Dipolar chromium BECs, and magnetism

Size: px
Start display at page:

Download "Dipolar chromium BECs, and magnetism"

Transcription

1 Dipolar chromium BECs, and magnetism A. de Paz (PhD), A. Chotia, A. Sharma, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne Crubellier (Laboratoire Aimé Cotton), J. Huckans, M. Gajda

2 Effect of interactions on condensates Attractive interactions Implosion of BEC for large atom number Repulsive interactions Stable condensate Phonon spectrum Rice Small solitons Superfluidity ENS, JILA Spin dependent interactions Berkeley Magnetism

3 Chromium (S=3): Van-der-Waals plus dipole-dipole interactions d 6 B Dipole-dipole interactions V S g 4 13cos ( ) 0 dd J B 1 R 3 Long range Anisotropic R Partially attractive, partially repulsive Interactions couple spin and orbital degrees of freedom

4 Different dipolar systems «Magnetic atom» d B Dipole-dipole interactions Molecule with (field induced-) electric dipole moment d ea 0 n Rydberg atoms d n ea 0

5 Relative strength of dipole-dipole and Van-der-Waals interactions 1 BEC collapses dd dd 0 mm V 1 a V dd VdW Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 67 (007)) R Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: d-wave collapse, PRL 101, (008) See also Er PRL, 108, (01) See also Dy, PRL, 107, (01) and Dy Fermi sea PRL, 108, (01) and heteronuclear molecules 1 BEC stable despite attractive part of dipole-dipole interactions dd Cr: dd 0.16

6 Polarized («scalar») BEC Hydrodynamics Collective excitations, sound, superfluidity Multicomponent («spinor») BEC Magnetism Phases, spin textures Chromium (S=3): involve dipole-dipole interactions V S g 4 13cos ( ) 0 dd J B 1 R 3 Long-ranged Anisotropic R Hydrodynamics: non-local mean-field Magnetism: Atoms are magnets

7 5 Cr BEC experiment Vacuum mbar Oven at 1500 C Zeeman slower MOT 100 µk 10 6 atoms Evaporative cooling 100 nk 10 4 atoms Oven at 1500 C Many lasers! Magnetic field control < 100 µg Small condensates (10 4 atoms)

8 1 Hydrodynamic properties of a weakly dipolar BEC - Collective excitations - Bragg spectroscopy Magnetic properties of a dipolar BEC - Spinor physics of a Bose gas with free magnetization - (Quantum) magnetism in opical lattices

9 Interaction-driven expansion of a BEC A lie: Imaging BEC after time-of-fligth is a measure of in-situ momentum distribution Self-similar, (interaction-driven) Castin-Dum expansion Phys. Rev. Lett. 77, 5315 (1996) Cs BEC with tunable interactions (from Innsbruck)) TF radii after expansion related to interactions

10 Modification of BEC expansion due to dipole-dipole interactions TF profile 3 dd ( r) Vdd ( r r ') n( r ') d r ' Striction of BEC (non local effect) Eberlein, PRL 9, (004) Pfau,PRL 95, (005) (similar results in our group)

11 Frequency of collective excitations (Castin-Dum) Consider small oscillations, then d dt H. with H In the Thomas-Fermi regime, collective excitations frequency independent of number of atoms and interaction strength: Pure geometrical factor (solely depends on trapping frequencies)

12 (Ox) Rayon Radius (Ox) (µm) Observation of one collective mode temps Time (ms) (Oy) Rayon Radius (Oy) (µm) (parametric excitation)

13 Aspect ratio Collective excitations of a dipolar BEC Due to the anisotropy of dipole-dipole interactions, the dipolar mean-field depends on the relative orientation of the magnetic field and the axis of the trap Parametric excitations Repeat the experiment for two directions of the magnetic field (differential measurement) PRL 105, (010) 5 t( ms) A small, but qualitative, difference (geometry is not all) dd 0 Note : dipolar shift very sensitive to trap geometry : a consequence of the anisotropy of dipolar interactions

14 Bragg spectroscopy Probe dispersion law Quasi-particles, phonons E( k) ck k 1 c is sound velocity c is also critical velocity Landau criterium for superfluidity Moving lattice on BEC d healing length Bogoliubov spectrum k k k 0 c Rev. Mod. Phys. 77, 187 (005) E ( E n g ) Lattice beams with an angle. Momentum exchange k kl sin( / )

15 Fraction of excited atoms Anisotropic speed of sound Frequency difference (Hz) 3000 Width of resonance curve: finite size effects (inhomogeneous broadening) Speed of sound depends on the relative angle between spins and excitation

