Condensation du chrome et collisions assistées par champs radio-fréquence

Size: px
Start display at page:

Download "Condensation du chrome et collisions assistées par champs radio-fréquence"

Transcription

1 Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Condensation du chrome et collisions assistées par champs radio-fréquence Q. Beaufils B. Laburthe B. Pasquiou Paolo Pedri E. Maréchal O. Gorceix G. Bismut L. Vernac Have left: J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton)

2 Chromium : S=3 Large sensitivity to (rf) magnetic fields g = = 3,..., 3 J m S Initial motivation for chromium: strong magnetic traps Doyle, Phys. Rev. A 57, R373 (998) No hyperfine structure Simplification (?) for MOT Purely linear Zeeman effect; simple description of rf-dressed states

3 Large magnetic dipole-dipole interactions ε dd BEC: Stuttgart 004 Villetaneuse 007 = V V dipolaire contact = 0.6 répulsive Stuttgart: modification of self-similar expansion attractive Pfau, PRL 95, (005) Tune contact interactions using Feshbach resonances: dipolar interaction larger than Van-der-Waals interaction Nature. 448, 67 (007) Stuttgart: d-wave collapse Pfau, PRL 0, (008) And collective excitations, Tc, solitons, vortices, Mott physics, D or D physics

4 Large inelastic losses Large dipole-dipole interactions + No hyperfine interactions = V dd μ = S 4π R 0 3cos ( θ ) ( g J μb ) 3 Anisotropic dipole-dipole interactions a nice system to study inelastic collisions Different partial waves are coupled Δl = Control of inelastic collisions (energy of output channel, geometry) - Feshbach resonances due to dipole-dipole interactions Pfau, Appl. Phys. B, 77, 765 (003) Pfau, Nature Physics, 765 (006)

5 Rich spinor physics An new phase diagram: Santos and Pfau PRL 96, (006) ΔE = ΔmSμBB Effect of dipole-dipole interactions: collisions with change of total magnetization (Einstein-de-Haas effect) Need of an extremely good control of B (or of the difference of energy between Zeeman substates) Ueda, PRL 96, (006)

6 I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

7 An atom: 5 Cr 7 P 4 An oven A Zeeman slower 7 P nm Oven at 550 C (Rb 50 C) A small MOT 45 nm (Rb=780 nm) 7 S 3 47 nm 5 S,D 600 () () 550 N = (Rb=0 9 or 0 ) Stuttgart roadmap: Load a magnetic trap And evaporate Z A dipole trap A BEC every 5 s All optical evaporation A crossed dipole trap

8 Cr Magneto-optical traps 5 Cr R. Chicireanu et al.phys. Rev. A 73, (006) 53 Cr N = bosons Loading rate = atoms/s N = fermions Loading rate = 0 7 atoms/s Very short loading times (0 à 00 ms) and small number of atoms : decay towards metastable states repumpers (laser diodes at 663 and 654 nm) Inelastic collisions (dominant process) λ β π v to 3 orders of magnitude than alkalis Comparable values for He*.

9 Our approach: cw accumulation of metastable atoms in an optical trap Metastable atoms shielded from light assisted collisions The optical trap: IPG fiberized laser 075 nm Horizontal beam - ~40 µm waist Depth : ~ 500μK (parametric excitations) R Chicireanu et al., Euro Phys J D 45, 89 (007)

10 Two improvements: (i) Cancel magnetic forces with an rf field What for : Load all magnetic sublevels, and limit inelastic collisions by reducing the peak atomic density!!! 50 Watts of rf!!! How : During loading of the OT, magnetic forces are averaged out by rapidly spin flipping the atoms RF Sweep m>0 m<0 (similarities Paul trap) 7 P 4 (ii) Depump towards metastable state : 5 S What we expect : A lower inelastic loss parameter? A larger loading rate? 7 P 3 45nm 633nm 663nm 47nm 5 S 7 S 3

11 Loading a dipole trap: Summary Load 5 D 4 et 5 D 3 :, million atoms (i) RF Sweeps : million atoms Loading rate : 0 7 s - Loading rate : 0 7 s - Q. Beaufils et al., Phys. Rev. A 77, (008) (i)*(ii) Load 5 D 4 et 5 S and rf sweeps 5 to 6 million atoms Loading rate :.50 8 s - Loading rate = ¼ MOT loading rate But phase-space density ~0-6

