SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING

Size: px
Start display at page:

Download "SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING"

Transcription

1 SfP PROJECT 9773: SEISMIC ASSESSMENT AND REHABILITATION OF EXISTING BUILDINGS INTERNATIONAL CLOSING WORKSHOP ISTANBUL, 3 MAY-JUNE, 5 SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING S.N. BOUSIAS, M.N. FARDIS, A.-L. SPATHIS, D. BISKINIS Structures Laboratory, Department of Civil Engineering, University of Patras, Greece

2 RC Jacketing is widely used & cost-effective for RC buildings: familiar to engineers & construction industry; suitable for repair of damage; jacket can encapsulate members & joints providing structural continuity; multiple effects on stiffness, flexural/shear resistance, deformation capacity, anchorage & continuity of reinforcement. FRP wrapping of member ends is becoming the method of choice: very effective for confinement & shear strengthening; less disruption of building use by retrofitting.

3 Part I: Tests on individual columns w/ or w/o shotcrete or FRP jackets; Design expression or rules for: strength, stiffness & deformation capacity of columns w/ shotcrete or FRP jacket, including effect ect of lap splicing in original column.

4 EXPERIMENTAL CAMPAIGN ON RETROFITTING OF RC COLUMNS Total of 39 tests on RC columns, w/ ribbed (deformed) or smooth/hooked bars, w/ or w/o bar lap-splicing in the plastic hinge, cyclically tested to ultimate deformation under const. axial load: 9 unretrofitted controls; 5 columns retrofitted w/ or 4 layers of CFRP at different heights from base; 5 columns retrofitted w/ full-height concrete jacket,, including investigation of different connection at the interface of jacket & old column. Results supplemented w/ data from the literature (mainly on retrofitted columns w/o bar lap-splicing) to derive/calibrate expressions for: The flexural & shear force resistance of retrofitted columns, M y, V R ; The effective stiffness of retrofitted columns at incipient yielding, EI eff =M y L s /3 as determined from the yield moment M y and the chord rotation at yielding, The ultimate chord rotation of flexure-controlled retrofitted columns, as affected by any lap-splices of bars in original column. u y, y ;

5 Φ Φ Φ Φ Φ Φ 5 ~85 8/ ~ ~ / 8 CFRP Retrofitting 75 mm Shotcrete Retrofitting

6 E u,mσ E.75 u,m- E y E.75 um Check only if Near Collapse (NC) Limit State not checked, using NC criteria with V E from analysis σ u,mσ Example of possible use of results: RC member verifications in terms of chord rotation at yielding or ultimate EN Annex Limit State:Damage Limitation Significant Damage Member: ductile secondary brittle secondary E, V E y um : ductile primary brittle primary Near Collapse E um V E V Rd,EC, V E V Rd,EC8 /.5 V E V Rm,EC, V E V Rm,EC8 chord rotation & shear force demand from analysis (if linear, V E from capacity design); chord rotation at yielding; expected value of ultimate chord rotation; mean-minus-sigma ultimate chord rotation; V Rd, V Rm shear resistance, w/ or w/o material safety factors, respectively; V R,EC V R,EC8 shear resistance in monotonic loading; shear resistance in cyclic loading after flexural yielding.

7 EN998-3 Annex A: Chord-rotation at member yielding Ls + z h db f y Beams, rect. columns: y = φy φ y 3 + L + s fc L d s + z Ls b f y Walls: y = φy +. max[, ] +. 3φ y 3 8h fc φ y : yield curvature (via st principles, adapted to median M y ); L s = M/V: shear span at member end (~L/); z~.9d: tension shift (= if member not diagonally cracked by shear at flexural yielding: M y /L s ); h : section depth; f y, f c : MPa; d b : bar diameter; Last term: Due to bar slip from anchorage zone beyond member end (omitted if such slippage not possible)

