Modelling gene expression dynamics with Gaussian processes

Size: px
Start display at page:

Download "Modelling gene expression dynamics with Gaussian processes"

Transcription

1 Modelling gene expression dynamics with Gaussian processes Regulatory Genomics and Epigenomics March th 6 Magnus Rattray Faculty of Life Sciences University of Manchester

2 Talk Outline Introduction to Gaussian process regression Example. Hierarchical models: batches and clusters Example. Branching models: perturbations and bifurcations Example 3. Differential equations: Pol-II to mrna dynamics

3 Gaussian processes: flexible non-parametric models Probability distributions over functions f (t) GP ( mean(t), cov(t, t ) ) Covariance function k = cov(t, t ) defines typical properties, Static... Dynamic Smooth... Rough Stationary... non-stationary Periodic... Chaotic The covariance function has parameters tuning these properties Bayesian Machine Learning perspective: Rasmussen & Williams Gaussian Processes for Machine Learning (MIT Press, 6)

4 Gaussian processes Samples from a 5-dimensional multivariate Gaussian distribution: f n.5 m n n. [f, f,..., f 5 ] N (, C) Learning and Inference in Computational Systems Biology, MIT Press

5 Gaussian processes Take dimension f GP(, k) k ( t, t ) = exp 3 3 ( 3 (t t ) l ) Learning and Inference in Computational Systems Biology, MIT Press

6 Gaussian processes for inference: Bayesian Regression Figures from James Hensman

7 Regression example Figures from James Hensman

8 Regression example Figures from James Hensman

9 Regression example Figures from James Hensman

10 Ex. Hierarchical models: batches and clusters Data from Kalinka et al. Gene expression divergence recapitulates the developmental hourglass model Nature Joint work with James Hensman and Neil Lawrence

11 Usual processing options for time course batches Lumped Averaged

12 Hierarchical Gaussian process gene: g(t) GP (, k g (t, t ) ) replicate: f i (t) GP ( g(t), k f (t, t ) )

13 Hierarchical Gaussian process 3 J. Hensman, N.D. Lawrence, M.Rattray Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters BMC Bioinformatics 3

14 Hierarchical Gaussian process for clustering An extended hierarchy ( ) h(t) GP, k h (t, t ) cluster ( ) g i (t) GP h(t), k g (t, t ) gene ( ) f ir (t) GP g i (t), k f (t, t ) replicate

15 Hierarchical Gaussian process for clustering CG786 CG73 Normalised gene expression CG396 CG367 CG4386 Osi Time (hours)

16 Hierarchical Gaussian process for clustering Modifying an existing algorithm to include this model of replicate and cluster structure leads to more meaningful clustering MF BP CC L N. clust. agglomerative HGP agglomerative GP Mclust (concat.) Mclust (averaged) Variational Bayes algorithm is more efficient, allowing Bayesian clustering of >K profiles with a Dirichlet Process prior J. Hensman, M.Rattray, N.D. Lawrence Fast non-parametric clustering of time-series data IEEE TPAMI 5

17 Clustering with a periodic covariance

18 Ex. Branching models: perturbations and bifurcations 5 4 Simulated control data Simulated perturbed data Simulated gene expression Time (hrs) Joint work with Jing Yang, Chris Penfold and Murray Grant

19 Samples from a branching model Sample

20 Samples from a branching model Sample

21 Samples from a branching model Sample 3

22 Samples from a branching model Sample 4

23 Samples from a branching model Sample 5

24 Joint distribution to two functions crossing at t p f GP(, K), g GP(, K), g(t p ) = f (t p ) ( ) Kff K Σ = fg = K gf K gg ( K(T,t K(T, T) p)k(t p,t) ) k(t p,t p) K(T,t p)k(t p,t) k(t p,t p) K(T, T) ()

25 Joint distribution of two datasets diverging at t p y c (t n ) N (f (t n ), σ ) y p (t n ) N (f (t n ), σ ) for t n t p y p (t n ) N (g(t n ), σ ) for t n > t p