12 Repump in 7 S 3 and polarize in m=-3 (suppression of all two-body losses) MOT 500 mw Horizontal trap 35 W Vertical Trap ms 6 s Loading Evaporation Crossing both OT arms 6s Relative polarization of the laser beams matters! Phase Sapce Density Time (s) 8 0

13 Thomas Fermi Radii (µm) Tc=50 nk Pure BEC: to atoms Time (ms) Chemical potentential of about khz ö 4 khz (recompressed trap) In situ TF radii 4 and 5 microns Density : at/cm 3 ö.0 4 at/cm 3 Condensates lifetime: a few seconds. Q. Beaufils et al., Phys.Rev. A 77, 0660(R) (008)

14 I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

15 What is dipolar relaxation? ( ),3 3,,3 3 + ( ) 3 0 ). )(. 3(. 4 R u S u S S S g V R R B J dd r r = μ π μ - Only two channels for dipolar relaxation in m=3 (no relaxation in m=-3): ( ) i f i f B J dd k k k k h m g S V + = πh μ μ π,,3 3 ( ) i f i f B J dd k k k k h m g S V + = πh μ μ π B g E B J μ = Δ B g E B J μ = Δ = Δl In the Born approximation Pfau, Appl. Phys. B, 77, 765 (003) Rotate the BEC? (Einstein-de-Haas) ( ) ( ) ( ) S r S r zs S r S r zs S S S S S S z z z z rotation! Dipole-dipole interactions exchange Control of inelastic collisions (energy of final state, geometry) ( ) iy x r + = + = Δl

16 Experimental procedure; typical results BEC m=+3, vary time detect BEC m=-3 Lose BEC x0-3 Atom Number Width (u.a.) Decrease of TF radius (N goes down) 0 dn dt 0 = βn Time (ms) Γn 80 dn dt 00 = ΓN 0 0 /5 5 mω β 4π h a Temps (ms) 6/5 N 7 / Fit gives β

17 Comparison theory / experiment / β exp β Born It has been shown (Pfau, Appl. Phys. B, 77, 765 (003) that the Born approximation is ok for B<G and B> 0 G not in between! (see Shlyapnikov, PRA 53, 447 (996)) Champ magnétique (G)

18 Interpretation Gap ~ V dd a S E f in = = S = 6, m = 6, l = 0 g J μ B B out = S = 6, m = 5, l = R in V eff ( R) = l( l + ) h μr R in = a S Zero coupling Determination of scattering lengths S=6 and S=4 (in progress, Anne Crubellier) NB: two output channels (Δm=, Δm=), with two different output energies. Selective cancellation of a given channel for a given magnetic field!

19 Perspectives: dipolar relaxation in reduced dimension (D gaz) D Lattice (retro-reflected Verdi laser) Cr BEC diffracted by lattice BEC m=+3, vary time Δmg J μ B B < hω L st BZ detect BEC m=-3 Band mapping Dipolar relaxation in reduced dimension (D) Lose BEC (D thermal gas) Stay in first Brillouin zone, i.e., stay in lowest band : no vibrational excitation in lattice!

20 Conclusions: - Rates are well understood. - Typical output (Zeeman) energy much larger than chemical potential 3,3, l = 0 l = ( 3, +,3 ), ΔE = g J μb B 3,3, l = 0,, l = ΔE = g J μb B The spin magnetic moment is transferred into orbital interatomic moment. Can we measure this rotation? Ueda, PRL 96, (006) Can we «store» the produced energy? - Into a vibration excitation of the lattice: apparently not - Use rf-dressed states : dipolar relaxation between manyfolds

21 Collision properties of off-resonantly rf dressed states : Elastic s-wave collisions: Rf does not couple different molecular potentials -> s-wave elastic collisions should be unchanged. r B rf (t) μ r (t) r dμ r r = g Jμ B rf(t) dt r μ = cste Dipolar interactions: répulsive attractive No rf 3cos( θ) φ θ Rf perpendicular to static field : a new geometrical dependence! Ω Ω 3cos( θ) + J0 3cos( θ)sin( θ)cos( φ) J ω ω 0

