Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction

Size: px
Start display at page:

Download "Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction"

Transcription

1 Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction CHEN Quan & WONG Ngai Department of Electrical & Electronic Engineering The University of Hong Kong

2 Outline Background Modeling (Effective Parameters) Computation (Modified SIE Method) Results Conclusion

3 Surface Roughness in Interconnects 3

4 Sources of Surface Roughness Unintentional sources Technology limitations Process variations Intentional sources Electronic deposition Chemical etching Annealing Enhance the cohesion between metal and dielectric 4

5 Impact of Surface Roughness on Internal Impedance Interaction between rough surface and current Current under smooth surface Longer current path More resistive loss Larger current loop Current under rough surface Higher resistance Higher internal inductance 5

6 High Frequency Effects Rough surface effects is insignificant in low frequencies (large skin depth, small roughness) It becomes significant in high frequencies (comparable skin depth and roughness) Skin depth = 6.5microns when f = 0.1 GHz (From Intel) 6

7 Modeling Model the impact of random rough surface on interconnect internal impedance 7

8 Effective Parameters Effective Resistivity ρ e & Effective Permeability μ e Capture the increase of resistance and internal inductance caused by surface roughness Layout Information Current Extraction Tools Rough Surface Module Rough Surface RLC Circuit Effective Resistivity & Permeability 8

9 Analytical Formulation For effective resistivity ρ h RMS height; δ- skin depth Widely used in practical design, BUT Inaccurate (only h is considered) For effective permeability Unavailable e = ρ + π 1 1 tan 1.4 h δ 9

10 Numerical Formulation of ρ e Smooth surface power loss Power loss equivalence P s = P r P s = ρ H 0 δ Rough surface power loss P r * ρh = 0 Re d S l { zu ( z) } δ Pr ρδ ρ e = = Re d ( ) H S H l l 0 0 { zu z } V 10

11 Numerical Formulation of μ e Smooth surface magnetic energy W r W s μδ H Rough surface magnetic energy * μδ H = 0 Im d ( ) S { zu z } Magnetic energy equivalence W s = W r = 0 l μ e W r μδ = = Im d ( ) H l S δ H l 0 0 { zu z } V 11

12 Governing Equation S 1 y( z) G( z, z') d zg( z, z ') U ( z) = H0 + H 0 dz 1+ cp z n Green s function Gzz (, ') = H ( k z z') (1) 0 1 Surface unknown Boundary condition yz ( ) Hz ( ) U( z) = 1+ z nˆ H () r = H r S 0 1

13 Modeling of Random Rough Surface Most rough surfaces in reality are random Described by stationary stochastic process with Probability Density Function and Correlation Function 1 z P 1( y) = exp( ) π h h z1 z C ( z, z ) = exp( ) g 1 η η --- correlation length 13

14 Conventional Statistical Solver -- Monte-Carlo Method Input Layout information Random Rough Surface Generator S 1 S S 3 S n-1 S n A large number of surface realizations Direct Integral Equation Solver R 1 R R 3 R n-1 R n solutions Corresponding Computation Output Mean of the solution 14

15 Limitations of Monte-Carlo method Probabilistic nature Mean value is also a random variable Slow convergence More than 500 runs to converge within 1% Convergence of mean of ρ e (%) Number of Monte Carlo runs 15

16 Computation Efficient Stochastic Integral Equation (SIE) method 16

17 Stochastic Integral Equation (SIE) method Use mean value as unknown One-pass solution Deterministic nature Two steps Two steps Zeroth-order approximation (Uncorrelatedness assumption ) Second-order correction 17

18 S Zeroth-Order Approximation Directly applying ensemble average on both sides S 1 yz ( ) Gzz (, ') d z G( z, z') U( z) = H0 + H 0 dz 1+ cp z n Ensemble average + f( x) = P1 ( f( x)) f( x) Assuming the Green s function G and the surface unknown U are statistically independent (Uncorrelatedness Assumption) 1 yz ( ) Gzz (, ') d z G( z, z') U( z) = H0 + H 0 dz 1+ cp z n New unknown 18

