Superfluidity in interacting Fermi gases

Size: px
Start display at page:

Download "Superfluidity in interacting Fermi gases"

Transcription

1 Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans, M. Teichmann, L. Tarruell, J. McKeever, F. Chevy, C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure Collège de France

2 Superfluidity in interacting Fermi gases Molecular condensate BEC Superfluid 4 He Fermions close to a Feshbach resonance HTc Supra. Std supra. Cooper pairs BCS Pair binding energy [E F ] Alkali atom condensates

3 Outlook Molecule Formation Interaction control: Feshbach resonance Reversible process Bose-Einstein Condensation of molecules Measurement of a mol-mol BEC-BCS Crossover Decription Expansion of the gas

4 E Feshbach resonance: 1/2,-1/2>+ 1/2,1/2> Open channel: triplet potential Closed channel: singlet potential Different magnetic moments Bound state: Eb=! ~a h2 ma 2 scattering length [nm] ares~1/(b-b0) 0,0 0,5 1,0 1,5 2,0 magnetic field [kg] No bound state

5 Experimental approch Glass cell 2 isotopes MOT Ioffe- Pritchard Magnetic trap Sympathetic cooling of 6 Li by evaporation of 7 Li T=1 mk T=10 µk Optical trap power: 3W waists ~25 µm RF tranfers: mixture at 1060 G: T < 1 µk T F = 5 µk T/T F < 0.2 N total =

6 Formation and detection of molecules E B 0 2 E B= ma 2 B

7 Formation and detection of molecules E E B= ma 2 2 B 0 Formation of molecules is energetically favorable 50 ms B

8 Formation and detection of molecules E 2 E B= ma 2 Molecular fraction at 700 G: E B ~10 µk B 0 T=4.7 µk TF=11 µk B -Conversion efficiency close to 100% (10%) -Lifetime: ~ 1 s (1ms) - slow sweep though resonance (fast) Reversing the ramp: back to initial conditions ~10 a>0-9 ev a<0 Process is reversible Quasi-static thermodynamic equilibrium between atoms and molecules during the ramp Magnetic field [kg]

9 A simple thermodynamic model No heat transfert, reversible Entropy conservation E b E E b B 0 T~0.4 TF B E b T<0.2 TF

10 Bose-Einstein condensate of 6 Li 2 molecules 6 Li mmanm+!= 7 Li 70.65(10)anm= B=770 G N= molecules B=610 G N= atoms From pure condensates: mmanm+!= Scattering length measurement at 770 G: In agreement with a mm =0.6 a (Petrov, Salomon, Shlyapnikov, PRL, 2004)

11 a BEC-BCS Crossover Molecular condensate Size a << n -1/3 n -1/3 : mean interparticule distance a>0 Close to resonance na 3 > 1 or k F a > 1 Paires are overlapping They are stabilized by the Fermi sea BCS Regime: k F a <<1 Cooper pairs: k, -k Large compared to interparticule distance a<0

12 BEC-BCS Crossover a BEC BCS E B = 2 ma 2 Tc!0. 22TF T C / T F ? & Tc) 0.3TF( exp $ ' * % 2kFa #! " /k F a 1

13 BEC-BCS Crossover: images after expansion mol., N 0 /N 60% Slow change of B: 1-2 G/ms Images after time of flight Aspect ratio: λ =0.3 a < 0 a < 0 a > 0 Optical density Feshbach resonance peak 834 G a > 0 Axial: X Radial:Y

14 BEC-BCS Crossover: images after expansion mol., N 0 /N 60% Slow change of B: 1-2 G/ms Images after time of flight Aspect ratio: λ =0.3 a < 0 a < 0 a > 0 Optical density Feshbach resonance peak 834 G a > 0 Axial: X Radial:Y

15 BEC-BCS Crossover: release energy From Gaussian fits: 222(2)/2RyxEm!!"=+ NIFG -1/k F a

16 BEC-BCS Crossover: release energy From Gaussian fits: 222(2)/2RyxEm!!"=+ NIFG -1/k F a at resonance: unitarity limit We find: µ = ( 1+!)EF 0.64(15)!=" In agreement with quantum Monte-Carlo calculations (Carlson 02, Giorgini 04): -0.56(1) and with R.Gimm s experiment in Innsbruck.