22 Inelastic collision properties of off-resonantly rf dressed states : /e lifetime (ms) Beware of the lowest energy state argument!! N+ N ω N- W/w See also Verhaar, PRA, 53, 4343 (996)

23 Interpretation: an rf-assisted dipolar relaxation Gap ~ Ω J V dd ω in = S = 6, m = 6, l = 0, N Similar mechanism than dipolar relaxation in = S = 6, m = + 6, l = 0 E f = hω g rf J μ B B out = S = 6, m = 5, l =, N out = S = 6, m = + 5, l = σ Within first order Born approximation: rf N N ', m m' Ω dipolarrelaxation = J N N ' ( m m') σ m m' ω In collaboration with Anne Crubellier (LAC Ifraf) and Paolo Pedri (Ifraf postdoc in our group) ( E = ( m m') g μ B ( N N' ) hω ) f J B (B rf parallel to B) rf

24 σ rf N N ', m m'.0x0-8 Ω dipolarrelaxation = J N N ' ( m m') σ m m' ω ( E = ( m m') g μ B ( N N' ) hω ) f Analytic calculation by Paolo Pedri, no adjustable parameter J B rf Tw o body loss parameter (m^3/s) Dipolar relaxation between dressed states: Control: Coupling Output energy: E f J Ω ( ω N N ' m m' ) = ( m m') g μ B J B ( N N' ) hωrf 0 Ω/ω 3 4

25 Why Bessel functions? r B rf r // B 0 H = H Analytical expression for dressed state (from C. Cohen-Tannoudji) hω0s z + hωa a + λsz ( a a) mol + mλ + M, N = exp ( a a ) M, N hω First order perturbation theory: Another equivalent approach (Floquet analysis) K Ω, J ω ( ω Ω) = K ( ) 0 + H dd Modulate the eigenenergy of an eigenstate: ih dψ dt m = ( H + mδh cos( ω ) rf t Ψm e.g. different Zeeman states t i Ω Ω Ψ ω t ωrf t ( ) = Ψ exp = Ψ n sin( ) ω exp rf n ω 0 rf Resonant coupling between m= and m=0 with echange of N photons n () i J ( i( ( ω nω) t) ) J N Ω ωrf

26 Une proposition pour voir l effet Einstein de Haas: Mettre en rotation le condensat par relaxation dipolaire assistée par photons rf! On sait faire des condensats de chrome La relaxation dipolaire crée du moment orbital, mais aussi une énergie magnétique >> μ On sait contrôler la relaxation dipolaire par champs rf: -l amplitude de transition Ω J N N ' ( m m' ) ω -l énergie dans le canal de sortie! E f = ( m m') g μ B J B ( N N' ) hωrf On veut E f μ Contrôle de B au voisinage de 0 au khz près (difficile) Contrôle de B au voisinage de 00 khz au khz près (facile) + rf

27 I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

28 (digression) Un autre cas de collision inélastique en présence de champ rf: l association rf de molécules Un champ magnétique est modulé au voisinage d une résonance de Feshbach Production résonante de molécules froides quand hω rf = E b Énergie de liaison Mais la rf ne couple pas deux potentiels moléculaires différents! (règle de sélection) Ni deux états vibrationnels d un même potentiel (orthogonalité) C est l opérateur qui couple les spins (dipôle-dipôle, hyperfin) qui couple les états. La résonance est assurée par l émission ou l absorption d un photon rf. See also: S. T. Thomson et al., PRL (005), C. Ospelkaus et al., PRL 97, 040 (006), F. Lang et al., Nature Physics 4, 3 (008), T. M. Hanna et al., PRA, (007), C. Weber et al., PRA 78, 0660(R) (008), C. Klempt et al., PRA 78, 0660(R) (008) Notre contribution : une interprétation en terme d atomes habillés, et une formule universelle pour l association de molécules.

