Hierarchical Time-series Modelling for Haemodialysis. Tingting Zhu 24 th October 2016

Size: px
Start display at page:

Download "Hierarchical Time-series Modelling for Haemodialysis. Tingting Zhu 24 th October 2016"

Transcription

1 Hierarchical Time-series Modelling for Haemodialysis Tingting Zhu 24 th October 2016

2 Content Background on haemodialysis Methods o Gaussian Process Regression (GPR) o Hierarchical Gaussian Process Regression (HGPR) Application of GPR to the haemodialysis dataset o Pre-processing and Fitting Time-series using GPR o Univariate GPR Forecasting - Prediction of Deterioration o HGPR Forecasting for Multiple Time-series o Clustering of Time-series Trajectories

3 Background - Haemodialysis Background: - Prevalence of end-stage renal failure is 861 per million population in the UK; - 50% of them requires renal replacement therapy haemodialysis. The process: (1) Remove excess fluid from the body; (2) Restore electrolyte (such as sodium, potassium, and phosphate) balance; (3) Clear the waste products (such as urine) in blood; (4) 3 sessions per week, each lasts upto 4 hours. Image taken from

4 Background - Haemodialysis The problem(s): The rapid changes in blood fluid levels that occur during the treatment and causing: - cramps, nausea, and vomiting; - Intra-dialytic hypotension (IDH) sudden fall in blood pressure [reduction in blood volume resulted from an imbalance between rapid fluid withdraw and vascular refilling from the interstitial space to the blood stream]. The challenges: - Discrepancy in definition of IDH : - haemodynamic (fluid dynamic of blood flow) status varies between sessions; - Inaccurate measurement of non-invasive systolic blood pressure (derived from mean arterial pressure). - Real-time detection/early warning of IDH. Definition of IDH from Kidney Disease Outcomes and Quality Initiative: A decrease in systolic blood pressure by 20 mmhg or a decrease in mean arterial pressure by 10 mmhg associated with symptoms that include: abdominal discomfort; yawning; sighing; nausea; vomiting; muscle cramps; restlessness; dizziness or fainting; and anxiety.

5 Gaussian Process Regression (GPR) Gaussian Process for Regression: y can be considered as related to an underlying function f x through a Gaussian noise model: y = f x + N(0, σ n 2 ) Assuming f x has a Gaussian Process (GP) prior: or y~n(f(x), σ n 2 ) f x ~ GP(m x, k x, x ) where m x is the mean function of the GP and k x, x is a covariance function which describes the relationship among the y values that is determined according to the distance of the x values. Hence, we can define y as: y ~ GP (m x, k x, x + σ n 2 I) Noting that there are different covariance functions available to be considered, a common one is called the squaredexponential covariance function: k x, x = αexp { γ(x x ) 2 }) where the amplitude (α) and relative length-scale (γ) are hyperparameters.

6 Gaussian Process Regression (GPR) GPR Prediction: Condition on the training set {x, y}, the distribution of an unknown output y at x is defined as: y x, x, y ~N(E y, Var y ) where E y = k(x, x)k(x, x) 1 y Var y = k x, x k(x, x)k(x, x) 1 k(x, x) T Log Marginal Likelihood: To infer the hyperparameters (denoted as θ) in the covariance function, we can compute the probability of the data given the hyperparameters (i.e., marginal likelihood): p y x, θ = p y f, x p f x, θ df where we have marginalised over the function values f, and by taking the log of the likelihood, we have: L = log p y x, θ = 1 2 log k x, x + σ n 2 I 1 2 y μ T [k x, x + σ n 2 I] 1 y μ N 2 log(2π) Complexity Penalty Data-fit Measure Constant

7 Hierarchical Gaussian Process Regression (HGPR) Assuming we have N groups of time-series (such as physiological measurements over a time vector t n ), and they are similar to each other. The observed data for N groups of timeseries can be defined as Y = y nr r=1 taken at times T = t N nr r=1 N. Subject 1 N=3 Under the model assumption, there is a latent GP function which governs all the time series, denoted as g n t. Given a draw for g n, each group of data is then drawn from a GP as: Session 1 Session 2 Session 3 f nr t ~GP g n t, k f t, t The hierarchical structure of GPs can be computed as: g n t ~GP 0, k g t, t, f nr t ~GP g n t, k f t, t. Note two points on f nr t are jointly Gaussian distributed with zero mean and covariance k g t, t + k f t, t. But two points in different time-series are jointly distributed with covariance k g t, t. Figure taken from Hensman et al. 2013