17 BEC-BCS Crossover: Anisotropy Superfluid or highly collisionnal hydrodynamic expansion η =1.7 At 730 G, on the BEC side, n m a m3 <<1 Measured anisotropy: η=σ Y / σ X =1.6 (1) NIFG Going toward a<0, the gas losses its hydrodynamic behavior Decrease of the superfluid fraction Another explaination: rapide loss of the superfluid character in the expansion

18 Perspectives: BEC-BCS Crossover Numerous experimental studies Expansion measurement (ENS) Collective modes (Duke, Innsbruck) Pair binding energy (Innsbruck, JILA) Condensation of fermionic pairs (JILA, MIT) Theory (Holland, Kokkelmans, Levin, Ohashi, Griffin, Strinati, Stoof, Bruun, Pethick, Combescot, Stringari, Shlyapnikov, Giorgini, ) Direct proof of superfluidity (vortex) Long range order, interference experiment

19 Perspectives p-wave pairing ( 3 He) Heteronuclear molecules Fermionic molecules Polar molecules (long range interaction) Simulation of hamiltonians from condensed matter (Fermions in an optical lattice)

20 Thanks Fred Merci Florian Julien Jing Christophe Josh Servaas Lev Leticia Martin Jason Christophe Fred à tous

21 Feshbach resonance Canal fermé Canal ouvert divergence de a

22 Feshbach resonance Canal ouvert Canal fermé a>0

23 Feshbach resonance Canal fermé Canal ouvert a<0 scattering length [nm] ,0 0,5 1,0 1,5 2,0 Magnetic field [kg]

24 Molecular states 543 Gauss FR Broad 830 Gauss FR used in resonance superfluidity

25 Dispositif expérimental Tube de pompage différentiel Faisceaux MOT Faisceau ralentisseur pompe pompe T=1 mk four à 800 K Ralentisseur Zeeman V cap = 1000 m/s Cellule en verre MOT T=1 mk

26 Transition BEC-BCS: Autres Résultats Condensation des paires de Fermions: (JILA, MIT) Mesure de l énergie des paires (Innsbruck, JILA) T / T F = Étude des modes d oscillation: (Duke, Innsbruck)

27 Quantum gases cooling d d 300 K 1000 m/s 1 µk 5 cm/s atom wave-function of size λ db = h/(2πmk B T) 1/2 Quantum regime in a dilute gas: n~10 13 cm -3 «Very clean» quantum many-body System Difference between bosons et fermions

28 Quantum statistics E Bose-Einstein Bose-Einstein Condensate T C = h! k B (0.83 N) 1/3 E Fermi-Dirac 7 Li E F =k B T F T << T = F h! k B (6N) 1/3 6 Li Fermi sea

29 Molecules velocity distribution Optical trap off: expansion of the molecular gas At the end of the time of flight: dissociation of pairs E E b B 0 B B Optical trap off 0.8 ms 0.2 ms 0.2 ms Detection

30 Pure Condensates: measurement of a mm By lowering the trap power, we optain a pure condensate Thomas-Fermi fit, no thermal cloud Hydrodynamic expansion Ellipticity: -mesured: 2.0 (1) -theory: 1.98 TOF=1.2 ms T<T C /3 λ=0.1 N=4x10 4 atoms Scattering length measurement mmanm+!= à 770 G: In agreement with a mm =0.6 a (Petrov, Salomon, Shlyapnikov, PRL, 2004)

31 Interaction control: Feshbach Resonance E Closed channel: singlet potential Open channel: triplet potential Different magnetic moments E Singlet bound state energy B 1 =550 G B 2 free atoms in states : 1/2,1/2>+ 1/2,-1/2>