26 Posterior probability of the perturbation time t p p(t p y c (T), y p (T)) p(y c (T), y p (T) t p ) t=tmax t=t min p(y c (T), y p (T) t) 5 4 Simulated control data Simulated perturbed data Simulated gene expression Time (hrs)

27 Comparison to DE thresholding approach Alternative: use first point where some DE threshold is passed We tested several DE metrics in the nsgp package DEtime nsgp Mean EMLL.5 Estimated perturbation times 5 5 Median MAP EMLL Testing perturbation times

28 Investigating a plant s response to bacterial challenge Infection with virulent Pseudomonas syringage pv. tomato DC3 vs. disarmed strain DC3hrpA 3 CATMAc74 Condition Condition CATMAa9335 Condition Condition Gene expression Times (hrs) 7 Times (hrs) Yang et al. Inferring the perturbation time from biological time course data Bioinformatics (accepted) preprint: arxiv 6.743

29 Current work: modelling branching in single-cell data start with A. Boukouvalas, M. Zweissele, J. Hensman and N. Lawrence

30 Ex 3. Linking Pol-II activity to mrna profiles a b Pol II mrna Pol II ENSG63659 (TIPARP) c.6 d e f mrna (FPKM) Delay (min) Joint work with Antti Honkela, Jaakko Peltonen, Neil Lawrence

31 Linking Pol-II activity to mrna profiles dm(t) dt = βp(t ) αm(t) m(t) is mrna concentration (RNA-Seq data) p(t) is mrna production rate (3 pol-ii ChIP-Seq data) α is degradation rate (mrna half-life t / = /α) is processing delay

32 Linking Pol-II activity to mrna profiles dm(t) dt = βp(t ) αm(t) m(t) is mrna concentration (RNA-Seq data) p(t) is mrna production rate (3 pol-ii ChIP-Seq data) α is degradation rate (mrna half-life t / = /α) is processing delay We model p(t) GP(, k p ) as a Gaussian process (GP) Likelihood can be worked out exactly Bayesian MCMC used to estimate parameters α, β, and GP covariance () and noise variance () parameters

33 Example fits Pol II mrna a: Early pol-ii, no production delay a b ENSG66483 (WEE) 4 c d Pol II.8 e.6 f mrna (FPKM) Delay (min)

34 Example fits Pol II mrna b: Early pol-ii, delayed production a b ENSG9549 (SNAI) 3 c d Pol II.8 e.6 f mrna (FPKM) Delay (min)

35 Example fits Pol II mrna c: Later pol-ii, delayed production a b ENSG63659 (TIPARP) 6 c d Pol II 4.8 e.6 f mrna (FPKM) Delay (min)

36 Example fits Pol II mrna d: Late pol-ii, no delay a b ENSG6949 (CAPN3) c d e Pol II f mrna (FPKM) Delay (min)

37 Example fits Pol II mrna e: Late pol-ii, no delay a b ENSG798 (ECE) c d e Pol II f mrna (FPKM) Delay (min)

38 Example fits Pol II mrna f: Late pol-ii, delayed production a b ENSG86 (AEN) 3 c d Pol II.8 e.6 f mrna (FPKM) Delay (min)

39 Large processing delays observed in % of genes # of genes > Delay (min)

40 Delay linked with gene length and intron structure Fraction of genes with > t m< (N=8) m> (N=54) p value log (p value) Fraction of genes with > t f<. (N=443) f>. (N=343) p value : delay m: gene length f: final intron length / gene length log (p value)

41 Delayed genes show evidence of late-intron retention 3 min 6 min 8 min 4 min min min DLX Mean pre mrna end accumulation index > t < t p value log (p value) Left: density of RNA-Seq reads uniquely mapping to the introns in the DLX3 gene Right: Differences in the mean pre-mrna accumulation index in long delay genes (blue) and short delay genes (red)