8 Deeper HGPR Session 1 Subject ID=1 Session K Cluster 1 Subject ID=2 Subject ID=3 Session 1 Session M Session 1 What does a cluster mean: - Normal vs abnormal clusters of subjects - Different clusters of an abnormal population - Different clusters of a normal population h i t ~GP 0, k h t, t, g n t ~GP h i t, k g t, t, f nr t ~GP g n t, k f t, t. Cluster G Session 1 Subject ID=N Session M

9 Haemodialysis Dataset 60 recruited patients for the haemodialysis study, however, only 35 subjects had continuous blood pressure measurements. 4 vital signs (HR, SBP, MAP, and SpO2) were considered, and each vital sign is extracted from different sensors. Data taken from Clare R. MacEwen PhD Thesis 2016 Definition of Intradialytic hypotension (IDH) event: o MAP < 60mmHg (cerebral ischemia) AND SBP < 80%SBP_0 (i.e., SBP at baseline) o OR MAP < 60mmHg when there is no baseline SBP.

10 Pre-processing and Fitting Time-series using GPR

11 Raw session data Downsample GPR outlier removal GPR fitted time-series

12 Normalised LML Log SBP (mmhg) Raw session data Downsample GPR outlier removal GPR fitted time-series Time (min) Time (min) GPR Outlier Removal: - Estimate the normalised LMLs with respect to the userdefined window (such as ±5min window with 10min overlap); - Identify and remove outliers using a threshold; - Iteratively fitting GPR after removal of outliers; - Stop when over 5% data removed.

13 Raw session data Downsample GPR outlier removal GPR fitted time-series GPR Outlier Removal: - Estimate the normalised LMLs with respect to the userdefined window (such as ±5min window with 10min overlap); - Identify and remove outliers using a threshold; - Iteratively fitting GPR after removal of outliers; - Stop when over 5% data removed.

14 GPR fitting for an individual session: intervention SBP<80%SBP_baseline +MAP<60mmHg

15 Univariate GPR Forecasting - Prediction of Deterioration

16 Prediction of Deterioration using the Log Marginal Likelihood (LML) Adaptive Training and Forecasting: Training mins Training window Forecast window LML

17 Mean Predictive Log-Likelihood VS 160 Training Forecasting mins Original Signal IDH LML For each training set: - estimate the mean of LMLs in a 3-min forecasted window Time (mins) Abnormal blood pressure (MAP < 60mmHg) occurred at 684 mins; Nurse intervention occurred at 687 mins.

18 HGPR Forecasting for Multiple Time-series

19 LML GPR Forecasting for Multiple Vital Signs HR MAP SBP spo Time(mins) LML_HR LML_MAP LML_SBP Fused/Latent LML LML_SPO2

20 Data Fusion on Forecasted LMLs using BCLA-MAP Assumptions: the LML values are independent, and each vital sign LML is conditionally independent.

21 Data Fusion on Forecasted LMLs using HGPR Raw LML values HR MAP SBP SPO2 Normalised LML values (zero mean unit variance) HR MAP SBP SPO2

22 Data Fusion on GPR mean function of the Forecasted LMLs using HGPR HR MAP SBP SPO2 GPR mean function of the LML values LML_HR LML_MAP LML_SBP LML_SPO2 Mean function of LML_HR Mean function of LML_MAP Mean function of LML_SBP Mean function of LML_SPO2 Fused/Latent LML

23 Raw LML values HR MAP SBP SPO2 GPR mean function of the LML values HR MAP SBP SPO2

24 Clustering of Time-series Trajectories

25 Derivation of Latent Trajectories using HGPR (1) Derive latent GPR mean function from session-wise GPR mean functions Abnormal Sessions Normal Sessions