16 Anisotropic speed of sound A 0% effect, much larger than the (~%) modification of the mean-field due to DDI An effect of the momentum-sensitivity of DDI 4 d 3 ( ) (3cos k 1) Vk k Ek ( Ek n0 ( gc gd (3cos k 1)) B k k c (mm/s) Theo Exp Parallel Good agreement between theory and experiment; Finite size effects at low q Perpendicular 3.8 (See also prediction of anisotropic superfluidity of D dipolar gases : Phys. Rev. Lett. 106, (011))

17 Fraction of excited atoms Aspect ratio Conclusions (1) Hydrodynamic properties with weak dipole-dipole interactions Striction Stuttgart, PRL 95, (005) Collective excitations Villetaneuse, PRL 105, (010) Anisotropic speed of sound Bragg spectroscopy Villetaneuse Accepted in PRL (01) Frequency difference (Hz) 3000 Interesting but weak effects in a scalar Cr BEC (far from Feshbach resonance)

18 Much more to come with Cr? Er? Dy? Molecules? Induced dipoles (Rydberg atoms)? Examples: - rotonic excitation spectrum, associated instabilities - solitons - New vortex lattice structures - New quantum phases in optical lattices (supersolidity, checkerboard) -

19 1 Hydrodynamic properties of a weakly dipolar BEC - Collective excitations - Bragg spectroscopy Magnetic properties of a dipolar BEC - Spinor physics of a Bose gas with free magnetization - (Quantum) magnetism in opical lattices

20 Introduction to spinor physics Exchange energy Coherent spin oscillation Chapman, Sengstock Quantum effects! 1 0, 0 1, 1 1,1 Klempt Stamper- Kurn Domains, spin textures, spin waves, topological states Stamper-Kurn, Chapman, Sengstock, Shin Quantum phase transitions Stamper-Kurn, Lett

21 Main ingredients for spinor physics Main new features with Cr 3 Spin-dependent contact interactions Spin exchange m S, m S=1,, S tot 0 4 (a a0 m 0, m S S 0, m tot 0 S=3 7 Zeeman states 4 scattering lengths New structures Strong spin-dependent contact interactions Purely linear Zeeman effect Engineer artificial quadratic effect using tensor light shift And Quadratic Zeeman effect Dipole-dipole interactions

22 Dipolar interactions introduce magnetization-changing collisions without Vdd V S g 4 Dipole-dipole interactions 13cos ( ) 0 dd J B 1 R R with Vdd

23 B=0: Rabi V dd In a finite magnetic field: Fermi golden rule (losses) V g B dd f B (x1000 compared to alkalis)

24 Dipolar relaxation and rotation 1 3,3 3, ,3 Ueda, PRL 96, (006) Santos PRL 96, (006) Gajda, PRL 99, (007) B. Sun and L. You, PRL 99, (007) Rotate the BEC? Spontaneous creation of vortices? Einstein-de-Haas effect Angular momentum conservation m S m E m S l 0 g B B Important to control magnetic field

25 Magnetic field B=1G Particle leaves the trap B=10 mg Energy gain matches band excitation in a lattice B=.1 mg Energy gain equals to chemical potential in BEC

26 g (r) Energy From the molecular physics point of view: a delocalized probe V eff R c ( R) l( l 1) R l l 0 1 3,3 g B f J B 3,,3 R C l( l 1) mg B in S B ( R ) c Interpartice distance PRA 81, (010) B = 3 G R c -body physics R vdw B =.3 mg Rc many-body physics 1/3 n Distance r (nm)

27 S=3 Spinor physics with free magnetization Alkalis : - S=1 and S= only - Constant magnetization (exchange interactions) Linear Zeeman effect irrelevant New features with Cr: - S=3 spinor (7 Zeeman states, four scattering lengths, a 6, a 4, a, a 0 ) - No hyperfine structure - Free magnetization Magnetic field matters! Technical challenges : Good control of magnetic field needed (down to 100 G) Active feedback with fluxgate sensors Low atom number atoms in 7 Zeeman states

28 S=3 Spinor physics with free magnetization Alkalis : - S=1 and S= only - Constant magnetization (exchange interactions) Linear Zeeman effect irrelevant New features with Cr: - S=3 spinor (7 Zeeman states, four scattering lengths, a 6, a 4, a, a 0 ) - No hyperfine structure - Free magnetization Magnetic field matters! 1 Spinor physics of a Bose gas with free magnetization (Quantum) magnetism in opical lattices

29 Spin Temperature ( K) Spin temperature equilibriates with mechanical degrees of freedom At low magnetic field: spin thermally activated g B k T B B We measure spin-temperature by fitting the m S population (separated by Stern-Gerlach technique) Related to Demagnetization Cooling expts, Pfau, Nature Physics, 765 (006) Time of flight Temperature ( K) 1.