29 Feshbach resonances in chromium Pfau, J. Mod Opt. 54, 647 (007), Phys. Rev. Lett. 94, 830 (005) This talk

30 0.4 A Feshbach resonance in d-wave collisions Energy (arb.) S = 6; m = 5; l = 0 > S g μ B S = 6; m = 6; l = ; m =+ > S B l At ultra-low temperature scattering is inhibited in l>0, because atoms need to tunnel through a centrifugal barrier to collide: collisions are «s-wave». In a «d-wave» Feshbach resonance, tunneling is resonantly increased by the presence of a bound molecular state Internuclear distance (arb.) To probe a feshbach resonance: 3 body losses Tunneling to short internuclear distance is increased by a Feshbach resonance. A third atom triggers superelastic collisions, leading to three-body losses, as the kinetic gained greatly exceeds the trap depth Superelastic collision

31 Interpretation Γm ( ε ) = π Ψbound Vdd Ψ ε Thermal averaging, when Γ ) m ( ε 0 << Γ d << π Γm ( ε ) Γd σ ( k) = k ( ε ε ) + ( Γ ( ε ) + Γ ) Feshbach coupling ε k B T 0 (l+ ) / m d / 4 Γd = nγ d Superelastic rate F. H. Mies et al., PRA, 6, 07 (000) P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B. 6, 57 (989). π (l + ) ε 0 K T = Γ ( ) m( ε 0) exp hqt kbt Calculation with no adjustable parameter (adiabatic elimination of Γ d ) (Anne Crubellier LAC) Γ m (ε) n& = αγ ( 3 nλ ) n m db psd Losses = Rate of coupling to the molecular bound state = Rate of association through the barrier

32 00 40x0 80 x0 - Γ Γ m m Theory 5 ( ε ) = k B T = 8μK Experiment 5 ( 5.5 ± 3) 0 k B T = μk ( ε ) = K (m s ) Three-body losse parameter strongly depends on T Width of resonant losses strongly depends on T Magnetic field (MHz) Q. Beaufils et al., arxiv:08.48

33 Rf in the vicinity of the Feshbach resonance gμ B B Rf photon We modulate the magnetic field close to the Feshbach resonance. The colliding pair of atoms emits a photon while it is colliding, and the pair of atoms is transfered into a bound molecule Resonant losses when ω=e b -E i

34 Loss analysis in the dressed molecule approach: K Ω, J ω ( ω Ω) = K ( ) Analogy with dipolar collisions of Rydberg atoms in a micro-wave field Pillet Phys. Rev. A, 36, 3 (987) Gallagher Phys. Rev. A, 45, 358 (99) K /K (0) khz khz khz khz khz 400 khz khz Ω /ω 4 5 Q. Beaufils et al., arxiv: Association rf of molecules = a Feshbach resonance between dressed states

35 I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

36 Another use of rf for spinor physics: rf control of the Landé factor A spinor is a multicomponent BEC (with degenerate components): the magnetic fields needs to be small (interaction energy > Zeeman energy) < mg!!... Modify the Landé factor of the atoms g J with very strong off resonant rf fields. If the RF frequency ω is larger than the Larmor frequency ω 0, then: g J Ω ω (, Ω) = g J ω J 0 Serge Haroche thesis S.Haroche, et al., PRL 4 6 (970) True in D Generalization in 3D? Eigenenergies Rf power Can we use this degeneracy for spinor physics?

37 r B rf (t) φ(t) μ r (t) r dμ r r = gjμ B dt dφ dt Classical interpretation rf (t) = Ω rf cos( ω rf t) T dt cos( Φ( t)) = μx 0 T 0 J Ωrf ωrf Phase modulation -> Bessel functions e.g. side-bands in frequency modulation; tunneling in modulated lattice (Arimondo PRL (007)) light or matter diffraction

38 We apply blue detuned rf fields to a Cr BEC in a one beam optical trap, plus a magnetic field gradient. B = 0 at the center of the trap. The atoms, high field seekers, leave the center of the trap. RF modifies the effect of such a gradient: Control magnetism B (t) rf V(r) Δ = m S g J ( ω, Ω) μbb' m t Rf dressing is reversible (adiabatic) Q. Beaufils et al., Phys. Rev. A 78, (008)