26 Hierarchical Clustering of Latent Trajectories (2) Clustering of latent mean functions using hierarchical clustering Abnormal Population (N=29) Normal Population (N=24) Abnormal Population + Normal Population (N=53)

27 Session 1 Subject ID=1 Deeper HGPR of Latent Trajectories Cluster 1 Session K Session 1 Subject ID=10 Session M

28 Future Works Normalise LML trajectory of each vital sign to better infer a latent LML trajectory for a session; Time-series modelling across sessions; Focus on windowed HGPR (2hrs) prior to an event; Deeper windowed HGPR; Non-parametric clustering: o using Mixture of hierarchical GPRs using Dirichlet distribution/process; Overlapping mixtures of GPRs. Cluster 1 Subject ID=1 Session 1 Session K Session 1 Subject ID=2 Session M

29 Thank You Acknowledgements: o o o o Kate Niehaus and Glen Colopy; Prof David Clifton and Prof Chris Pugh; The CHI lab; Funding bodies: NIHR and the EPSRC. References: o Ebden, M.: Gaussian processes: A quick introduction, arxiv: v2. o Rasmussen, C. E.: "Gaussian processes for machine learning." (2006). o MacEwen, C.R.: Can data fusion techniques predict adverse physiological events during haemodialysis?. PhD thesis o Colopy, G.W., Pimentel, M.A.F., Roberts, S.J., and Clifton, D.A.: Bayesian Gaussian Processes for Identifying the Deteriorating Patient. IEEE Engineering in Medicine & Biology Conference, Orlando, Florida, USA, 2016, pp o Zhu, T.T., Dunkley, N., Behar, J., Clifton, D.A., and Clifford, G.D.: Fusing Continuous-Valued Medical Labels Using a Bayesian Model. Annals of Biomedical Engineering 43(12), 2015, pp o Hensman J, Lawrence ND, Rattray M.: Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC bioinformatics Aug 20;14(1):252. o Hensman, J., Rattray, M. and Lawrence, N.D.: Fast nonparametric clustering of structured time-series. IEEE transactions on pattern analysis and machine intelligence, 37(2), 2015, pp o Lázaro-Gredilla, M., Van Vaerenbergh, S. and Lawrence, N.D.: Overlapping mixtures of Gaussian processes for the data association problem. Pattern Recognition, 45(4), 2012, pp

Joint Emotion Analysis via Multi-task Gaussian Processes

Joint Emotion Analysis via Multi-task Gaussian Processes Joint Emotion Analysis via Multi-task Gaussian Processes Daniel Beck, Trevor Cohn, Lucia Specia October 28, 2014 1 Introduction 2 Multi-task Gaussian Process Regression 3 Experiments and Discussion 4 Conclusions

More information

GAUSSIAN PROCESS CLUSTERING FOR THE FUNCTIONAL CHARACTERISATION OF VITAL-SIGN TRAJECTORIES. Marco A. F. Pimentel, David A. Clifton, Lionel Tarassenko

GAUSSIAN PROCESS CLUSTERING FOR THE FUNCTIONAL CHARACTERISATION OF VITAL-SIGN TRAJECTORIES. Marco A. F. Pimentel, David A. Clifton, Lionel Tarassenko 2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22 25, 2013, SOUTHAMPTON, UK GAUSSIAN PROCESS CLUSTERING FOR THE FUNCTIONAL CHARACTERISATION OF VITAL-SIGN TRAJECTORIES

More information

Modelling gene expression dynamics with Gaussian processes

Modelling gene expression dynamics with Gaussian processes Modelling gene expression dynamics with Gaussian processes Regulatory Genomics and Epigenomics March th 6 Magnus Rattray Faculty of Life Sciences University of Manchester Talk Outline Introduction to Gaussian

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

arxiv: v1 [cs.lg] 22 Jun 2009

arxiv: v1 [cs.lg] 22 Jun 2009 Bayesian two-sample tests arxiv:0906.4032v1 [cs.lg] 22 Jun 2009 Karsten M. Borgwardt 1 and Zoubin Ghahramani 2 1 Max-Planck-Institutes Tübingen, 2 University of Cambridge June 22, 2009 Abstract In this

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Gaussian Processes for Big Data. James Hensman

