orleans, LA, 004, pp [7], Adaptive Jacobian tracking control of robots based on visual task-space information, in Proc. IEEE Int. Conf. Robotics Automation, 005, pp [8] F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators. New York: Macmillan, [9] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, [30] O. Khatib, A unified approach for motion and force control of robot manipulators: the operation space formulation, IEEE Trans. Robot. Autom., vol. 3, no. 1, pp , Feb [31] Y. Nakamura, Advanced Robotics. Reading, MA: Addison-Wesleyn, [3] G. H. S. Hutchinson and P. Corke, A tutorial on visual servo control, IEEE Trans. Robot. Autom., vol. 1, no. 5, pp , Oct

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

Adaptive Tracking Control for Robots with Unknown Kinematic and Dynamic Properties

Adaptive Tracking Control for Robots with Unknown Kinematic and Dynamic Properties 1 Adaptive Tracking Control for Robots with Unknown Kinematic and Dynamic Properties C. C. Cheah, C. Liu and J.J.E. Slotine C.C. Cheah and C. Liu are with School of Electrical and Electronic Engineering,

More information

Observer Based Output Feedback Tracking Control of Robot Manipulators

Observer Based Output Feedback Tracking Control of Robot Manipulators 1 IEEE International Conference on Control Applications Part of 1 IEEE Multi-Conference on Systems and Control Yokohama, Japan, September 8-1, 1 Observer Based Output Feedback Tracking Control of Robot

More information

458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 3, MAY 2008

458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 3, MAY 2008 458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL 16, NO 3, MAY 2008 Brief Papers Adaptive Control for Nonlinearly Parameterized Uncertainties in Robot Manipulators N V Q Hung, Member, IEEE, H D

More information

ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES

ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES ADAPTIVE FORCE AND MOTION CONTROL OF ROBOT MANIPULATORS IN CONSTRAINED MOTION WITH DISTURBANCES By YUNG-SHENG CHANG A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

A composite adaptive output feedback tracking controller for robotic manipulators* E. Zergeroglu, W. Dixon, D. Haste, and D.

A composite adaptive output feedback tracking controller for robotic manipulators* E. Zergeroglu, W. Dixon, D. Haste, and D. Robotica (1999) volume 17, pp. 591 600. Printed in the United Kingdom 1999 Cambridge University Press A composite adaptive output feedback tracking controller for robotic manipulators* E. Zergeroglu, W.

More information

Tracking Control of Robot Manipulators with Bounded Torque Inputs* W.E. Dixon, M.S. de Queiroz, F. Zhang and D.M. Dawson

Tracking Control of Robot Manipulators with Bounded Torque Inputs* W.E. Dixon, M.S. de Queiroz, F. Zhang and D.M. Dawson Robotica (1999) volume 17, pp. 121 129. Printed in the United Kingdom 1999 Cambridge University Press Tracking Control of Robot Manipulators with Bounded Torque Inputs* W.E. Dixon, M.S. de Queiroz, F.

More information

Exponential Controller for Robot Manipulators

Exponential Controller for Robot Manipulators Exponential Controller for Robot Manipulators Fernando Reyes Benemérita Universidad Autónoma de Puebla Grupo de Robótica de la Facultad de Ciencias de la Electrónica Apartado Postal 542, Puebla 7200, México

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

A SIMPLE ITERATIVE SCHEME FOR LEARNING GRAVITY COMPENSATION IN ROBOT ARMS

A SIMPLE ITERATIVE SCHEME FOR LEARNING GRAVITY COMPENSATION IN ROBOT ARMS A SIMPLE ITERATIVE SCHEME FOR LEARNING GRAVITY COMPENSATION IN ROBOT ARMS A. DE LUCA, S. PANZIERI Dipartimento di Informatica e Sistemistica Università degli Studi di Roma La Sapienza ABSTRACT The set-point

More information

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 4, No Sofia 04 Print ISSN: 3-970; Online ISSN: 34-408 DOI: 0.478/cait-04-00 Nonlinear PD Controllers with Gravity Compensation

More information

Force/Position Regulation for Robot Manipulators with. Unmeasurable Velocities and Uncertain Gravity. Antonio Loria and Romeo Ortega