39 Adiabaticity issues Adiabaticity depends on B par : dω <<ω dt par

40 A reversible dressing Probability to come back to m= Ω/ω=.8 Ω/ω=3.6 τ=500 μs τ=80 μs τ=50 μs τ=3 μs τ=5 μs τ=0 μs Sweep time ( μs) m= If rf is applied and removed sufficiently slowly, the atoms come back to the initial Zeeman substate state. Q. Beaufils et al., Phys. Rev. A 78, (008) NB see also Phys. Rev. Lett. 4, 974 (970) : Control Rb-Cs spin exchange Perspectives for spinor physics: Be B-independent 3D control inelastic collisions

41 Conclusion On sait produire des condensats de chrome On a analysé la relaxation dipolaire (contrôle par champ magnétique et par confinement) On sait contrôler par champs rf la relaxation dipolaire Les champs rf peuvent aussi modifier le facteur de Landé des atomes On a analysé l association rf de molécules Perspectives Vers l observation de l effet Einstein-de-Haas Expériences dans les réseaux optiques Produire des champs magnétiques élevés pour contrôler la longueur de diffusion Annulation du facteur de Landé à trois dimensions, et physique des spinors Fermions

42 Have left: T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton)

A Chromium BEC in strong RF fields

A Chromium BEC in strong RF fields Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France A Chromium BEC in strong RF fields Benjamin Pasquiou, Gabriel Bismut, Paolo Pedri, Bruno Laburthe- Tolra, Etienne Maréchal,

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Dipolar chromium BECs, and magnetism

Dipolar chromium BECs, and magnetism Dipolar chromium BECs, and magnetism A. de Paz (PhD), A. Chotia, A. Sharma, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) Have left: B. Pasquiou (PhD), G. Bismut

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Large Spin (quantum) Magnetism

Large Spin (quantum) Magnetism Large Spin (quantum) Magnetism B. Laburthe-Tolra Emphasis of this talk: - Introduction to the field and good proposals - Beyond mean-field effects Chromium dipolar gases - and Strontium project B. Naylor

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate Journal of Modern Optics Vol. 00, No. 00, DD Month 200x, 4 Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate Jürgen Stuhler, Axel Griesmaier, Jörg Werner, Tobias

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5 Lecture Trapping of neutral atoms Evaporative cooling Foot 9.6, 10.1-10.3, 10.5 34 Why atom traps? Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Laser Cooling of Thulium Atoms

Laser Cooling of Thulium Atoms Laser Cooling of Thulium Atoms N. Kolachevsky P.N. Lebedev Physical Institute Moscow Institute of Physics and Technology Russian Quantum Center D. Sukachev E. Kalganova G.Vishnyakova A. Sokolov A. Akimov

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline Dipolar Fermi gases Introduction, Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Outline Experiments with magnetic atoms and polar molecules Topologcal p x +ip y phase in 2D Bilayer systems

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Magnetic resonance in Dense Atomic Hydrogen Gas

Magnetic resonance in Dense Atomic Hydrogen Gas Magnetic resonance in Dense Atomic Hydrogen Gas S. Vasiliev University of Turku, Finland Turku Magnetic resonance in Dense Atomic Hydrogen Gas Sergey Vasiliev University of Turku H group at Turku: Janne

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

arxiv:quant-ph/ v2 5 Feb 2001

arxiv:quant-ph/ v2 5 Feb 2001 Understanding the production of dual BEC with sympathetic cooling G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer and A. Aspect Groupe d Optique Atomique Laboratoire Charles Fabry de l Institut

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Laser induced manipulation of atom pair interaction

Laser induced manipulation of atom pair interaction Laser induced manipulation of atom pair interaction St. Falke, Chr. Samuelis, H. Knöckel, and E. Tiemann Institute of Quantum Optics, European Research Training Network Cold Molecules SFB 407 Quantum limited

More information

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Multi-Body Interacting Bosons Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Outline Effective multi-body interactions Multi-body interacting systems. Why interesting? How

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University Atomic magnetometers: new twists to the old story Michael Romalis Princeton University Outline K magnetometer Elimination of spin-exchange relaxation Experimental setup Magnetometer performance Theoretical

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

POLAR MOLECULES NEAR QUANTUM DEGENERACY * POLAR MOLECULES NEAR QUANTUM DEGENERACY * JUN YE AND DEBORAH S. JIN JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, University of Colorado, Boulder,

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate 2030-25 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Bose gas in atom-chip experiment: from ideal gas to quasi-condensate BOUCHOULE Isabelle Chargee de Recherche au CNRS Laboratoire

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

A.4 - Elements of collision theory 181

A.4 - Elements of collision theory 181 A.4 - Elements of collision theory 181 A.4 Elements of collision theory The behavior of a many body system depends crucially on the interactions between particles, as epitomized by the BEC-BCS crossover.