30 T>Tc Thermal population in Zeeman excited states Spontaneous magnetization due to BEC BEC only in m S =-3 (lowest energy state) Cloud spontaneously polarizes! T<Tc a bi-modal spin distribution A non-interacting BEC is ferromagnetic New magnetism, differs from solid-state (singlet pairing) Magnetization Condensate fraction Temperature ( K) 0.8 Temperature ( K) B 900G PRL 108, (01)

31 Magnetization Condensate fraction Below a critical magnetic field: the BEC ceases to be ferromagnetic! B=100 µg B=900 µg Temperature ( K) -Magnetization remains small even when the condensate fraction approaches 1!! Observation of a depolarized condensate!! Temperature ( K) Necessarily an interaction effect PRL 108, (01)

32 Large magnetic field : ferromagnetic Cr spinor properties at low field Low magnetic field : polar/cyclic 3 g B J B c n a a m " 6 " -3 " 4 " - Santos PRL 96, (006) Ho PRL. 96, (006) PRL 106, (011)

33 Final m=-3 fraction Density dependent threshold g B J B c n a a m 0.6 BEC Lattice BEC BEC in lattice 3 4 Magnetic field (mg) 5 Critical field 0.6 mg 1.5 mg 1/e fitted 0.3 mg 1.45 mg On-going discussions with M. Brewczyk and M. Gajda Load into deep D optical lattices to boost density. Field for depolarization depends on density Note: Possible new physics in 1D: Polar phase is a singlet-paired phase Shlyapnikov-Tsvelik NJP, 13, (011)

34 Magnetization Dynamics analysis Rapidly lower magnetic field Bulk BEC In D lattice PRL 106, (011) Time (ms) Natural timescale for depolarization: Meanfield picture : Spin(or) precession 1/3 0 V ( ) dd r n S gj B n 4 Ueda, PRL 96, (006)

35 Magnetic field Open questions about equilibrium state Santos and Pfau PRL 96, (006) Diener and Ho PRL. 96, (006) Demler et al., PRL 97, (006) Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions Polar 1 1,0,0,0,0,0,1 - Operate near B=0. Investigate absolute many-body ground-state -We do not (cannot?) reach those new ground state phases -Quench should induce vortices -Role of thermal excitations? (a) (b) (c) (d) !! Depolarized BEC likely in metastable state!! Cyclic 1 1,0,0,0,0,1,0

36 Magnetization Conclusions () Spinor physics with free magnetization 0.0 Spontaneous Magnetization of the cloud at BEC New magnetism Temperature ( K) 1. (a) (b) (c) (d) New spinor phases at extremely low magnetic fields Interplay between magnetic field, contact interactions and dipolar interactions Magnetism!

37 T/Tc Phase diagram B B c B B c Quasi- Boltzmann distribution A B Bi-modal spin distribution 0. C Spinor condensate Magnetization Phase diagram adapted from J. Phys. Soc. Jpn, 69, 1, 3864 (000) See also PRA, 59, 158 (1999)

38 1 Spinor physics of a Bose gas with free magnetization - Thermodynamics: Spontaneous magnetization of the gas due to ferromagnetic nature of BEC - Spontaneous depolarization of the BEC due to spin-dependent interactions Magnetism in 3D optical lattices - Spin and magnetization dynamics - Depolarized ground state at low magnetic field

39 Study quantum magnetism with dipolar gases? Hubard model at half filling, Heisenberg model of magnetism (effective spin model) 1 nn i j H Jij ( Si. S j ) 4 z i j Dipole-dipole interactions between real spins 1 S1zS z 3 zs1z 4 zs r 1 r S S S S 1 r r S S 1 S S 1. V dd zz 1 z z H Jij ( Si. S j ) i j xy 1 H Jij ( Si. S j Si. S j ) i j 1 1 gj B 3 4 R 0 S. S 3( S. ur)( S. ur) Anisotropy Does not rely on Mott physics Magnetization changing collisions S S 1

40 m=3 fraction S S 1 Magnetization dynamics resonance for two atoms per site (~15 mg) Dipolar resonance when released energy matches band excitation Magnetic field (khz) Towards coherent excitation of pairs into higher lattice orbitals? (Rabi oscillations) Mott state locally coupled to excited band