Force/Position Regulation for Robot Manipulators with. Unmeasurable Velocities and Uncertain Gravity. Antonio Loria and Romeo Ortega Force/Position Regulation for Robot Manipulators with Unmeasurable Velocities and Uncertain Gravity Antonio Loria and Romeo Ortega Universite de Tecnologie de Compiegne URA CNRS 87, HEUDIASYC, BP 69 6000,

More information

OVER THE past 20 years, the control of mobile robots has

OVER THE past 20 years, the control of mobile robots has IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 5, SEPTEMBER 2010 1199 A Simple Adaptive Control Approach for Trajectory Tracking of Electrically Driven Nonholonomic Mobile Robots Bong Seok

More information

Robust Control of Cooperative Underactuated Manipulators

Robust Control of Cooperative Underactuated Manipulators Robust Control of Cooperative Underactuated Manipulators Marcel Bergerman * Yangsheng Xu +,** Yun-Hui Liu ** * Automation Institute Informatics Technology Center Campinas SP Brazil + The Robotics Institute

More information

Adaptive set point control of robotic manipulators with amplitude limited control inputs* E. Zergeroglu, W. Dixon, A. Behal and D.

Adaptive set point control of robotic manipulators with amplitude limited control inputs* E. Zergeroglu, W. Dixon, A. Behal and D. Robotica (2) volume 18, pp. 171 181. Printed in the United Kingdom 2 Cambridge University Press Adaptive set point control of robotic manipulators with amplitude limited control inputs* E. Zergeroglu,

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates

Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates Hiroe HASHIGUCHI, Suguru ARIMOTO, and Ryuta OZAWA Dept. of Robotics, Ritsumeikan Univ., Kusatsu, Shiga 525-8577,

More information

Robust Control of Robot Manipulator by Model Based Disturbance Attenuation

Robust Control of Robot Manipulator by Model Based Disturbance Attenuation IEEE/ASME Trans. Mechatronics, vol. 8, no. 4, pp. 511-513, Nov./Dec. 2003 obust Control of obot Manipulator by Model Based Disturbance Attenuation Keywords : obot manipulators, MBDA, position control,

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

A new large projection operator for the redundancy framework

A new large projection operator for the redundancy framework 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA A new large projection operator for the redundancy framework Mohammed Marey

More information

A Sliding Mode Controller Using Neural Networks for Robot Manipulator

A Sliding Mode Controller Using Neural Networks for Robot Manipulator ESANN'4 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 8-3 April 4, d-side publi., ISBN -9337-4-8, pp. 93-98 A Sliding Mode Controller Using Neural Networks for Robot

More information

PERIODIC signals are commonly experienced in industrial

PERIODIC signals are commonly experienced in industrial IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 2, MARCH 2007 369 Repetitive Learning Control of Nonlinear Continuous-Time Systems Using Quasi-Sliding Mode Xiao-Dong Li, Tommy W. S. Chow,

More information

538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002

538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002 538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 3, NO. 4, AUGUST 00 Correspondence Repetitive Learning Control: A Lyapunov-Based Approach W. E. Dixon, E. Zergeroglu, D.

More information

An Adaptive Full-State Feedback Controller for Bilateral Telerobotic Systems

An Adaptive Full-State Feedback Controller for Bilateral Telerobotic Systems 21 American Control Conference Marriott Waterfront Baltimore MD USA June 3-July 2 21 FrB16.3 An Adaptive Full-State Feedback Controller for Bilateral Telerobotic Systems Ufuk Ozbay Erkan Zergeroglu and

More information

Integrated Design and PD Control of High-Speed Closed-loop Mechanisms

Integrated Design and PD Control of High-Speed Closed-loop Mechanisms F. X. Wu Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada W. J. Zhang* Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9,

More information

Neural Network Control of Robot Manipulators and Nonlinear Systems

Neural Network Control of Robot Manipulators and Nonlinear Systems Neural Network Control of Robot Manipulators and Nonlinear Systems F.L. LEWIS Automation and Robotics Research Institute The University of Texas at Arlington S. JAG ANNATHAN Systems and Controls Research

More information

Adaptive Visual Tracking for Robotic Systems Without Image-Space Velocity Measurement