Gaussian Processes for Big Data. James Hensman Gaussian Processes for Big Data James Hensman Overview Motivation Sparse Gaussian Processes Stochastic Variational Inference Examples Overview Motivation Sparse Gaussian Processes Stochastic Variational

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

BAYESIAN CLASSIFICATION OF HIGH DIMENSIONAL DATA WITH GAUSSIAN PROCESS USING DIFFERENT KERNELS

BAYESIAN CLASSIFICATION OF HIGH DIMENSIONAL DATA WITH GAUSSIAN PROCESS USING DIFFERENT KERNELS BAYESIAN CLASSIFICATION OF HIGH DIMENSIONAL DATA WITH GAUSSIAN PROCESS USING DIFFERENT KERNELS Oloyede I. Department of Statistics, University of Ilorin, Ilorin, Nigeria Corresponding Author: Oloyede I.,

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Master s Thesis Presentation Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master s Thesis Presentation

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information

Virtual Sensors and Large-Scale Gaussian Processes

Virtual Sensors and Large-Scale Gaussian Processes Virtual Sensors and Large-Scale Gaussian Processes Ashok N. Srivastava, Ph.D. Principal Investigator, IVHM Project Group Lead, Intelligent Data Understanding ashok.n.srivastava@nasa.gov Coauthors: Kamalika

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Dimensional reduction of clustered data sets

Dimensional reduction of clustered data sets Dimensional reduction of clustered data sets Guido Sanguinetti 5th February 2007 Abstract We present a novel probabilistic latent variable model to perform linear dimensional reduction on data sets which

More information

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Multiple-step Time Series Forecasting with Sparse Gaussian Processes Multiple-step Time Series Forecasting with Sparse Gaussian Processes Perry Groot ab Peter Lucas a Paul van den Bosch b a Radboud University, Model-Based Systems Development, Heyendaalseweg 135, 6525 AJ

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Hierarchical Dirichlet Processes with Random Effects

Hierarchical Dirichlet Processes with Random Effects Hierarchical Dirichlet Processes with Random Effects Seyoung Kim Department of Computer Science University of California, Irvine Irvine, CA 92697-34 sykim@ics.uci.edu Padhraic Smyth Department of Computer

More information

Parameter Estimation. Industrial AI Lab.

Parameter Estimation. Industrial AI Lab. Parameter Estimation Industrial AI Lab. Generative Model X Y w y = ω T x + ε ε~n(0, σ 2 ) σ 2 2 Maximum Likelihood Estimation (MLE) Estimate parameters θ ω, σ 2 given a generative model Given observed

More information

Gaussian Process Functional Regression Model for Curve Prediction and Clustering

Gaussian Process Functional Regression Model for Curve Prediction and Clustering Gaussian Process Functional Regression Model for Curve Prediction and Clustering J.Q. SHI School of Mathematics and Statistics, University of Newcastle, UK j.q.shi@ncl.ac.uk http://www.staff.ncl.ac.uk/j.q.shi

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES

INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES SHILIANG SUN Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai 20024, China E-MAIL: slsun@cs.ecnu.edu.cn,

More information

Harmonic Regression in the Biological Setting. Michael Gaffney, Ph.D., Pfizer Inc

Harmonic Regression in the Biological Setting. Michael Gaffney, Ph.D., Pfizer Inc Harmonic Regression in the Biological Setting Michael Gaffney, Ph.D., Pfizer Inc Two primary aims of harmonic regression 1. To describe the timing (phase) or degree of the diurnal variation (amplitude)

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information

WITH THE rapid increase in volume of wearable devices

WITH THE rapid increase in volume of wearable devices IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 1, JANUARY 2019 47 Unsupervised Bayesian Inference to Fuse Biosignal Sensory Estimates for Personalizing Care Tingting Zhu, Marco A. F. Pimentel,

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Analytic Long-Term Forecasting with Periodic Gaussian Processes

Analytic Long-Term Forecasting with Periodic Gaussian Processes Nooshin Haji Ghassemi School of Computing Blekinge Institute of Technology Sweden Marc Peter Deisenroth Department of Computing Imperial College London United Kingdom Department of Computer Science TU