19 Zeroth-order Approximation Matrix equation format Gzz (, ') AU Inaccurate zeroth-order approximation U = A L (0) 1 Cause: uncorrelatedness assumption = A Gz (, z) dyd yp( y, y) Gy (, y; z, z) = = ik i k i k i k i k i k GzzUz (, ') ( ) Gzz (, ') Uz ( ) L V U( z) = L U (0) T (0) Deterministic quantities 19

20 Primitive Second-Order Correction Improve the accuracy of the mean V Zeroth-order approximation term V = V (0) + V () () T V = trace A D ( ) Second-order correction term vec D A A A A U U (0) (0) ( ) = ( ) ( ) T ( ) F N N Limit: Also time-consuming 0

21 Computational Bottleneck High dimensional infinite integration in F 4-D infinite integration F = A A A A ik nm ik mn ik mn A A dydy dy d y P ( y, y, y, y ) G( y, y ) G( y, y ) = ik mn i k m n 4 i k m n i k m n Standard technique: Gauss Hermite quadrature Complexity grows exponentially with the integral dimension (Curse of dimensionality) 1 dimension O( N) 4 4 dimension O N ( ) 1

22 No. of Points for Gauss Hermite Quadrature 11.5 x 10 5 <A ij A mn > Gauss Hermite Accurate Value More than 30 quadrature points for 1D integration (81000 points for 4D) Number of quadrature points

23 Improved Formulation of SIE (D case) Translation invariance of Green s s function Thus G( y, y ) = G( y, y + y ) = G(0, y ) i k i i d d A G( y, y ) dydy P ( y, y ) G( y, y ) (D) = = ik i k i k i k i k A ˆ d P ˆ ik G( yd ) yd 1d ( yd) G( yd) (1D ) = = G( y, y ) = Gˆ ( y ) i j d P 1d Probability density function of y d 3

24 Partial Probability Density Function 1 y cy y + y π h 1 c h (1 c ) i i k k ( i, k) = exp P y y 1 ( ) ( ) P( yi cyi yi + yd + yi + y d yi, yd) = exp π h 1 c h (1 c ) P ( y ) = dyp ( y, y + y ) 1d d i i i d 1 y d = exp ( ) 4 h π 1- c h ( 1 c) 4

25 Improved Formulation of SIE (4D case) A A dydy dy d y P ( y, y, y, y ) G( y, y ) G( y, y ) = ik mn i k m n 4 i k m n i k m n Let y = y y y = y y d k i d n m 1 AA d d P ˆ ˆ ik mn yd yd d ( yd, yd ) Gy ( d ) Gy ( d ) Where = P d ( yd, y 1 d ) = dy d P d y 1 d 4( yi, yi + yd, y, ) 1 m ym + yd 5

26 Results 6

27 Numerical VS Analytical Formulation (Different Correlation Length) 7

28 SIE VS MIE (Mean ρ e Ratio) Gaussian surface (σ= 1μm) 8

29 SIE VS MIE (Mean μ e Ratio) Gaussian surface (σ= 1μm) 9

30 CPU Time Comparison (Unit: second) Method MIE (1500run) SIE (Original) SIE (Modified) h /δ=/ = 1 h /δ=/ = X (Gaussian rough surface --- σ=1μm, η=1 μm) 30

31 Conclusion An efficient numerical approach for modeling the impact of surface roughness on interconnect internal impedance 31

32 Conclusion Numerical effective parameters Model the rough surface effects on internal impedance Take all statistical information into account Modified SIE method One-pass solution for mean values Halve infinite integral dimension by partial PDF formulation 3

33 33

Effective Conductivity Concept for Modeling Conductor Surface Roughness G. Gold, K. Helmreich Institute of Microwaves and Photonics