Adaptive Visual Tracking for Robotic Systems Without Image-Space Velocity Measurement Adaptive Visual Tracking for Robotic Systems Without Image-Space Velocity Measurement Hanlei Wang 1 arxiv:1401.6904v3 [cs.ro] 27 Apr 2015 Abstract In this paper, we investigate the visual tracking problem

More information

Task-space Adaptive Setpoint Control for Robots with Uncertain Kinematics and Actuator Model

Task-space Adaptive Setpoint Control for Robots with Uncertain Kinematics and Actuator Model Task-space Adaptive Setpoint Control for Robots with Uncertain Kinematics and Actuator Model Chao Liu Chien Chern Cheah School of Electrical and Electronic Engineering Nanyang Technological University,

More information

Control of Robotic Manipulators with Input/Output Delays

Control of Robotic Manipulators with Input/Output Delays 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009 WeC20.5 Control of Robotic Manipulators with Input/Output Delays Nikhil Chopra Abstract Input/output delays

More information

WE PROPOSE a new approach to robust control of robot

WE PROPOSE a new approach to robust control of robot IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 1, FEBRUARY 1998 69 An Optimal Control Approach to Robust Control of Robot Manipulators Feng Lin and Robert D. Brandt Abstract We present a new

More information

Control of industrial robots. Centralized control

Control of industrial robots. Centralized control Control of industrial robots Centralized control Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano ipartimento di Elettronica, Informazione e Bioingegneria Introduction Centralized control

More information

Adaptive Position and Orientation Regulation for the Camera-in-Hand Problem

Adaptive Position and Orientation Regulation for the Camera-in-Hand Problem Adaptive Position and Orientation Regulation for the Camera-in-Hand Problem Aman Behal* Electrical and Computer Engineering Clarkson University Potsdam, New York 13699-5720 e-mail: abehal@clarkson.edu

More information

THE robot is one of the choices for improving productivity

THE robot is one of the choices for improving productivity 320 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 1, FEBRUARY 2005 Multiple Neuro-Adaptive Control of Robot Manipulators Using Visual Cues Choon-Young Lee and Ju-Jang Lee, Senior Member, IEEE

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Nonlinear Tracking Control of Underactuated Surface Vessel

Nonlinear Tracking Control of Underactuated Surface Vessel American Control Conference June -. Portland OR USA FrB. Nonlinear Tracking Control of Underactuated Surface Vessel Wenjie Dong and Yi Guo Abstract We consider in this paper the tracking control problem

More information

Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays

Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL. 56 NO. 3 MARCH 2011 655 Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays Nikolaos Bekiaris-Liberis Miroslav Krstic In this case system

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

Model Reference Adaptive Control for Robot Tracking Problem: Design & Performance Analysis

Model Reference Adaptive Control for Robot Tracking Problem: Design & Performance Analysis International Journal of Control Science and Engineering 07, 7(): 8-3 DOI: 0.593/j.control.07070.03 Model Reference Adaptive Control for Robot racking Problem: Design & Performance Analysis ahere Pourseif,

More information

Trigonometric Saturated Controller for Robot Manipulators

Trigonometric Saturated Controller for Robot Manipulators Trigonometric Saturated Controller for Robot Manipulators FERNANDO REYES, JORGE BARAHONA AND EDUARDO ESPINOSA Grupo de Robótica de la Facultad de Ciencias de la Electrónica Benemérita Universidad Autónoma

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 12: Multivariable Control of Robotic Manipulators Part II

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 12: Multivariable Control of Robotic Manipulators Part II MCE/EEC 647/747: Robot Dynamics and Control Lecture 12: Multivariable Control of Robotic Manipulators Part II Reading: SHV Ch.8 Mechanical Engineering Hanz Richter, PhD MCE647 p.1/14 Robust vs. Adaptive

More information

Delay-Independent Stabilization for Teleoperation with Time Varying Delay

Delay-Independent Stabilization for Teleoperation with Time Varying Delay 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrC9.3 Delay-Independent Stabilization for Teleoperation with Time Varying Delay Hiroyuki Fujita and Toru Namerikawa

More information

Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot

Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot Vol.3 No., 27 مجلد 3 العدد 27 Neural Network-Based Adaptive Control of Robotic Manipulator: Application to a Three Links Cylindrical Robot Abdul-Basset A. AL-Hussein Electrical Engineering Department Basrah