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Enhancing Fetal ECG Using Gaussian Process

Enhancing Fetal ECG Using Gaussian Process Enhancing Fetal ECG Using Gaussian Process Saman Noorzadeh, Bertrand Rivet, Pierre-Yves Guméry To cite this version: Saman Noorzadeh, Bertrand Rivet, Pierre-Yves Guméry. Enhancing Fetal ECG Using Gaussian

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

System identification and control with (deep) Gaussian processes. Andreas Damianou

System identification and control with (deep) Gaussian processes. Andreas Damianou System identification and control with (deep) Gaussian processes Andreas Damianou Department of Computer Science, University of Sheffield, UK MIT, 11 Feb. 2016 Outline Part 1: Introduction Part 2: Gaussian

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

Multicomponent DS Fusion Approach for Waveform EKG Detection

Multicomponent DS Fusion Approach for Waveform EKG Detection Multicomponent DS Fusion Approach for Waveform EKG Detection Nicholas Napoli University of Virginia njn5fg@virginia.edu August 10, 2013 Nicholas Napoli (UVa) Multicomponent EKG Fusion August 10, 2013 1

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Alkalosis or alkalemia arterial blood ph rises above Acidosis or acidemia arterial ph drops below 7.35 (physiological acidosis)

Alkalosis or alkalemia arterial blood ph rises above Acidosis or acidemia arterial ph drops below 7.35 (physiological acidosis) Acid-Base Balance Normal ph of body fluids Arterial blood is 7.4 Venous blood and interstitial fluid is 7.35 Intracellular fluid is 7.0 Alkalosis or alkalemia arterial blood ph rises above 7.45 Acidosis

More information

Learning latent structure in complex networks

Learning latent structure in complex networks Learning latent structure in complex networks Lars Kai Hansen www.imm.dtu.dk/~lkh Current network research issues: Social Media Neuroinformatics Machine learning Joint work with Morten Mørup, Sune Lehmann

More information

Gaussian Process Regression Forecasting of Computer Network Conditions

Gaussian Process Regression Forecasting of Computer Network Conditions Gaussian Process Regression Forecasting of Computer Network Conditions Christina Garman Bucknell University August 3, 2010 Christina Garman (Bucknell University) GPR Forecasting of NPCs August 3, 2010

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

Novelty Detection based on Extensions of GMMs for Industrial Gas Turbines

Novelty Detection based on Extensions of GMMs for Industrial Gas Turbines Novelty Detection based on Extensions of GMMs for Industrial Gas Turbines Yu Zhang, Chris Bingham, Michael Gallimore School of Engineering University of Lincoln Lincoln, U.. {yzhang; cbingham; mgallimore}@lincoln.ac.uk

More information

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London Doubly Stochastic Inference for Deep Gaussian Processes Hugh Salimbeni Department of Computing Imperial College London 29/5/2017 Motivation DGPs promise much, but are difficult to train Doubly Stochastic

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Optimization of Gaussian Process Hyperparameters using Rprop

Optimization of Gaussian Process Hyperparameters using Rprop Optimization of Gaussian Process Hyperparameters using Rprop Manuel Blum and Martin Riedmiller University of Freiburg - Department of Computer Science Freiburg, Germany Abstract. Gaussian processes are

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Learning Non-stationary System Dynamics Online using Gaussian Processes

Learning Non-stationary System Dynamics Online using Gaussian Processes Learning Non-stationary System Dynamics Online using Gaussian Processes Axel Rottmann and Wolfram Burgard Department of Computer Science, University of Freiburg, Germany Abstract. Gaussian processes are

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Bayesian time series classification

Bayesian time series classification Bayesian time series classification Peter Sykacek Department of Engineering Science University of Oxford Oxford, OX 3PJ, UK psyk@robots.ox.ac.uk Stephen Roberts Department of Engineering Science University

More information

Decision-making, inference, and learning theory. ECE 830 & CS 761, Spring 2016

Decision-making, inference, and learning theory. ECE 830 & CS 761, Spring 2016 Decision-making, inference, and learning theory ECE 830 & CS 761, Spring 2016 1 / 22 What do we have here? Given measurements or observations of some physical process, we ask the simple question what do