32 Feshbach resonance E Closed channel: singlet potential Open channel: triplet potential Different magnetic moments B B0 Singlet bound state energy B 1 =550 G =834 G 2 free atoms in states : 1/2,1/2>+ 1/2,-1/2> E

33 2 body bound state B B0 Singlet bound state energy Purely singlet Size of the singlet potential : ~1.5 nm Progressive hybridation from the triplet continuum 2 free atoms in states : 1/2,1/2>+ 1/2,-1/2> E Allmost purely triplet The size of the bound states gets larger and larger

34 Fermonic Superfluid BCS HTc Super. superfluid 3 He Transition temperature [T F ] Superconductors Two types of superfluidity BEC Alkali atom condensates Superfluid 4 He Pair binding energy [k B T F ] Fermions au voisinage d une résonance de Feshbach

35 Formation and detection of molecules E 2 B 0 Formation of molecules is energetically favorable E B= ma 2 50 ms B E B 0 2 E B= ma 2 20 µs B Only free atoms are detected Presence of molecules is detected by a diminution of atomic signal

36 Formation and detection of molecules E B 0 E B= ma 2 50 ms 2 E 2 E B= ma 2 B 0 B B Only free atoms are detected Presence of molecules is detected by a diminution of atomic signal This is not due to losses

37 Molecular condensate lifetime Relaxation toward deeply bound states R e 2 identical fermions R e Fermions: β ~ a Experimentally β ~ a -1.9±0.8

38 Temperature of atom-molecule molecule mixture T at-mol Resonance Atoms Molecules : heating 3 body recombinaison: E B E C T aller-retour Molecular fraction Magnetic field [kg]

39 Temperature of atom-molecule molecule mixture T at-mol Resonance Atoms Molecules : heating 3 body recombinaison: E B E C T return Molecular fraction Molecules atoms : Cooling Process is reversible Entropie conservation Magnetic field [kg]

40 Temperature of atom-molecule molecule mixture T at-mol Atoms Molecules : heating 3 body recombinaison: E B E C T return Molecular fraction Magnetic field [kg] Molecules atoms : Cooling Process is reversible Entropy conservation Quasi-static thermodynamic equilibrium between atoms and molecules during the ramp

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions 2030-24 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Recent advances on ultracold fermions SALOMON Christophe Ecole Normale Superieure Laboratoire Kastler Brossel 24 Rue Lhomond F-75231

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

hal , version 1-9 Jan 2007

hal , version 1-9 Jan 2007 Expansion of a lithium gas in the BEC-BCS crossover L. Tarruell 1, M. Teichmann 1, J. McKeever 1, T. Bourdel 1, J. Cubizolles 1, L. Khaykovich 2, J. Zhang 3, N. Navon 1, F. Chevy 1, and C. Salomon 1 1

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Lecture 3 : ultracold Fermi Gases

Lecture 3 : ultracold Fermi Gases Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation Many-Body Physics with Cold Gases Diluteness:

More information

BEC and superfluidity in ultracold Fermi gases

BEC and superfluidity in ultracold Fermi gases Collège de France, 11 Apr 2005 BEC and superfluidity in ultracold Fermi gases Rudolf Grimm Center of Quantum Optics Innsbruck University Austrian Academy of Sciences two classes Bosons integer spin Fermions

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Degenerate atom-molecule mixture in a cold Fermi gas

Degenerate atom-molecule mixture in a cold Fermi gas Degenerate atom-molecule mixture in a cold Fermi gas Koelmans, S.J.J.M.F.; Shlyapniov, G.V.; Salomon, C. Published in: Physical Review A : Atomic, Molecular and Optical Physics DOI: 10.1103/PhysRevA.69.031602

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Fermi gases in an optical lattice. Michael Köhl

Fermi gases in an optical lattice. Michael Köhl Fermi gases in an optical lattice Michael Köhl BEC-BCS crossover What happens in reduced dimensions? Sa de Melo, Physics Today (2008) Two-dimensional Fermi gases Two-dimensional gases: the grand challenge