More information

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors NASA Technical Memorandum 110316 Virtual Passive Controller for Robot Systems Using Joint Torque Sensors Hal A. Aldridge and Jer-Nan Juang Langley Research Center, Hampton, Virginia January 1997 National

More information

An Adaptive Iterative Learning Control for Robot Manipulator in Task Space

An Adaptive Iterative Learning Control for Robot Manipulator in Task Space INT J COMPUT COMMUN, ISSN 84-9836 Vol.7 (22), No. 3 (September), pp. 58-529 An Adaptive Iterative Learning Control for Robot Manipulator in Task Space T. Ngo, Y. Wang, T.L. Mai, J. Ge, M.H. Nguyen, S.N.

More information

Robust Adaptive Attitude Control of a Spacecraft

Robust Adaptive Attitude Control of a Spacecraft Robust Adaptive Attitude Control of a Spacecraft AER1503 Spacecraft Dynamics and Controls II April 24, 2015 Christopher Au Agenda Introduction Model Formulation Controller Designs Simulation Results 2

More information

A Cascaded-Based Hybrid Position-Force Control for Robot Manipulators with Nonnegligible Dynamics

A Cascaded-Based Hybrid Position-Force Control for Robot Manipulators with Nonnegligible Dynamics 21 American Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 FrA16.4 A Cascaded-Based Hybrid Position-Force for Robot Manipulators with Nonnegligible Dynamics Antonio C. Leite, Fernando

More information

Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty

Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seille, Spain, December 2-5, 2005 WeB3.3 Tracking Control for Robot Manipulators with Kinematic

More information

Design and Control of Variable Stiffness Actuation Systems

Design and Control of Variable Stiffness Actuation Systems Design and Control of Variable Stiffness Actuation Systems Gianluca Palli, Claudio Melchiorri, Giovanni Berselli and Gabriele Vassura DEIS - DIEM - Università di Bologna LAR - Laboratory of Automation

More information

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL 1 KHALED M. HELAL, 2 MOSTAFA R.A. ATIA, 3 MOHAMED I. ABU EL-SEBAH 1, 2 Mechanical Engineering Department ARAB ACADEMY

More information

Multi-Priority Cartesian Impedance Control

Multi-Priority Cartesian Impedance Control Multi-Priority Cartesian Impedance Control Robert Platt Jr. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology rplatt@csail.mit.edu Muhammad Abdallah, Charles

More information

RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal

RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal Trans. Japan Soc. Aero. Space Sci. Vol. 56, No. 6, pp. 37 3, 3 RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal By Wenhui ZHANG, Xiaoping YE and Xiaoming JI Institute

More information

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT Plamen PETROV Lubomir DIMITROV Technical University of Sofia Bulgaria Abstract. A nonlinear feedback path controller for a differential drive

More information

1348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

1348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004 1348 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 34, NO 3, JUNE 2004 Direct Adaptive Iterative Learning Control of Nonlinear Systems Using an Output-Recurrent Fuzzy Neural

More information

Natural and artificial constraints

Natural and artificial constraints FORCE CONTROL Manipulator interaction with environment Compliance control Impedance control Force control Constrained motion Natural and artificial constraints Hybrid force/motion control MANIPULATOR INTERACTION

More information

STABILITY OF SECOND-ORDER ASYMMETRIC LINEAR MECHANICAL SYSTEMS WITH APPLICATION TO ROBOT GRASPING

STABILITY OF SECOND-ORDER ASYMMETRIC LINEAR MECHANICAL SYSTEMS WITH APPLICATION TO ROBOT GRASPING STABILITY OF SECOND-ORDER ASYMMETRIC LINEAR MECHANICAL SYSTEMS WITH APPLICATION TO ROBOT GRASPING Amir Shapiro Department of Mechanical Engineering Ben Gurion University of the Negev P.O.B. 653 Beer Sheva

More information

Combined NN/RISE-based Asymptotic Tracking Control of a 3 DOF Robot Manipulator

Combined NN/RISE-based Asymptotic Tracking Control of a 3 DOF Robot Manipulator JIAS Journal of Intelligent Automation Systems Published online: 15 January 214 Combined NN/RISE-based Asymptotic Tracking Control of a 3 DOF Robot Manipulator Sara Yazdanzad a, Alireza Khosravi b,*, Abolfazl