Effective Conductivity Concept for Modeling Conductor Surface Roughness G. Gold, K. Helmreich Institute of Microwaves and Photonics Effective Conductivity Concept for Modeling Conductor Surface Roughness Institute of Microwaves and Photonics Friedrich-Alexander-University Erlangen-Nuremberg gerald.gold@fau.de klaus.helmreich@fau.de

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes

Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes ASME 2015 IDETC/CIE Paper number: DETC2015-46168 Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes Zhifu Zhu, Zhen Hu, Xiaoping Du Missouri University of Science

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Process-variation-aware electromagnetic-semiconductor coupled simulation

Process-variation-aware electromagnetic-semiconductor coupled simulation Title Process-variation-aware electromagnetic-semiconductor coupled simulation Author(s) Xu, Y; Chen, Q; Jiang, L; Wong, N Citation The 2011 IEEE International Symposium on Circuits and Systems (ISCAS),

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

On the Nature of Random System Matrices in Structural Dynamics

On the Nature of Random System Matrices in Structural Dynamics On the Nature of Random System Matrices in Structural Dynamics S. ADHIKARI AND R. S. LANGLEY Cambridge University Engineering Department Cambridge, U.K. Nature of Random System Matrices p.1/20 Outline

More information

Stochastic Integral Equation Solver for Efficient Variation-Aware Interconnect Extraction

Stochastic Integral Equation Solver for Efficient Variation-Aware Interconnect Extraction Stochastic Integral Equation Solver for Efficient Variation-Aware Interconnect Extraction ABSTRACT Tarek El-Moselhy Computational Prototyping Group Research Laboratory in Electronics Massachusetts Institute

More information

Accounting for Variability and Uncertainty in Signal and Power Integrity Modeling

Accounting for Variability and Uncertainty in Signal and Power Integrity Modeling Accounting for Variability and Uncertainty in Signal and Power Integrity Modeling Andreas Cangellaris& Prasad Sumant Electromagnetics Lab, ECE Department University of Illinois Acknowledgments Dr. Hong

More information

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Paolo Manfredi, Igor S. Stievano, Flavio G. Canavero Department of Electronics and Telecommunications (DET) Politecnico

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics

New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics Armen Der Kiureghian President, American University of Armenia Taisei Professor of Civil Engineering Emeritus

More information

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST Introduction The Metal-Insulator-Metal capacitor is a key passive component in Radio Frequency (RF) and analog

More information

Transmission Line Model for Rectangular Waveguides accurately incorporating Loss Effects

Transmission Line Model for Rectangular Waveguides accurately incorporating Loss Effects Transmission Line Model for Rectangular Waveguides accurately incorporating Loss Effects Konstantin Lomakin konstantin.lomakin@fau.de Institute of Microwaves and Photonics Friedrich-Alexander-Universität

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

Modeling of Transmission Lines with Multiple Coated Conductors*

Modeling of Transmission Lines with Multiple Coated Conductors* Modeling of Transmission Lines with Multiple Coated Conductors* PlanarCal Konstantin Lomakin konstantin.lomakin@fau.de Institute of Microwaves and Photonics Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Huygens principle-based wavefront tracing in non-uniform media

Huygens principle-based wavefront tracing in non-uniform media Presented at the 2015 Sherwood Fusion Theory Conference March 16-18, 2015, Courant Institute at New York University, NY, USA Huygens principle-based wavefront tracing in non-uniform media A. Zhao, P.-D.

More information

Equivalent Circuit Model Extraction for Interconnects in 3D ICs

Equivalent Circuit Model Extraction for Interconnects in 3D ICs Equivalent Circuit Model Extraction for Interconnects in 3D ICs A. Ege Engin Assistant Professor, Department of ECE, San Diego State University Email: aengin@mail.sdsu.edu ASP-DAC, Jan. 23, 213 Outline

More information

5/1/2011 V R I. = ds. by definition is the ratio of potential difference of the wire ends to the total current flowing through it.