41 S S 1 Strong anisotropy of dipolar resonances Atom number 14x Magnetic field (khz) Anisotropic lattice sites At resonance V r 3 ( x iy) Sd 5 r May produce vortices in each lattice site (Einstein-de-Haas effect) Coll. M. Gajda (problem of tunneling) See also PRL 106, (011)

42 Fraction in m=+3 S S 1 Note: Lineshape of dipolar resonances probes number of atoms per site atoms per site atoms per site and more atoms per sites loaded in lattice for faster loading Probe of atom squeezing in Mott state B(kHz) 4 Few-body physics! The 3-atom state which is reached has entangled spin and orbital degrees of freedom 44 3,3,3 0,0,0,3,3 spin orbit 0.0,0,0

43 Energy From now on : stay away from dipolar magnetization dynamics resonances, Spin dynamics at constant magnetization (<15mG) Control the initial state by a tensor light-shift Quadratic effect allows state preparation m S A s polarized laser Close to a JJ transition (100 mw 47.8 nm) -1 m S In practice, a component couples m S states Magnetic field (khz)

44 Adiabatic state preparation in 3D lattice t ( atomes / site) - -3 Initiate spin dynamics by removing quadratic effect m S, m 6 5 S 6, mtot 4 S 4, mtot S 1, 3, 1 1, 3 4 B B c na a m 6 4

45 Fraction dans m=- magnétization On-site spin oscillations (due to contact oscillations) vary time B B c na a m temps (ms) (perdiod 0 µs) ( 50 µs) Up to now unknown source of damping

46 populations Long time-scale spin dynamics in lattice 0.6 vary time m=-3 m=- Sign for intersite dipolar interaction? (two orders of magnitude slower than on-site dynamics) Time (ms) S S S S 1 1

47 Magnetization At extremely low magnetic field (<1.5 mg): Spontaneous demagnetization of atoms in a 3D lattice Critical field Threshold seen 3D lattice 4kHz 5kHz 4 g B J B c n a a m Magnetic field (khz) 15 " 6 " " 4 " S 6, m 6 S 4, m 4-3 -

48 Magnetization pop(m=-3)/pop(m=-) Conclusions (3) Magnetism in optical lattices Resonant magnetization dynamics Towards Einstein-de-Haas effect Anisotropy Few body vs many-body physics atoms per site atoms per site Away from resonances: spin oscillations at constant magnetization Spin-exchange Dipolar exchange time (ms) Spontaneous depolarization at low magnetic field Towards low-field phase diagram Magnetic field (khz) 15

49 Dipolar BECs: A non-standard superfluid Anisotropic properties Spinor Dipolar BECs: Study magnetism New spinor phases Spins in lattices Study quantum magnetism Spin dynamics

50 A. de Paz, A. Chotia, A. Sharma B. Pasquiou, G. Bismut, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

A Chromium BEC in strong RF fields

A Chromium BEC in strong RF fields Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France A Chromium BEC in strong RF fields Benjamin Pasquiou, Gabriel Bismut, Paolo Pedri, Bruno Laburthe- Tolra, Etienne Maréchal,

More information

Large Spin (quantum) Magnetism

Large Spin (quantum) Magnetism Large Spin (quantum) Magnetism B. Laburthe-Tolra Emphasis of this talk: - Introduction to the field and good proposals - Beyond mean-field effects Chromium dipolar gases - and Strontium project B. Naylor

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Non-equilibrium phenomena in spinor Bose gases. Dan Stamper-Kurn University of California, Berkeley

Non-equilibrium phenomena in spinor Bose gases. Dan Stamper-Kurn University of California, Berkeley Non-equilibrium phenomena in spinor Bose gases Dan Stamper-Kurn University of California, Berkeley outline Introductory material Interactions under rotational symmetry Energy scales Ground states Spin

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Magnetic phenomena in a spin-1 quantum gas. Dan Stamper-Kurn UC Berkeley, Physics Lawrence Berkeley National Laboratory, Materials Sciences

Magnetic phenomena in a spin-1 quantum gas. Dan Stamper-Kurn UC Berkeley, Physics Lawrence Berkeley National Laboratory, Materials Sciences Magnetic phenomena in a spin-1 quantum gas Dan Stamper-Kurn UC Berkeley, Physics Lawrence Berkeley National Laboratory, Materials Sciences Spinor gases 37 electrons J = 1/2 Energy F=2 Optically trapped

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates 2023-24 Workshop on Topics in Quantum Turbulence 16-20 March 2009 Experiments on Bose Condensates K. Helmerson National Institute of Standards and Technology Gaithersburg U.S.A. Atomic gas Bose-Einstein