More information

Robotics 2 Robot Interaction with the Environment

Robotics 2 Robot Interaction with the Environment Robotics 2 Robot Interaction with the Environment Prof. Alessandro De Luca Robot-environment interaction a robot (end-effector) may interact with the environment! modifying the state of the environment

More information

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics TIEMIN HU and SIMON X. YANG ARIS (Advanced Robotics & Intelligent Systems) Lab School of Engineering, University of Guelph

More information

Design and Stability Analysis of Single-Input Fuzzy Logic Controller

Design and Stability Analysis of Single-Input Fuzzy Logic Controller IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000 303 Design and Stability Analysis of Single-Input Fuzzy Logic Controller Byung-Jae Choi, Seong-Woo Kwak,

More information

Global robust output feedback tracking control of robot manipulators* W. E. Dixon, E. Zergeroglu and D. M. Dawson

Global robust output feedback tracking control of robot manipulators* W. E. Dixon, E. Zergeroglu and D. M. Dawson Robotica 004) volume, pp. 35 357. 004 Cambridge University Press DOI: 0.07/S06357470400089 Printed in the United Kingdom Global robust output feedback tracking control of robot manipulators* W. E. Dixon,

More information

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Sébastien Andary Ahmed Chemori Sébastien Krut LIRMM, Univ. Montpellier - CNRS, 6, rue Ada

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

A Unified Quadratic-Programming-Based Dynamical System Approach to Joint Torque Optimization of Physically Constrained Redundant Manipulators

A Unified Quadratic-Programming-Based Dynamical System Approach to Joint Torque Optimization of Physically Constrained Redundant Manipulators 16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 004 A Unified Quadratic-Programg-Based Dynamical System Approach to Joint Torque Optimization of Physically

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

Dynamic Tracking Control of Uncertain Nonholonomic Mobile Robots

Dynamic Tracking Control of Uncertain Nonholonomic Mobile Robots Dynamic Tracking Control of Uncertain Nonholonomic Mobile Robots Wenjie Dong and Yi Guo Department of Electrical and Computer Engineering University of Central Florida Orlando FL 3816 USA Abstract We consider

More information

Adaptive servo visual robot control

Adaptive servo visual robot control Robotics and Autonomous Systems 43 (2003) 51 78 Adaptive servo visual robot control Oscar Nasisi, Ricardo Carelli Instituto de Automática, Universidad Nacional de San Juan, Av. San Martín (Oeste) 1109,

More information

Robust Adaptive Control of Nonholonomic Mobile Robot With Parameter and Nonparameter Uncertainties

Robust Adaptive Control of Nonholonomic Mobile Robot With Parameter and Nonparameter Uncertainties IEEE TRANSACTIONS ON ROBOTICS, VOL. 1, NO., APRIL 005 61 [4] P. Coelho and U. Nunes, Lie algebra application to mobile robot control: A tutorial, Robotica, vol. 1, no. 5, pp. 483 493, 003. [5] P. Coelho,

More information

Force Tracking Impedance Control with Variable Target Stiffness

Force Tracking Impedance Control with Variable Target Stiffness Proceedings of the 17th World Congress The International Federation of Automatic Control Force Tracking Impedance Control with Variable Target Stiffness K. Lee and M. Buss Institute of Automatic Control

More information

THE control of systems with uncertain nonlinear dynamics

THE control of systems with uncertain nonlinear dynamics IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008 373 Asymptotic Tracking for Systems With Structured and Unstructured Uncertainties P. M. Patre, Student Member, IEEE, W. MacKunis,

More information

Adaptive Vision and Force Tracking Control for Robots With Constraint Uncertainty

Adaptive Vision and Force Tracking Control for Robots With Constraint Uncertainty Adaptive Vision and Force Tracking Control for Robots With Constraint Uncertainty The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

A Backstepping control strategy for constrained tendon driven robotic finger

A Backstepping control strategy for constrained tendon driven robotic finger A Backstepping control strategy for constrained tendon driven robotic finger Kunal Sanjay Narkhede 1, Aashay Anil Bhise 2, IA Sainul 3, Sankha Deb 4 1,2,4 Department of Mechanical Engineering, 3 Advanced