8 α EN998-3 Annex A: Seismically-detailed members w/ rect. web Expected value of ultimate chord rotation (% drop in resistance) α st,pl :.45 for hot-rolled ductile steel or heat-treated (tempcore);.75 for brittle cold-worked steel; α wall : for shear walls; ω, ω': mechanical ratio of tension (including web) & compression steel; ν: N/bhf c (b: width of compression zone; N> for compression); L s /h : M/Vh: shear span ratio; s : confinement effectiveness factor : α = h s h ρ sx : A sh /b w s h : transverse steel ratio // direction (x) of loading; bc h ρ d : ratio of diagonal reinforcement. Non-seismically detailed members w/o lap splices - cyclic loading Plastic part, pl um = ( )( ν.4a. ) = + α 5 um y st, pl wall um - y max max (., ') (., ω ).3 f.35 yw αρ ω L sx. s f c f c 5, of ultimate chord rotation is multiplied by.85. h c ( ρ ).75 d b i 6bch c

9 ω α ρ ω α Test- um model comparison (# 4, median=., C.o.V=3.3%) Members w/ or w/o seismic detailing, w/ ribbed bars lap-spliced over l o in plastic hinge region Compression reinforcement counts as double. For yield properties M y, φ y, y : f y of tension steel multiplied x l o /l oy,min if l o <l oy,min =(.3f y / For ultimate chord rotation um = y +pl um : pl um x l o /l ou,min if l o <l ou,min =d b f y /[( rs f y, f c in MPa, sx = sx f yw /f c : mech. transverse steel ratio // loading, rs =(-s h /b o )(-s h /b o )n restr /n tot (n restr /n tot restrained-to-total lap-spliced bars). f c )d b sx ) f c ], Test-M y model comparison (# 8, median=.5, C.o.V=.9%) 4 Test- y model comparison (# 6, median=.5, C.o.V=8.9%) M y 9 8 y 9 8 u 7 7 M y,exp (knm) 8 6 u,exp(%) u,exp(%) UoP test b&c other sources walls M y,pred (knm) UoP test b&c other sources walls u,pred (%) Test-EI eff model comparison (# 6, median=.975, C.o.V=3.3%) UoP test b&c other sources walls u,pred (%)

10 Concrete Jackets

11 Concrete Jackets (continued/anchored in joint; w/ or w/o lap splices in old member) Calculation assumptions: Full composite action of jacket & old concrete assumed (jacketed member: monolithic ), even for minimal shear connection at interface (roughened interface, steel dowels epoxied into old concrete: useful but not essential); f c of monolithic member = that of the jacket (avoid large differences in old & new f c ) Axial load considered to act on full, composite section; Longitudinal reinforcement of jacketed column: mainly that of the jacket. Vertical bars of old column considered at actual location between tension & compression bars of composite member (~ web longitudinal reinforcement), with its own f y ; Only the transverse reinforcement of the jacket considered for confinement; For shear resistance, the old transverse reinforcement taken into account only in walls, if anchored in the (new) boundary elements. Then: M R & M y of jacketed member: ~% of y of jacketed member for pre-yield (elastic) stiffness: if roughening of interface ~5%, if no roughening ~% of Shear resistance of jacketed member: Flexure-controlled ultimate deformation u : ~9% of ~% of those of monolithic member calculated w/ assumptions above. Concrete Jackets w/ bars not continued/anchored in joint: Jacket considered only to confine the full old section.

12 # 54 members w/ or w/o lap splices: test-to-calculation after RC-jacketing M y,exp/ M y,th M. y. a Present tests: Other tests: ± stand. deviation bounds, pure scatter ± stand. deviation bounds, monolithic members no laps 5db plain 3db plain continuous jacket bars group average 5db deformed 5db plain 45db deformed discontinuous jacket bars standard deviation of group mean y,th y,exp/ y EI exp / EI th *y) u pl + u,exp / ( EI eff. a b c d e f g h i j k a b c d e f g h i j k a: no treatment, b: no treatment, predamaged, c: welded U-bars, d: dowels, e: roughened, f: roughened, predamaged, g: U-bars & roughened, h: U-bars & roughened, predamaged, i: roughened & dowels, j: roughened & dowels, predamaged, k: monolithic.4. u