42 Comparison of processing and transcription times Transcriptional delay (min) 3 3 Transcription time = length/velocity estimate from Danko Mol Cell 3 Transcription time > processing delay in 87% of genes 3 3 RNA processing delay (min) Honkela et al. Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays PNAS 5

43 Extension - inferring time-varying degradation rates dm(t) dt = βp(t) α(t)m(t).5. D 35 3 mrna measurements pre-mrna measurements 5.5 Degradation rate..5 Gene expression Times Times

44 Conclusion Gaussian process models provide a good mix of flexibility and tractability in temporal and spatial modelling: Hierarchical modelling, e.g. replicates, clusters, species Periodic models without strong sinuisoidal assumptions Tractable under branching and bifurcations Tractable under linear operations on functions Easy addition and multiplication of kernels Good approximate inference algorithms for non-gaussian data Codebase is growing making methods increasingly flexible and computationally efficient (e.g. GPy, GPflow and some R) Funding: BBSRC (EraSysBio+ SYNERGY), EU FP7 (RADIANT) Collaborators: Neil Lawrence, James Hensman, Antti Honkela, Jaakko Peltonen, Jing Yang, Alexis Boukouvalas, Max Zweissele

45 Our existential crisis

Genome-wide modelling of transcription kinetics reveals patterns of RNA production delays arxiv: v2 [q-bio.

Genome-wide modelling of transcription kinetics reveals patterns of RNA production delays arxiv: v2 [q-bio. Genome-wide modelling of transcription kinetics reveals patterns of RNA production delays arxiv:153.181v2 [q-bio.gn] 16 Jul 215 Antti Honkela 1, Jaakko Peltonen 2,3, Hande Topa 2, Iryna Charapitsa 4, Filomena

More information

Modelling Transcriptional Regulation with Gaussian Processes

Modelling Transcriptional Regulation with Gaussian Processes Modelling Transcriptional Regulation with Gaussian Processes Neil Lawrence School of Computer Science University of Manchester Joint work with Magnus Rattray and Guido Sanguinetti 8th March 7 Outline Application

More information

Inferring Latent Functions with Gaussian Processes in Differential Equations

Inferring Latent Functions with Gaussian Processes in Differential Equations Inferring Latent Functions with in Differential Equations Neil Lawrence School of Computer Science University of Manchester Joint work with Magnus Rattray and Guido Sanguinetti 9th December 26 Outline

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Joint Emotion Analysis via Multi-task Gaussian Processes

Joint Emotion Analysis via Multi-task Gaussian Processes Joint Emotion Analysis via Multi-task Gaussian Processes Daniel Beck, Trevor Cohn, Lucia Specia October 28, 2014 1 Introduction 2 Multi-task Gaussian Process Regression 3 Experiments and Discussion 4 Conclusions

More information

Markov Chain Monte Carlo Algorithms for Gaussian Processes

Markov Chain Monte Carlo Algorithms for Gaussian Processes Markov Chain Monte Carlo Algorithms for Gaussian Processes Michalis K. Titsias, Neil Lawrence and Magnus Rattray School of Computer Science University of Manchester June 8 Outline Gaussian Processes Sampling

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Bayesian learning of sparse factor loadings

Bayesian learning of sparse factor loadings Magnus Rattray School of Computer Science, University of Manchester Bayesian Research Kitchen, Ambleside, September 6th 2008 Talk Outline Brief overview of popular sparsity priors Example application:

More information

Gaussian Process Regression Forecasting of Computer Network Conditions

Gaussian Process Regression Forecasting of Computer Network Conditions Gaussian Process Regression Forecasting of Computer Network Conditions Christina Garman Bucknell University August 3, 2010 Christina Garman (Bucknell University) GPR Forecasting of NPCs August 3, 2010

More information

Hierarchical Time-series Modelling for Haemodialysis. Tingting Zhu 24 th October 2016

Hierarchical Time-series Modelling for Haemodialysis. Tingting Zhu 24 th October 2016 Hierarchical Time-series Modelling for Haemodialysis Tingting Zhu 24 th October 2016 Content Background on haemodialysis Methods o Gaussian Process Regression (GPR) o Hierarchical Gaussian Process Regression