5/1/2011 V R I. = ds. by definition is the ratio of potential difference of the wire ends to the total current flowing through it. Session : Fundamentals by definition is the ratio of potential difference of the wire ends to the total current flowing through it. V R I E. dl L = σ E. ds A R = L σwt W H T At high frequencies, current

More information

Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits

Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits E = B; H = J + D D = ρ ; B = 0 D = ρ ; B = 0 Yehia Massoud ECE Department Rice University Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits ECE Affiliates 10/8/2003 Background: Integrated

More information

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Introduction to RF Design RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Objectives Understand why RF design is different from lowfrequency design. Develop RF models of passive components.

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Anna Avdeeva Dmitry Avdeev and Marion Jegen. 31 March Introduction to 3D MT inversion code x3di

Anna Avdeeva Dmitry Avdeev and Marion Jegen. 31 March Introduction to 3D MT inversion code x3di Anna Avdeeva (aavdeeva@ifm-geomar.de), Dmitry Avdeev and Marion Jegen 31 March 211 Outline 1 Essential Parts of 3D MT Inversion Code 2 Salt Dome Overhang Study with 3 Outline 1 Essential Parts of 3D MT

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Prof Nathan L Gibson Department of Mathematics Joint Math Meeting Jan 9, 2011 Prof Gibson (OSU) Inverse Problems for Distributions

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

ECE 546 Lecture 04 Resistance, Capacitance, Inductance

ECE 546 Lecture 04 Resistance, Capacitance, Inductance ECE 546 Lecture 04 Resistance, Capacitance, Inductance Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 546 Jose Schutt Aine 1 What is

More information

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Sparse Quadrature Algorithms for Bayesian Inverse Problems Sparse Quadrature Algorithms for Bayesian Inverse Problems Claudia Schillings, Christoph Schwab Pro*Doc Retreat Disentis 2013 Numerical Analysis and Scientific Computing Disentis - 15 August, 2013 research

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design

OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design Yang Xu, Kan-Lin Hsiung, Xin Li Ivan Nausieda, Stephen Boyd, Larry Pileggi June 16, 005 Contents Introduction Background Proposed

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects

Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects Yuriy Shlepnev Simberian Inc., www.simberian.com Abstract: Models of transmission lines and transitions

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Magnetotelluric (MT) Method

Magnetotelluric (MT) Method Magnetotelluric (MT) Method Dr. Hendra Grandis Graduate Program in Applied Geophysics Faculty of Mining and Petroleum Engineering ITB Geophysical Methods Techniques applying physical laws (or theory) to

More information

Class 11 : Magnetic materials

Class 11 : Magnetic materials Class 11 : Magnetic materials Magnetic dipoles Magnetization of a medium, and how it modifies magnetic field Magnetic intensity How does an electromagnet work? Boundary conditions for B Recap (1) Electric

More information

Variation-aware Modeling of Integrated Capacitors based on Floating Random Walk Extraction

Variation-aware Modeling of Integrated Capacitors based on Floating Random Walk Extraction Variation-aware Modeling of Integrated Capacitors based on Floating Random Walk Extraction Paolo Maffezzoni, Senior Member, IEEE, Zheng Zhang, Member, IEEE, Salvatore Levantino, Member, IEEE, and Luca

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation I. Rayleigh Scattering 1. Rayleigh scattering 2. Dipole interpretation 3. Cross sections 4. Other approximations EE 816 - Lecture 4 Rayleigh scattering is an approximation used to predict scattering from

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Improving the Robustness of a Surface Integral Formulation for Wideband Impendance Extraction of 3D Structures

Improving the Robustness of a Surface Integral Formulation for Wideband Impendance Extraction of 3D Structures Improving the Robustness of a Surface Integral Formulation for Wideband Impendance Extraction of 3D Structures Zhenhai Zhu, Jingfang Huang, Ben Song, Jacob White Department of Electrical Engineering and

More information

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Vahid Dehdari and Clayton V. Deutsch Geostatistical modeling involves many variables and many locations.