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Condensation of pairs of fermionic lithium atoms

Condensation of pairs of fermionic lithium atoms Condensation of pairs of fermionic lithium atoms Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 5/10/04 KITP workshop, Santa Barbara BEC I Ultracold fermions

More information

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM 1 of 10 11/12/2003 4:57 PM Welcome! John Edward Thomas Search Table of contents Past issues Links to advertisers Products advertised Place an ad Buyers' guide About us Contact us Submit press release American

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Contents Ultracold Fermi Gases: Properties and Techniques Index

Contents Ultracold Fermi Gases: Properties and Techniques Index V Contents 1 Ultracold Fermi Gases: Properties and Techniques 1 Selim Jochim 1.1 Introduction 1 1.2 Ultracold Fermions in a Trap 2 1.2.1 Ideal Fermi Gas 3 1.3 Preparing an Ultracold Fermi Gas 6 1.4 Interactions

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches

An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches Christian Trefzger Laboratoire Kastler Brossel ENS Paris Introduction: The system

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

arxiv:cond-mat/ v1 28 Jan 2003

arxiv:cond-mat/ v1 28 Jan 2003 Three-Fluid Description of the Sympathetic Cooling of a Boson-Fermion Mixture M. Wouters, J. Tempere, J. T. Devreese Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein, B260 arxiv:cond-mat/030544v

More information

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

Thermodynamic Measurements in a Strongly Interacting Fermi Gas J Low Temp Phys (2009) 154: 1 29 DOI 10.1007/s10909-008-9850-2 Thermodynamic Measurements in a Strongly Interacting Fermi Gas Le Luo J.E. Thomas Received: 25 July 2008 / Accepted: 12 October 2008 / Published

More information

Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates ULTRACOLD QUANTUM GASES Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

More information

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn Two-dimensional atomic Fermi gases Michael Köhl Universität Bonn Ultracold Fermi gases as model systems BEC/BCS crossover Search for the perfect fluid: Cold fermions vs. Quark-gluon plasma Cao et al.,

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University Molecular production at broad Feshbach resonance in cold Fermi-gas D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University College Station, Wednesday, Dec 5, 007 OUTLINE Alkali

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea? Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

A Chromium BEC in strong RF fields

A Chromium BEC in strong RF fields Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France A Chromium BEC in strong RF fields Benjamin Pasquiou, Gabriel Bismut, Paolo Pedri, Bruno Laburthe- Tolra, Etienne Maréchal,

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

A rigorous solution to unitary Bose Gases

A rigorous solution to unitary Bose Gases A rigorous solution to unitary Bose Gases Fei Zhou University of British Columbia, Vancouver and Canadian Institute for Advanced Research At INT cold gas workshop, University of Washington, April 16, 2015

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Many-Body Physics with Quantum Gases

Many-Body Physics with Quantum Gases Many-Body Physics with Quantum Gases Christophe Salomon Okinawa Summer school on quantum dynamics September 26-October 6, 2017 Ecole Normale Supérieure, Paris Summary of lectures Quantum simulation with

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Publications. Articles:

Publications. Articles: Publications Articles: 1. R. Combescot Coupling between Planes and Chains in Y Ba 2 Cu 3 O 7 : A Possible Solution for the Order Parameter Controversy, Phys. Rev. Lett. 75 (1995) 3732-3735 2. X. Leyronas

More information

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Superfluidity and Superconductivity Macroscopic Quantum Phenomena Superfluid Bose and Fermi gases Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/11/2013 Universal Themes of Bose-Einstein Condensation Leiden Superfluidity

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Exact relations for two-component Fermi gases with contact interactions

Exact relations for two-component Fermi gases with contact interactions QMATH13, Oct. 8-11, 2016 Exact relations for two-component Fermi gases with contact interactions Shina Tan, Georgia Institute of Technology 1 Outline The system Hamiltonian Energy functional The contact