More information

Force/Impedance Control for Robotic Manipulators

Force/Impedance Control for Robotic Manipulators 16 Force/Impedance Control for Robotic Manipulators Siddharth P Nagarkatti MKS Instruments, Wilmington, MA Darren M Dawson Clemson University 161 Introduction 162 Dynamic Model Joint-Space Model Task-Space

More information

Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels

Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels Yuan Ping Li * and Teresa Zielinska and Marcelo H. Ang Jr.* and Wei Lin * National University of Singapore, Faculty of Engineering,

More information

BACKSTEPPING-BASED HYBRID ADAPTIVE CONTROL OF ROBOT MANIPULATORS INCORPORATING ACTUATOR DYNAMICS

BACKSTEPPING-BASED HYBRID ADAPTIVE CONTROL OF ROBOT MANIPULATORS INCORPORATING ACTUATOR DYNAMICS INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, VOL. 11, 141 153 (1997) BACKSTEPPING-BASED HYBRID ADAPTIVE CONTROL OF ROBOT MANIPULATORS INCORPORATING ACTUATOR DYNAMICS CHUN-YI SU* AND

More information

q HYBRID CONTROL FOR BALANCE 0.5 Position: q (radian) q Time: t (seconds) q1 err (radian)

q HYBRID CONTROL FOR BALANCE 0.5 Position: q (radian) q Time: t (seconds) q1 err (radian) Hybrid Control for the Pendubot Mingjun Zhang and Tzyh-Jong Tarn Department of Systems Science and Mathematics Washington University in St. Louis, MO, USA mjz@zach.wustl.edu and tarn@wurobot.wustl.edu

More information

Unit Quaternion-Based Output Feedback for the Attitude Tracking Problem

Unit Quaternion-Based Output Feedback for the Attitude Tracking Problem 56 IEEE RANSACIONS ON AUOMAIC CONROL, VOL. 53, NO. 6, JULY 008 Unit Quaternion-Based Output Feedback for the Attitude racking Problem Abdelhamid ayebi, Senior Member, IEEE Abstract In this note, we propose

More information

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 11, NO 2, APRIL 2003 271 H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions Doo Jin Choi and PooGyeon

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report Simulation Model of a 2 Degrees of Freedom Industrial Manipulator Patrik Axelsson Series: LiTH-ISY-R, ISSN 400-3902, No. 3020 ISRN: LiTH-ISY-R-3020 Available

More information

Trajectory Tracking Control of a Very Flexible Robot Using a Feedback Linearization Controller and a Nonlinear Observer

Trajectory Tracking Control of a Very Flexible Robot Using a Feedback Linearization Controller and a Nonlinear Observer Trajectory Tracking Control of a Very Flexible Robot Using a Feedback Linearization Controller and a Nonlinear Observer Fatemeh Ansarieshlaghi and Peter Eberhard Institute of Engineering and Computational

More information

STABILITY OF HYBRID POSITION/FORCE CONTROL APPLIED TO MANIPULATORS WITH FLEXIBLE JOINTS

STABILITY OF HYBRID POSITION/FORCE CONTROL APPLIED TO MANIPULATORS WITH FLEXIBLE JOINTS International Journal of Robotics and Automation, Vol. 14, No. 4, 1999 STABILITY OF HYBRID POSITION/FORCE CONTROL APPLIED TO MANIPULATORS WITH FLEXIBLE JOINTS P.B. Goldsmith, B.A. Francis, and A.A. Goldenberg

More information

IN recent years, controller design for systems having complex

IN recent years, controller design for systems having complex 818 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 29, NO 6, DECEMBER 1999 Adaptive Neural Network Control of Nonlinear Systems by State and Output Feedback S S Ge, Member,

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain World Applied Sciences Journal 14 (9): 1306-1312, 2011 ISSN 1818-4952 IDOSI Publications, 2011 Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain Samira Soltani

More information

FINITE TIME CONTROL FOR ROBOT MANIPULATORS 1. Yiguang Hong Λ Yangsheng Xu ΛΛ Jie Huang ΛΛ