13 FRP Jackets

14 ρ ε ε ε ε FRP Jackets (not continued/anchored in joint; w/o lap splices in old member Rectangular X-section w/ continuous longitudinal bars (no lap splices): M R & M y, pre-yield (elastic) stiffness EI eff of RC member: not significantly enhanced by FRP jacket (increase neglected); Flexure-controlled ultimate deformation, u : confinement factor due to stirrups enhanced due to FRP confinement by f f f,e/f c f =t f /b w : FRP ratio; f f,e : FRP effective strength: f f,e min fu,f, ε u,f E f.7 min fu,f, εu,f E where: f u,f, E f : FRP tensile strength & Modulus; u,f: FRP limit strain; CFRP, AFRP: u,f=.5; GFRP: u,f=.; polyacetal FRP: ( h R) + ( b R) α = 3bh ρ α ρ f ( ) ( ) f f = c u,f=.3; confinement effectiveness: b, h: sides of X-section; R: radius at corner

15 u,exp(%) _ # FRP-wrapped members w/o lap splices: test-to-calculated ratio 5 3 M y.5 y # median=.4 C.o.V=8.8% M y,exp (knm) 5 # 5 median=. C.o.V=35.8% y,exp(%) _ M y,pred (knm) y,pred (%) 3 EI eff u # 5 median=. C.o.V=9% EI exp 5 5 # 9 median=. C.o.V=3.% EI pred upl + y (%)

16 ρ α ρ α f c in MPa, f=t f /b w : FRP ratio, f f,e : effective FRP strength in MPa, rs=4/n tot (n tot : total lap-spliced bars, only the 4 corner ones restrained). Test-M y model comparison Test- y model comparison Test- um model comparison (#, median=.65, C.o.V=9.%) (#, median=.85, C.o.V=8.9%) (# 6, median=., C.o.V=.7%) FRP Jackets (not continued/anchored in joint; w/ lap splices in old member) Rectangular X-section w/ longit. bars lap-spliced over l o in plastic hinge: Compression reinforcement counts as double. For yield properties M y, φ y, y : f y of tension steel multiplied x l o /l oy,min if l o <l oy,min =(.f y / f c )d b For ultimate chord rotation um = y +pl um : pl um calculated on the basis of confinement by te stirrups alone, multiplied x l o /l ou,min if l o <l ou,min =d b f y /[( rs f f f,e /f c ) f c ], M y.4. y 5 u 4 M y,exp (knm) 8 6 y,exp (%)..8.6 u,exp(%) UoP test other sources. UoP test other sources UoP test other sources M y,pred (knm) y,pred (%) u,pred (%) Test-EI eff model comparison (#, median=., C.o.V=%)

17 ρ ε ρ ρ FRP Jackets Shear resistance in cyclic loading past flexural yielding Shear resistance of FRP-jacketed member: h x V R = min µ + Ls h pl Ls ( N,.55Ac fc ) + (.5 min( 5, ).6 max(.5, ρtot ).6 min 5, fc Ac + Vw V f V f = min( u,f E u,f, f u,f ) f b w z/ contributes to member shear resistance as controlled by diagonal tension f :FRP ratio, f = t f /b w ; f u,f :FRP tensile strength; z : internal lever arm. Test-to-prediction ratio vs. #, median=.4, C.o.V=.9%: Total shear resistance of retrofitted member as controlled by diagonal tension, should not exceed shear resistance of old RC member as controlled by web crushing. Vu,exp / V u,pred ductility

18 Part II: Pseudodynamic test of.7: scale -story unsymmetric structure,, w/ or w/o FRP-retrofitting

19 ŷ d y r x CoG d xˆ R y r r y d x REFERENCE FRAME x ACTUATOR

20 Pseudodynamic tests of structure: Unretrofitted After repair of damage & FRP-wraps at all column ends (top & bottom, both stories). With nd story infilled & FRP-wraps at all column ends. 5sec Herceg-Novi (Montenegro 979) record, modified to fit EC8 spectrum on firm soil w/ PGA:.3g S a (m / s ) EC8 Record Period (s)