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Mixture models for analysing transcriptome and ChIP-chip data

Mixture models for analysing transcriptome and ChIP-chip data Mixture models for analysing transcriptome and ChIP-chip data Marie-Laure Martin-Magniette French National Institute for agricultural research (INRA) Unit of Applied Mathematics and Informatics at AgroParisTech,

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Fast nonparametric clustering of structured time-series

Fast nonparametric clustering of structured time-series Fast nonparametric clustering of structured time-series James Hensman, Magnus Rattray and Neil D. Lawrence arxiv:4.65v [cs.lg] 4 Apr 4 Abstract In this publication, we combine two Bayesian nonparametric

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Latent Variable models for GWAs

Latent Variable models for GWAs Latent Variable models for GWAs Oliver Stegle Machine Learning and Computational Biology Research Group Max-Planck-Institutes Tübingen, Germany September 2011 O. Stegle Latent variable models for GWAs

More information

Latent Force Models. Neil D. Lawrence

Latent Force Models. Neil D. Lawrence Latent Force Models Neil D. Lawrence (work with Magnus Rattray, Mauricio Álvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias, Jennifer Withers) University of Sheffield University

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017

scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017 scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017 Olga (NBIS) scrna-seq de October 2017 1 / 34 Outline Introduction: what

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Bayesian Calibration of Simulators with Structured Discretization Uncertainty

Bayesian Calibration of Simulators with Structured Discretization Uncertainty Bayesian Calibration of Simulators with Structured Discretization Uncertainty Oksana A. Chkrebtii Department of Statistics, The Ohio State University Joint work with Matthew T. Pratola (Statistics, The

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Deep learning with differential Gaussian process flows

Deep learning with differential Gaussian process flows Deep learning with differential Gaussian process flows Pashupati Hegde Markus Heinonen Harri Lähdesmäki Samuel Kaski Helsinki Institute for Information Technology HIIT Department of Computer Science, Aalto

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources th International Conference on Information Fusion Chicago, Illinois, USA, July -8, Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources Priyadip Ray Department of Electrical

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF)

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF) Case Study 4: Collaborative Filtering Review: Probabilistic Matrix Factorization Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 2 th, 214 Emily Fox 214 1 Probabilistic

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Statistics for Differential Expression in Sequencing Studies. Naomi Altman

Statistics for Differential Expression in Sequencing Studies. Naomi Altman Statistics for Differential Expression in Sequencing Studies Naomi Altman naomi@stat.psu.edu Outline Preliminaries what you need to do before the DE analysis Stat Background what you need to know to understand

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

System identification and control with (deep) Gaussian processes. Andreas Damianou

System identification and control with (deep) Gaussian processes. Andreas Damianou System identification and control with (deep) Gaussian processes Andreas Damianou Department of Computer Science, University of Sheffield, UK MIT, 11 Feb. 2016 Outline Part 1: Introduction Part 2: Gaussian

More information

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes Roger Grosse Roger Grosse CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes 1 / 55 Adminis-Trivia Did everyone get my e-mail

More information

Large data sets and complex models: A view from Systems Biology

Large data sets and complex models: A view from Systems Biology Large data sets and comple models: A view from Systems Biology Bärbel Finenstädt, Department of Statistics, University of Warwic OWaSP worshop October 5 Joint wor with Mathematical and Statistical Modelling:

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Jing Dong jdong@gatech.edu 2017-06-20 License CC BY-NC-SA 3.0 Discrete time SLAM Downsides: Measurements

More information

Mixtures and Hidden Markov Models for analyzing genomic data

Mixtures and Hidden Markov Models for analyzing genomic data Mixtures and Hidden Markov Models for analyzing genomic data Marie-Laure Martin-Magniette UMR AgroParisTech/INRA Mathématique et Informatique Appliquées, Paris UMR INRA/UEVE ERL CNRS Unité de Recherche