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

An ME-PC Enhanced HDMR Method for Efficient Statistical Analysis of Multiconductor Transmission Line Networks

An ME-PC Enhanced HDMR Method for Efficient Statistical Analysis of Multiconductor Transmission Line Networks An ME-PC Enhanced HDMR Method for Efficient Statistical Analysis of Multiconductor Transmission Line Networks Item Type Article Authors Yucel, Abdulkadir C.; Bagci, Hakan; Michielssen, Eric Citation An

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic - not

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows Title Strategy in modelling irregular shaped particle behaviour in confined turbulent flows M. Sommerfeld F L Mechanische Verfahrenstechnik Zentrum Ingenieurwissenschaften 699 Halle (Saale), Germany www-mvt.iw.uni-halle.de

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

Simulations of single bunch collective effects using HEADTAIL

Simulations of single bunch collective effects using HEADTAIL Simulations of single bunch collective effects using HEADTAIL G. Rumolo, in collaboration with E. Benedetto, O. Boine-Frankenheim, G. Franchetti, E. Métral, F. Zimmermann ICAP, Chamonix, 02.10.2006 Giovanni

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 1940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic -

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Lecture XI. Approximating the Invariant Distribution

Lecture XI. Approximating the Invariant Distribution Lecture XI Approximating the Invariant Distribution Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Invariant Distribution p. 1 /24 SS Equilibrium in the Aiyagari model G.

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Non-Linear Statistical Static Timing Analysis for Non-Gaussian Variation Sources

Non-Linear Statistical Static Timing Analysis for Non-Gaussian Variation Sources Non-Linear Statistical Static Timing Analysis for Non-Gaussian Variation Sources Lerong Cheng 1, Jinjun Xiong 2, and Prof. Lei He 1 1 EE Department, UCLA *2 IBM Research Center Address comments to lhe@ee.ucla.edu

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

Design for Reliability and Robustness through probabilistic Methods in COMSOL Multiphysics with OptiY

Design for Reliability and Robustness through probabilistic Methods in COMSOL Multiphysics with OptiY Presented at the COMSOL Conference 2008 Hannover Multidisciplinary Analysis and Optimization In1 Design for Reliability and Robustness through probabilistic Methods in COMSOL Multiphysics with OptiY In2

More information

3-D Inductance and Resistance Extraction for Interconnects

3-D Inductance and Resistance Extraction for Interconnects 3-D Inductance and Resistance Extraction for Interconnects Shuzhou Fang, Liu Yang and Zeyi Wang Dept. of Computer Science & Technology Tsinghua University, Beijing 100084, China Aug. 20, 2002 Content PEEC

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

University of Saskatchewan Department of Electrical Engineering

University of Saskatchewan Department of Electrical Engineering University of Saskatchewan Department of Electrical Engineering December 9,2004 EE30 1 Electricity, Magnetism and Fields Final Examination Professor Robert E. Johanson Welcome to the EE301 Final. This

More information

FDTD simulations of far infrared effective magnetic activity in microstructured TiO2

FDTD simulations of far infrared effective magnetic activity in microstructured TiO2 FDTD simulations of far infrared effective magnetic activity in microstructured TiO2 Cristian Kusko and Mihai Kusko IMT-Bucharest, Romania E-mail: cristian.kusko@imt.ro Motivation and Outline Metamaterials

More information

On one-dimensional random fields with fixed end values

On one-dimensional random fields with fixed end values PREM 217 Probabilistic Engineering Mechanics 14 (1999) 31 31 On one-dimensional random fields with fixed end values RP Nordgren*, JP Conte 1 Department of Civil Engineering, Rice University, Houston, TX

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Stochastic Capacitance Extraction Considering Process Variation with Spatial Correlation

Stochastic Capacitance Extraction Considering Process Variation with Spatial Correlation Stochastic Capacitance Extraction Considering Process Variation with Spatial Correlation Tuck Chan EE Department UCLA, CA 90095 tuckie@ucla.edu Fang Gong EE Department UCLA, CA 90095 gongfang@ucla.edu