21

22 Story drifts - Unretrofitted structure at.3g Drift Displacement (m) Drift Displacement (rad) p8x (E->W)-Level - p8x (E->W)-Level Time (sec) Test was stopped before end of record, due to heavy damage at base of ground-story soft-side columns (lap splices): Peak drifts of soft-side columns: p8theta-level Ground story:.9% and.5% in orthogonal direction (simultaneous); nd story:.6% and.% in orthogonal direction (simultaneous). -.5 p8theta-level - Time (sec)

23 Column drifts - Unretrofitted structure at.3g 4 3 p8 Soft column - Lev. Stiff column - Lev..5 Col., Lev. Drift ratio (%) - - i-s Drift Ratio Y (%) Time p8 (sec) 4 Soft column - Lev. 3 Stiff column - Lev i-s Drift Ratio X (%).5 Col., Lev. Drift ratio (%) - - i-s Drift Ratio Y (%) Time (sec) i-s Drift Ratio X (%)

24 FRP-wraps at all column ends (top & bottom, both stories)

25 Story drifts and story force-displacement loops - FRP-wraps.3g.4.3 p px (E->W)-Level - px (E->W)-Level -..5 p ptheta-level - ptheta-level - Drift Displacement (m) Drift Displacement (rad) Time (sec) Time (sec) 6 px (E->W)-Level - 6 px (E->W)-Level Force (kn) - Force (kn) Displacement (m) Displacement (m)

26 Interstory drifts - FRP-wraps.3g (top & bottom, both stories) 4 p 4 p 3 3 Drift ratio (%) - Drift ratio (%) Soft column - Lev. Stiff column - Lev Time (sec) -3 Soft column - Lev. Stiff column - Lev Time (sec)

27 nd story infilled; FRPwraps at all column ends

28 Story drifts - nd story infilled; FRP-wraps at all column ends.6.4 p px (E->W)-Level - px (E->W)-Level - Drift Displacement (m) Time (sec) p.3 ptheta-level - ptheta-level -. Drift Displacement (rad) Time (sec)

29 nd story infilled; FRP-wraps at all column ends 8 6 px (E->W)-Level p Soft column - Lev. Stiff column - Lev. 4 4 Force (kn) - -4 Drift ratio (%) Displacement (m) Time (sec)

30 THANK YOU!

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

Eurocode 8 Part 3: Assessment and retrofitting of buildings

Eurocode 8 Part 3: Assessment and retrofitting of buildings in the Euro-Mediterranean Area Eurocode 8 Part 3: Assessment and retrofitting of buildings Paolo Emilio Pinto Università di Roma La Sapienza Urgency of guidance documents for assessment and retrofit in

More information

SeismoBuild Verification Report (KANEPE) For version 2018

SeismoBuild Verification Report (KANEPE) For version 2018 SeismoBuild Verification Report (KANEPE) For version 2018 Copyright Copyright 2002-2018 Seismosoft Ltd. All rights reserved. SeismoBuild is a registered trademark of Seismosoft Ltd. Copyright law protects

More information

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states

More information

Seismic performance evaluation of existing RC buildings designed as per past codes of practice

Seismic performance evaluation of existing RC buildings designed as per past codes of practice Sādhanā Vol. 37, Part 2, April 2012, pp. 281 297. c Indian Academy of Sciences Seismic performance evaluation of existing RC buildings designed as per past codes of practice 1. Introduction K RAMA RAJU,

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Seismic Design of New R.C. Structures

Seismic Design of New R.C. Structures Seismic Design Philosophy Main Concepts Seismic Design of New R.C. Structures Prof. Stephanos E. Dritsos University of Patras, Greece. Energy dissipation Ductility Capacity design Learning from Earthquakes

More information

Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

More information

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft)

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft) OS MODELER - EXAMPLES OF APPLICATION Version 1.0 (Draft) Matjaž Dolšek February 2008 Content 1. Introduction... 1 2. Four-storey reinforced concrete frame designed according to EC8... 2 2.1. Description