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

The Variational Gaussian Approximation Revisited

The Variational Gaussian Approximation Revisited The Variational Gaussian Approximation Revisited Manfred Opper Cédric Archambeau March 16, 2009 Abstract The variational approximation of posterior distributions by multivariate Gaussians has been much

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

State Space Gaussian Processes with Non-Gaussian Likelihoods

State Space Gaussian Processes with Non-Gaussian Likelihoods State Space Gaussian Processes with Non-Gaussian Likelihoods Hannes Nickisch 1 Arno Solin 2 Alexander Grigorievskiy 2,3 1 Philips Research, 2 Aalto University, 3 Silo.AI ICML2018 July 13, 2018 Outline

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

The joint posterior distribution of the unknown parameters and hidden variables, given the

The joint posterior distribution of the unknown parameters and hidden variables, given the DERIVATIONS OF THE FULLY CONDITIONAL POSTERIOR DENSITIES The joint posterior distribution of the unknown parameters and hidden variables, given the data, is proportional to the product of the joint prior

More information

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen Kernel Methods Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Kernel Methods 1 / 37 Outline

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU Two-way analysis of high-dimensional collinear data 1 Tommi Suvitaival 1 Janne Nikkilä 1,2 Matej Orešič 3 Samuel Kaski 1 1 Department of Information and Computer Science, Helsinki University of Technology,

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Lecture: Mixture Models for Microbiome data

Lecture: Mixture Models for Microbiome data Lecture: Mixture Models for Microbiome data Lecture 3: Mixture Models for Microbiome data Outline: - - Sequencing thought experiment Mixture Models (tangent) - (esp. Negative Binomial) - Differential abundance

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Nonparametric Regression With Gaussian Processes

Nonparametric Regression With Gaussian Processes Nonparametric Regression With Gaussian Processes From Chap. 45, Information Theory, Inference and Learning Algorithms, D. J. C. McKay Presented by Micha Elsner Nonparametric Regression With Gaussian Processes

More information

Nonparametric Bayes tensor factorizations for big data

Nonparametric Bayes tensor factorizations for big data Nonparametric Bayes tensor factorizations for big data David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & DARPA N66001-09-C-2082 Motivation Conditional

More information

Relevance Vector Machines

Relevance Vector Machines LUT February 21, 2011 Support Vector Machines Model / Regression Marginal Likelihood Regression Relevance vector machines Exercise Support Vector Machines The relevance vector machine (RVM) is a bayesian

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Bayesian Hierarchical Classification. Seminar on Predicting Structured Data Jukka Kohonen

Bayesian Hierarchical Classification. Seminar on Predicting Structured Data Jukka Kohonen Bayesian Hierarchical Classification Seminar on Predicting Structured Data Jukka Kohonen 17.4.2008 Overview Intro: The task of hierarchical gene annotation Approach I: SVM/Bayes hybrid Barutcuoglu et al:

More information

Recent advances in statistical methods for DNA-based prediction of complex traits

Recent advances in statistical methods for DNA-based prediction of complex traits Recent advances in statistical methods for DNA-based prediction of complex traits Mintu Nath Biomathematics & Statistics Scotland, Edinburgh 1 Outline Background Population genetics Animal model Methodology

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition Mar Girolami 1 Department of Computing Science University of Glasgow girolami@dcs.gla.ac.u 1 Introduction

More information

Doubly Decomposing Nonparametric Tensor Regression (ICML 2016)

Doubly Decomposing Nonparametric Tensor Regression (ICML 2016) Doubly Decomposing Nonparametric Tensor Regression (ICML 2016) M.Imaizumi (Univ. of Tokyo / JSPS DC) K.Hayashi (AIST / JST ERATO) 2016/08/10 Outline Topic Nonparametric Regression with Tensor input Model

More information

Tutorial on Approximate Bayesian Computation

Tutorial on Approximate Bayesian Computation Tutorial on Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology 16 May 2016

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information