More information

Concentration-based Delta Check for Laboratory Error Detection

Concentration-based Delta Check for Laboratory Error Detection Northeastern University Department of Electrical and Computer Engineering Concentration-based Delta Check for Laboratory Error Detection Biomedical Signal Processing, Imaging, Reasoning, and Learning (BSPIRAL)

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Template-Based Representations. Sargur Srihari

Template-Based Representations. Sargur Srihari Template-Based Representations Sargur srihari@cedar.buffalo.edu 1 Topics Variable-based vs Template-based Temporal Models Basic Assumptions Dynamic Bayesian Networks Hidden Markov Models Linear Dynamical

More information

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components GT S3 : Sûreté, Surveillance, Supervision Meeting GdR Modélisation, Analyse et Conduite des Systèmes Dynamiques (MACS) January 28 th, 2014 A Data-driven Approach for Remaining Useful Life Prediction of

More information

Gaussian Process Vine Copulas for Multivariate Dependence

Gaussian Process Vine Copulas for Multivariate Dependence Gaussian Process Vine Copulas for Multivariate Dependence José Miguel Hernández-Lobato 1,2 joint work with David López-Paz 2,3 and Zoubin Ghahramani 1 1 Department of Engineering, Cambridge University,

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

Autoregressive Gaussian processes for structural damage detection

Autoregressive Gaussian processes for structural damage detection Autoregressive Gaussian processes for structural damage detection R. Fuentes 1,2, E. J. Cross 1, A. Halfpenny 2, R. J. Barthorpe 1, K. Worden 1 1 University of Sheffield, Dynamics Research Group, Department

More information

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Glenn Heller and Jing Qin Department of Epidemiology and Biostatistics Memorial

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Mike Tipping Gaussian prior Marginal prior: single α Independent α Cambridge, UK Lecture 3: Overview

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Model Based Clustering of Count Processes Data

Model Based Clustering of Count Processes Data Model Based Clustering of Count Processes Data Tin Lok James Ng, Brendan Murphy Insight Centre for Data Analytics School of Mathematics and Statistics May 15, 2017 Tin Lok James Ng, Brendan Murphy (Insight)

More information

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources th International Conference on Information Fusion Chicago, Illinois, USA, July -8, Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources Priyadip Ray Department of Electrical

More information

Using Tactile Feedback and Gaussian Process Regression in a Dynamic System to Learn New Motions

Using Tactile Feedback and Gaussian Process Regression in a Dynamic System to Learn New Motions Using Tactile Feedback and Gaussian Process Regression in a Dynamic System to Learn New Motions MCE 499H Honors Thesis Cleveland State University Washkewicz College of Engineering Department of Mechanical

More information

Maximum Likelihood Estimation. only training data is available to design a classifier

Maximum Likelihood Estimation. only training data is available to design a classifier Introduction to Pattern Recognition [ Part 5 ] Mahdi Vasighi Introduction Bayesian Decision Theory shows that we could design an optimal classifier if we knew: P( i ) : priors p(x i ) : class-conditional

More information

Tree-structured Gaussian Process Approximations

Tree-structured Gaussian Process Approximations Tree-structured Gaussian Process Approximations Thang Bui joint work with Richard Turner MLG, Cambridge July 1st, 2014 1 / 27 Outline 1 Introduction 2 Tree-structured GP approximation 3 Experiments 4 Summary

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Online Bayesian Transfer Learning for Sequential Data Modeling

Online Bayesian Transfer Learning for Sequential Data Modeling Online Bayesian Transfer Learning for Sequential Data Modeling....? Priyank Jaini Machine Learning, Algorithms and Theory Lab Network for Aging Research 2 3 Data of personal preferences (years) Data (non-existent)

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Gaussian Process Regression with K-means Clustering for Very Short-Term Load Forecasting of Individual Buildings at Stanford

Gaussian Process Regression with K-means Clustering for Very Short-Term Load Forecasting of Individual Buildings at Stanford Gaussian Process Regression with K-means Clustering for Very Short-Term Load Forecasting of Individual Buildings at Stanford Carol Hsin Abstract The objective of this project is to return expected electricity

More information