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

FRP Seismic Strengthening of Columns in Frames

FRP Seismic Strengthening of Columns in Frames FRP Seismic Strengthening of Columns in Frames Dr Mihaela-Anca Ciupala (EU Marie Curie Research Fellow) Dr Kypros Pilakoutas (Reader) Professor Nicolae Taranu Centre for Cement and Concrete Department

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Lap splice length and details of column longitudinal reinforcement at plastic hinge region

Lap splice length and details of column longitudinal reinforcement at plastic hinge region Lap length and details of column longitudinal reinforcement at plastic hinge region Hong-Gun Park 1) and Chul-Goo Kim 2) 1), 2 Department of Architecture and Architectural Engineering, Seoul National University,

More information

PEER/SSC Tall Building Design. Case study #2

PEER/SSC Tall Building Design. Case study #2 PEER/SSC Tall Building Design Case study #2 Typical Plan View at Ground Floor and Below Typical Plan View at 2 nd Floor and Above Code Design Code Design Shear Wall properties Shear wall thickness and

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

Consequently, retrofit of many poor existing structures is a very important issue. for Turkey!

Consequently, retrofit of many poor existing structures is a very important issue. for Turkey! Turkey Placed on one of the most active tectonic plates in the world ~96% of the country is under the threat of earthquakes ~98% of the population are live with that risk. Istanbul 1 st degree of earthquake

More information

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Engineering Structures 29 (2007) 163 175 www.elsevier.com/locate/engstruct Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Gerasimos M. Kotsovos a, Christos Zeris

More information

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results Chapter 4 Test results and discussion This chapter presents a discussion of the results obtained from eighteen beam specimens tested at the Structural Technology Laboratory of the Technical University

More information

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Influence of column web stiffening on the seismic behaviour of beam-tocolumn Influence of column web stiffening on the seismic behaviour of beam-tocolumn joints A.L. Ciutina & D. Dubina The Politehnica University of Timisoara, Romania ABSTRACT: The present paper summarises the

More information

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Flexural Behavior of Brittle RC Members Rehabilitated with Concrete Jacketing

Flexural Behavior of Brittle RC Members Rehabilitated with Concrete Jacketing Flexural Behavior of Brittle RC Members Rehabilitated with Concrete Jacketing G. E. Thermou, Ph.D. 1 ; S. J. Pantazopoulou, M.ASCE 2 ; and A. S. Elnashai, F.ASCE 3 Abstract: The composite flexural action

More information

A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET

A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET N. Kishi, E-89, 1/8 A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET Yusuke Kurihashi Norimitsu Kishi Hiroshi Mikami Sumiyuki Sawada Civil Engrg. Research Muroran Inst.

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl Seismic Design, Assessment & Retroitting o Concrete Buildings Table 5.1: EC8 rules or detailing and dimensioning o primary beams (secondary beams: as in DCL) DC H DCM DCL critical region length 1.5h w

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Coupling Beams of Shear Walls

Coupling Beams of Shear Walls Coupling Beams of Shear Walls Modelling Procedure for the Seismic Analysis of RC Structures João Miguel Damião Bezelga (1) July 215 (1) Instituto Superior Técnico Universidade de Lisboa, Av. Rovisco Pais,

More information

Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL Advanced Earthquake Engineering

Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL Advanced Earthquake Engineering Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL 706 - Advanced Earthquake Engineering EDCE-EPFL-ENAC-SGC 2016-1- Content! Link to force-based methods! Assumptions! Reinforced

More information

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS Dr. Maurizio Guadagnini Dr. Kypros Pilakoutas Professor Peter Waldron Centre for Dept. of Civil and Structural Engineering The University of Sheffield, UK Outline

More information

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110 E N G I N E E R S Consulting Engineers jxxx 1 Job Title Member Design - Reinforced Concrete Column Effects From Structural Analysis Axial force, N (tension-ve and comp +ve) (ensure >= 0) 8000kN OK Major

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No. CHAPTER 5 Question Brief Explanation No. 5.1 From Fig. IBC 1613.5(3) and (4) enlarged region 1 (ASCE 7 Fig. -3 and -4) S S = 1.5g, and S 1 = 0.6g. The g term is already factored in the equations, thus