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University Cold Molecules and Controlled Ultracold Chemistry Jeremy Hutson, Durham University QuAMP Swansea, 11 Sept 2013 Experimentally accessible temperatures What is already possible in ultracold chemistry? Take

More information

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 Tilman Esslinger, Department of Physics, ETH Zurich, Switzerland ABSTRACT The Fermi-Hubbard model is a key concept in condensed matter physics and

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Contents Ultracold Fermi Gases: Properties and Techniques Index

Contents Ultracold Fermi Gases: Properties and Techniques Index V Contents 1 Ultracold Fermi Gases: Properties and Techniques 1 Selim Jochim 1.1 Introduction 1 1.2 Ultracold Fermions in a Trap 2 1.2.1 Ideal Fermi Gas 3 1.3 Preparing an Ultracold Fermi Gas 6 1.4 Interactions

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

Many-Body Physics with Quantum Gases

Many-Body Physics with Quantum Gases Many-Body Physics with Quantum Gases Christophe Salomon Okinawa Summer school on quantum dynamics September 26-October 6, 2017 Ecole Normale Supérieure, Paris Summary of lectures Quantum simulation with

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998 Atom lasers MIT 1997 Yale 1998 NIST 1999 Munich 1999 FOMO summer school 2016 Florian Schreck, University of Amsterdam Overview What? Why? Pulsed atom lasers Experiments with atom lasers Continuous atom

More information

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases Okinawa School in Physics 2017 Coherent Quantum Dynamics Cold ydberg gases 1. Basics of ydberg atoms 2. ydberg atoms in external fields. ydberg-ydberg interaction Wenhui Li Centre for Quantum Technologies

More information

Modeling cold collisions Atoms Molecules

Modeling cold collisions Atoms Molecules Modeling cold collisions Atoms Molecules E. Tiemann, H. Knöckel, A. Pashov* Institute of Quantum Optics *University Sofia, Bulgaria collisional wave function for E 0 A R=0 hk r B adopted from J. Weiner

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions 2030-24 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Recent advances on ultracold fermions SALOMON Christophe Ecole Normale Superieure Laboratoire Kastler Brossel 24 Rue Lhomond F-75231

More information

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy Appl. Phys. B manuscript No. (will be inserted by the editor) All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy T. Gericke 1, P. Würtz 1, D. Reitz 1,

More information

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS 4th GDR - IQFA Paris 7 November 20, 2013 RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS Sylvain Ravets, Henning Labuhn, Daniel Barredo, Lucas Beguin, Aline Vernier, Florence Nogrette, Thierry Lahaye,

More information

Ultra-Cold Plasma: Ion Motion

Ultra-Cold Plasma: Ion Motion Ultra-Cold Plasma: Ion Motion F. Robicheaux Physics Department, Auburn University Collaborator: James D. Hanson This work supported by the DOE. Discussion w/ experimentalists: Rolston, Roberts, Killian,

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates 2023-24 Workshop on Topics in Quantum Turbulence 16-20 March 2009 Experiments on Bose Condensates K. Helmerson National Institute of Standards and Technology Gaithersburg U.S.A. Atomic gas Bose-Einstein

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

Excitation of high angular momentum Rydberg states

Excitation of high angular momentum Rydberg states J. Phys. B: At. Mol. Phys. 19 (1986) L461-L465. Printed in Great Britain LE ITER TO THE EDITOR Excitation of high angular momentum Rydberg states W A Molanderi, C R Stroud Jr and John A Yeazell The Institute

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Experiment: Joseph D. Whalen, F. Camargo, R. Ding, T. C. Killian, F. B. Dunning Theory: J. Pérez Ríos, S. Yoshida, J.

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information