FINITE TIME CONTROL FOR ROBOT MANIPULATORS 1. Yiguang Hong Λ Yangsheng Xu ΛΛ Jie Huang ΛΛ Copyright IFAC 5th Triennial World Congress, Barcelona, Spain FINITE TIME CONTROL FOR ROBOT MANIPULATORS Yiguang Hong Λ Yangsheng Xu ΛΛ Jie Huang ΛΛ Λ Institute of Systems Science, Chinese Academy of Sciences,

More information

Lecture «Robot Dynamics»: Dynamics 2

Lecture «Robot Dynamics»: Dynamics 2 Lecture «Robot Dynamics»: Dynamics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Analytic Nonlinear Inverse-Optimal Control for Euler Lagrange System

Analytic Nonlinear Inverse-Optimal Control for Euler Lagrange System IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 6, DECEMBER 847 Analytic Nonlinear Inverse-Optimal Control for Euler Lagrange System Jonghoon Park and Wan Kyun Chung, Member, IEEE Abstract Recent

More information

Lecture «Robot Dynamics»: Dynamics and Control

Lecture «Robot Dynamics»: Dynamics and Control Lecture «Robot Dynamics»: Dynamics and Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators

Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 315 Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators Hugang Han, Chun-Yi Su, Yury Stepanenko

More information

The Rationale for Second Level Adaptation

The Rationale for Second Level Adaptation The Rationale for Second Level Adaptation Kumpati S. Narendra, Yu Wang and Wei Chen Center for Systems Science, Yale University arxiv:1510.04989v1 [cs.sy] 16 Oct 2015 Abstract Recently, a new approach

More information

Stability Analysis and Robust PID Control of Cable-Driven Robots Considering Elasticity in Cables

Stability Analysis and Robust PID Control of Cable-Driven Robots Considering Elasticity in Cables Amirkabir University of Technology (Tehran Polytechnic) Amirkabir International Jounrnal of Science & Research Electrical & Electronics Engineering (AIJ-EEE) Vol. 48, No. 2, Fall 2016, pp. 113-125 Stability

More information

MCE493/593 and EEC492/592 Prosthesis Design and Control

MCE493/593 and EEC492/592 Prosthesis Design and Control MCE493/593 and EEC492/592 Prosthesis Design and Control Control Systems Part 3 Hanz Richter Department of Mechanical Engineering 2014 1 / 25 Electrical Impedance Electrical impedance: generalization of

More information

Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization

Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 0, OCTOBER 003 87 Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization Zhihua Qu Abstract Two classes of partially known

More information

A Nonlinear Disturbance Observer for Robotic Manipulators

A Nonlinear Disturbance Observer for Robotic Manipulators 932 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 4, AUGUST 2000 A Nonlinear Disturbance Observer for Robotic Manipulators Wen-Hua Chen, Member, IEEE, Donald J. Ballance, Member, IEEE, Peter

More information

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control Khaled M. Helal, 2 Mostafa R.A. Atia, 3 Mohamed I. Abu El-Sebah, 2 Mechanical Engineering Department ARAB ACADEMY FOR

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

NEURAL NETWORKS (NNs) play an important role in

NEURAL NETWORKS (NNs) play an important role in 1630 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 34, NO 4, AUGUST 2004 Adaptive Neural Network Control for a Class of MIMO Nonlinear Systems With Disturbances in Discrete-Time

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

TODAY, the developments in technology and the requirements

TODAY, the developments in technology and the requirements 542 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 4, JULY 2004 Mutual Synchronization of Robots via Estimated State Feedback: A Cooperative Approach Alejandro Rodriguez-Angeles and Henk

More information

Operational Space Control of Constrained and Underactuated Systems

Operational Space Control of Constrained and Underactuated Systems Robotics: Science and Systems 2 Los Angeles, CA, USA, June 27-3, 2 Operational Space Control of Constrained and Underactuated Systems Michael Mistry Disney Research Pittsburgh 472 Forbes Ave., Suite Pittsburgh,

More information

Passivity-based Control of Euler-Lagrange Systems

Passivity-based Control of Euler-Lagrange Systems Romeo Ortega, Antonio Loria, Per Johan Nicklasson and Hebertt Sira-Ramfrez Passivity-based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications Springer Contents

More information