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

arxiv: v1 [cond-mat.quant-gas] 29 May 2012

arxiv: v1 [cond-mat.quant-gas] 29 May 2012 Anisotropic excitation spectrum of a dipolar quantum Bose gas G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri, O. Gorceix and L. Vernac Laboratoire de Physique des Lasers, UMR 7538 CNRS, Université

More information

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Theoretische Physik III, Universität Stuttgart, Germany Outline Introduction to polar molecules - quantum melting transition

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Cold Quantum Gas Group Hamburg

Cold Quantum Gas Group Hamburg Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture BEC in Space Spinor-BEC Atom-Guiding in PBF Fermi Bose Mixture Project Quantum Degenerate Fermi-Bose Mixtures of 40K/87Rb at Hamburg: since 5/03 Special

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Spinor dynamics-driven formation of a dual-beam atom laser

Spinor dynamics-driven formation of a dual-beam atom laser Spinor dynamics-driven formation of a dual-beam atom laser N. Lundblad, R.J. Thompson, D.C. Aveline, and L. Maleki Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,

More information

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline Dipolar Fermi gases Introduction, Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Outline Experiments with magnetic atoms and polar molecules Topologcal p x +ip y phase in 2D Bilayer systems

More information

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea? Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Bose-Einstein condensates & tests of quantum mechanics

Bose-Einstein condensates & tests of quantum mechanics Bose-Einstein condensates & tests of quantum mechanics Poul Lindholm Pedersen Ultracold Quantum Gases Group PhD day, 31 10 12 Bose-Einstein condensation T high Classical particles T = 0 Pure condensate

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 29, 2018 2 Chapter 4 Spinor condensates 4.1 Two component mixtures

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate Journal of Modern Optics Vol. 00, No. 00, DD Month 200x, 4 Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate Jürgen Stuhler, Axel Griesmaier, Jörg Werner, Tobias

More information

Condensation du chrome et collisions assistées par champs radio-fréquence

Condensation du chrome et collisions assistées par champs radio-fréquence Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Condensation du chrome et collisions assistées par champs radio-fréquence Q. Beaufils B. Laburthe B. Pasquiou Paolo Pedri

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature12592 1 Thermal cloud data The reference measurements of the unperturbed Rydberg state in the thermal cloud were performed with a sample of 2 1 6 atoms at a temperature of 2.6 µk. The spectra

More information

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED Universal Aspects of Dipolar Scattering Christopher Ticknor May 15 at INT 1 Outline of Talk Universal Dipolar Scattering Theory of a long range scattering potential D Universal and tilted dipolar scattering

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Multi-Body Interacting Bosons Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Outline Effective multi-body interactions Multi-body interacting systems. Why interesting? How

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87 Non-Abelian Vortices and Their Non-equilibrium Michikazu Kobayashi a University of Tokyo November 18th, 2011 at Keio University 2 nd Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD,

More information

Magnetism of spinor BEC in an optical lattice

Magnetism of spinor BEC in an optical lattice Magnetism of spinor BEC in an optical lattice Eugene Demler Physics Department, Harvard University Collaborators: Ehud Altman, Ryan Barnett, Luming Duan, Walter Hofstetter, Adilet Imambekov, Mikhail Lukin,

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 Tilman Esslinger, Department of Physics, ETH Zurich, Switzerland ABSTRACT The Fermi-Hubbard model is a key concept in condensed matter physics and

More information

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas Second sound and the superfluid fraction in a resonantly interacting Fermi gas Meng Khoon Tey Tsinghua University China Workshop on Probing and Understanding Exotic Superconductors and Superfluids Trieste,

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Dipolar quantum gases Barcelona, May 2010

Dipolar quantum gases Barcelona, May 2010 Barcelona, May D DQG Quasi-D DQG Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria May, Outline D DQG Quasi-D DQG : D polarization polarization : Slabs : weakly/unpolarized dipoles

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University Molecular production at broad Feshbach resonance in cold Fermi-gas D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University College Station, Wednesday, Dec 5, 007 OUTLINE Alkali

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Kicking Bogoliubov quasiparticles FIG. 1. The Bragg and condensate clouds. (a) Average of two absorption images after 38 msec time of flight, following a resonant Bragg pulse with

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Fermi gases in an optical lattice. Michael Köhl

Fermi gases in an optical lattice. Michael Köhl Fermi gases in an optical lattice Michael Köhl BEC-BCS crossover What happens in reduced dimensions? Sa de Melo, Physics Today (2008) Two-dimensional Fermi gases Two-dimensional gases: the grand challenge

More information