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

Strengthening of columns with FRP

Strengthening of columns with FRP with FRP Professor Dr. Björn Täljsten Luleå University of Technology Sto Scandinavia AB 9/12/2013 Agenda Case study Restrained transverse expansion (confinement) Circular and rectangular cross sections

More information

ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS

ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS U. Ianniruberto and M. Imbimbo Department of Civil Engineering, University of Rome Tor Vergata Via di Tor Vergata 0, 0033, Rome, Italy SUMMARY: The

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

Parametric analysis and torsion design charts for axially restrained RC beams

Parametric analysis and torsion design charts for axially restrained RC beams Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 1-27 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns

Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns Michael P. Berry Marc O. Eberhard University of Washington Project funded by the Pacific Earthquake Engineering Research Center

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Seismic Performance of High-rise RC Wall-type Buildings in Korea

Seismic Performance of High-rise RC Wall-type Buildings in Korea Seismic Performance of High-rise RC Wall-type Buildings in Korea December 2 th, 24 Han Seon Lee Professor, Korea University, Seoul, Korea Structural Concrete Engineering Lab. Ratio of Apartments / Total

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS 4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018 ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018 ISSN 347 Pushover Analysis for Reinforced Concrete Portal Frames Gehad Abo El-Fotoh, Amin Saleh Aly and Mohamed Mohamed Hussein Attabi Abstract This research provides a new methodology and a computer program

More information

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION INEASTIC SEISMIC DISPACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVAENT INEARIZATION M. S. Günay 1 and H. Sucuoğlu 1 Research Assistant, Dept. of Civil Engineering, Middle East Technical University,

More information

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition ABSTRACT: Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition G. Dok ve O. Kırtel Res. Assist., Department of Civil Engineering, Sakarya University,

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE J. Sakai 1, S. Unjoh 2 and H. Ukon 3 1 Senior Researcher, Center for Advanced Engineering Structural Assessment and

More information

An Investigation on the Correlation of Inter-story Drift and Performance Objectives in Conventional RC Frames

An Investigation on the Correlation of Inter-story Drift and Performance Objectives in Conventional RC Frames Available online at www.ijournalse.org Emerging Science Journal Vol., No. 3, June, 18 An Investigation on the Correlation of Inter-story Drift and Performance Objectives in Conventional RC Frames Saeed

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

- Rectangular Beam Design -

- Rectangular Beam Design - Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

Pushover Seismic Analysis of Bridge Structures

Pushover Seismic Analysis of Bridge Structures Pushover Seismic Analysis of Bridge Structures Bernardo Frère Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Technical University of Lisbon, Portugal October

More information

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Dj. Ladjinovic, A. Raseta, A. Radujkovic & R. Folic University of Novi Sad, Faculty of Technical Sciences, Novi Sad,

More information

Chapter 6 Seismic Design of Bridges. Kazuhiko Kawashima Tokyo Institute of Technology

Chapter 6 Seismic Design of Bridges. Kazuhiko Kawashima Tokyo Institute of Technology Chapter 6 Seismic Design of Bridges Kazuhiko Kawashima okyo Institute of echnology Seismic Design Loading environment (dead, live, wind, earthquake etc) Performance criteria for gravity (deflection, stresses)

More information

Prof. A. Meher Prasad. Department of Civil Engineering Indian Institute of Technology Madras

Prof. A. Meher Prasad. Department of Civil Engineering Indian Institute of Technology Madras Prof. A. Meher Prasad Department of Civil Engineering Indian Institute of Technology Madras email: prasadam@iitm.ac.in Dynamic - Loads change with time Nonlinear - Loaded beyond Elastic Limit Type Usual

More information

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara New model for Shear Failure of R/ Beam-olumn Joints Hitoshi Shiohara Dept. of Architectural Engineering, The University of Tokyo, Tokyo 3-8656, Japan; PH +8(3)584-659; FAX+8(3)584-656; email:shiohara@arch.t.u-tokyo.ac.jp