More information

From Optical Pumping to Quantum Gases

From Optical Pumping to Quantum Gases From Optical Pumping to Quantum Gases Claude Cohen-Tannoudji 22 nd International Conference on Atomic Physics Cairns, Australia, 26 July 2010 Collège de France 1 2010 : three anniversaries 60 th anniversary

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover NewSpin, College Station, 1/16/011 Strongly Interacting ermi Gases: Universal hermodynamics, Spin ransport, and Dimensional Crossover Martin Zwierlein Massachusetts Institute of echnology Center for Ultracold

More information

Optical Trapping and Fundamental Studies of Atomic Fermi Gases

Optical Trapping and Fundamental Studies of Atomic Fermi Gases Invited Paper Optical Trapping and Fundamental Studies of Atomic Fermi Gases J. E. Thomas, J. Joseph, B. Clancy, L. Luo, J. Kinast and A. Turlapov Department of Physics, Duke University, Durham, N.C. 2778-35,

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes Florian Schreck To cite this version: Florian Schreck. Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation Alan Aversa December 29, 2011 Abstract Summary: The Gross-Pitaevskii equation, also called the non-linear Schrödinger equation, describes

More information

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate Journal of Modern Optics Vol. 00, No. 00, DD Month 200x, 4 Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate Jürgen Stuhler, Axel Griesmaier, Jörg Werner, Tobias

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

What do we know about the state of cold fermions in the unitary regime?

What do we know about the state of cold fermions in the unitary regime? What do we know about the state of cold fermions in the unitary regime? Aurel Bulgac,, George F. Bertsch,, Joaquin E. Drut, Piotr Magierski, Yongle Yu University of Washington, Seattle, WA Also in Warsaw

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 9 Aug 2005

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 9 Aug 2005 Single-particle excitations in the BCS-BEC crossover region II: Broad Feshbach resonance arxiv:cond-mat/58213v1 [cond-mat.mtrl-sci] 9 Aug 25 Y. Ohashi 1 and A. Griffin 2 1 Institute of Physics, University

More information

Quantum dynamics in ultracold atoms

Quantum dynamics in ultracold atoms Rather don t use Power-Points title Page Use my ypage one instead Quantum dynamics in ultracold atoms Corinna Kollath (Ecole Polytechnique Paris, France) T. Giamarchi (University of Geneva) A. Läuchli

More information

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 L.P. Pitaevskii Dipartimento di Fisica, Universita di Trento, INFM BEC CNR,Trento, Italy; Kapitza Institute for Physical Problems, ul.

More information

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics 836 The BCS-BEC Crossover and the Unitary Fermi Gas Bearbeitet von Wilhelm Zwerger 1. Auflage 2011. Taschenbuch. xvi, 532 S. Paperback ISBN 978 3 642 21977 1 Format (B x L): 15,5

More information

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5 Lecture Trapping of neutral atoms Evaporative cooling Foot 9.6, 10.1-10.3, 10.5 34 Why atom traps? Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption

More information

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid?

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid? Nuclear Physics A 830 (2009) 665c 672c www.elsevier.com/locate/nuclphysa Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid? J. E. Thomas Physics Department, Duke University, Durham, NC 27708-0305,

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

PHYSICS DEPARTMENT OF THE ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL

PHYSICS DEPARTMENT OF THE ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL PHYSICS DEPARTMENT OF THE ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL DOCTORAL THESIS OF THE UNIVERSITÉ PARIS VI speciality : quantum physics presented by Florian SCHRECK to obtain the title Docteur

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron 1 Dual species quantum gases with tunable interactions mixing vs. phase separation Polarons beyond mean field LHY droplets

More information

Effective Field Theory and Ultracold Atoms

Effective Field Theory and Ultracold Atoms Effective Field Theory and Ultracold Atoms Eric Braaten Ohio State University support Department of Energy Air Force Office of Scientific Research Army Research Office 1 Effective Field Theory and Ultracold

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information