More information

Synchrotron Motion with Space-Charge

Synchrotron Motion with Space-Charge Synchrotron Motion with Space-Charge Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular frequency

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

Beam Dynamics in Synchrotrons with Space- Charge

Beam Dynamics in Synchrotrons with Space- Charge Beam Dynamics in Synchrotrons with Space- Charge 1 Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular

More information

Module 8. Lecture 5: Reliability analysis

Module 8. Lecture 5: Reliability analysis Lecture 5: Reliability analysis Reliability It is defined as the probability of non-failure, p s, at which the resistance of the system exceeds the load; where P() denotes the probability. The failure

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 13, 2017 Variation; I/O Circuits, Inductive Noise Lecture Outline! Design Quality " Variation! Packaging! Variation and Testing!

More information

Methods of Data Analysis Random numbers, Monte Carlo integration, and Stochastic Simulation Algorithm (SSA / Gillespie)

Methods of Data Analysis Random numbers, Monte Carlo integration, and Stochastic Simulation Algorithm (SSA / Gillespie) Methods of Data Analysis Random numbers, Monte Carlo integration, and Stochastic Simulation Algorithm (SSA / Gillespie) Week 1 1 Motivation Random numbers (RNs) are of course only pseudo-random when generated

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

Variation-Aware Interconnect Extraction using Statistical Moment Preserving Model Order Reduction

Variation-Aware Interconnect Extraction using Statistical Moment Preserving Model Order Reduction Variation-Aware Interconnect Extraction using Statistical Moment Preserving Model Order Reduction The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2 Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + = is (A) 1 (B) 2 (C) 3 (D) 4 2. The Fourier series of a real periodic function has only P. Cosine terms if it is

More information

A Statistical Kirchhoff Model for EM Scattering from Gaussian Rough Surface

A Statistical Kirchhoff Model for EM Scattering from Gaussian Rough Surface Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 187 A Statistical Kirchhoff Model for EM Scattering from Gaussian Rough Surface Yang Du 1, Tao Xu 1, Yingliang Luo 1,

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

A Dielectric Invisibility Carpet

A Dielectric Invisibility Carpet A Dielectric Invisibility Carpet Jensen Li Prof. Xiang Zhang s Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA CLK08-09/22/2008 Presented at Center

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

EMC Considerations for DC Power Design

EMC Considerations for DC Power Design EMC Considerations for DC Power Design Tzong-Lin Wu, Ph.D. Department of Electrical Engineering National Sun Yat-sen University Power Bus Noise below 5MHz 1 Power Bus Noise below 5MHz (Solution) Add Bulk

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 April 23, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 April 23, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam 3 Section Version April 3, 03 Total Weight: 00 points. Check your examination for completeness prior to starting. There are a

More information

Microwave Engineering 3e Author - D. Pozar

Microwave Engineering 3e Author - D. Pozar Microwave Engineering 3e Author - D. Pozar Sections 3.6 3.8 Presented by Alex Higgins 1 Outline Section 3.6 Surface Waves on a Grounded Dielectric Slab Section 3.7 Stripline Section 3.8 Microstrip An Investigation

More information

Efficient Reluctance Extraction for Large-Scale Power Grid with High- Frequency Consideration

Efficient Reluctance Extraction for Large-Scale Power Grid with High- Frequency Consideration Efficient Reluctance Extraction for Large-Scale Power Grid with High- Frequency Consideration Shan Zeng, Wenjian Yu, Jin Shi, Xianlong Hong Dept. Computer Science & Technology, Tsinghua University, Beijing

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Collective behavior of viscoelastic asperities as a model for static and kinetic friction

Collective behavior of viscoelastic asperities as a model for static and kinetic friction Collective behavior of viscoelastic asperities as a model for static and kinetic friction Srivatsan Hulikal, Kaushik Bhattacharya, Nadia Lapusta Department of Mechanical and Civil Engineering California

More information