More information

ENERGY DIAGRAM w/ HYSTERETIC

ENERGY DIAGRAM w/ HYSTERETIC ENERGY DIAGRAM ENERGY DIAGRAM w/ HYSTERETIC IMPLIED NONLINEAR BEHAVIOR STEEL STRESS STRAIN RELATIONSHIPS INELASTIC WORK DONE HYSTERETIC BEHAVIOR MOMENT ROTATION RELATIONSHIP IDEALIZED MOMENT ROTATION DUCTILITY

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 699 AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS Manabu YOSHIMURA, Yoshikazu TAKAINE and Takaya NAKAMURA

More information

Module 6. Shear, Bond, Anchorage, Development Length and Torsion. Version 2 CE IIT, Kharagpur

Module 6. Shear, Bond, Anchorage, Development Length and Torsion. Version 2 CE IIT, Kharagpur Module 6 Shear, Bond, Anchorage, Development Length and Torsion Lesson 15 Bond, Anchorage, Development Length and Splicing Instruction Objectives: At the end of this lesson, the student should be able

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS K.

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns

Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns Jun Won Kang 1a and Jeeho Lee 2 1 Department of Civil Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066,

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

Nonlinear Analysis of Reinforced Masonry Shear Walls with ASCE 41

Nonlinear Analysis of Reinforced Masonry Shear Walls with ASCE 41 Nonlinear Analysis of Reinforced Masonry Shear Walls with ASCE 41 Noveber 4, 2017 P. Benson Shing University of California, San Diego The Masonry Society AIA Provider: 50119857 Reinforced Masonry Wall

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Mergos, P.E. & Kappos, A.J. (2012). A gradual spread inelasticity model for R/C beam-columns, accounting for flexure,

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

Bridge deck modelling and design process for bridges

Bridge deck modelling and design process for bridges EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

EVALUATION OF SECOND ORDER EFFECTS ON THE SEISMIC PERFORMANCE OF RC FRAMED STRUCTURES: A FRAGILITY ANALYSIS

EVALUATION OF SECOND ORDER EFFECTS ON THE SEISMIC PERFORMANCE OF RC FRAMED STRUCTURES: A FRAGILITY ANALYSIS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 428 EVALUATION OF SECOND ORDER EFFECTS ON THE SEISMIC PERFORMANCE OF RC FRAMED STRUCTURES: A FRAGILITY

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

Design Beam Flexural Reinforcement

Design Beam Flexural Reinforcement COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEBER 2001 CONCRETE FRAE DESIGN ACI-318-99 Technical Note This Technical Note describes how this program completes beam design when the ACI 318-99

More information

SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT

SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT Existing New Zealand building stock contains a significant number

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH Journal of Engineering Science and Technology Vol. 12, No. 11 (2017) 2839-2854 School of Engineering, Taylor s University FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING

More information

Nonlinear Drift Demands on Moment-Resisting Stiff Frames

Nonlinear Drift Demands on Moment-Resisting Stiff Frames NATO SfP977 Seismic Assessment and Rehabilitation of Existing Buildings CLOSING WORKSHOP ĐSTANBUL MAY JUNE 5 Nonlinear Drift Demands on Moment-Resisting Stiff Frames Aslı Metin and Department of Civil

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Lecture-05 Serviceability Requirements & Development of Reinforcement

Lecture-05 Serviceability Requirements & Development of Reinforcement Lecture-05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections

More information

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement

Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement RESEARCH ARTICLE OPEN ACCESS Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement Prof. R.S. Chavan*, Dr. P.M. Pawar ** (Department of Civil Engineering, Solapur University, Solapur)

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0

More information

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam Marquette University e-publications@marquette Civil and Environmental Engineering Faculty Research and Publications Civil and Environmental Engineering, Department of 12-1-2013 Finite Element Analysis

More information

Prediction of premature failure load in FRP or steel plated RC beams

Prediction of premature failure load in FRP or steel plated RC beams Loughborough University Institutional Repository Prediction of premature failure load in FRP or steel plated RC beams This item was submitted to Loughborough University's Institutional Repository by the/an

More information