Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes

Size: px
Start display at page:

Download "Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes"

Transcription

1 ASME 2015 IDETC/CIE Paper number: DETC Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes Zhifu Zhu, Zhen Hu, Xiaoping Du Missouri University of Science and Technology

2 Outline Background MDRA with stationary SP Examples Conclusions Acknowledgement 2

3 Multidisciplinary Systems Vehicles Aircrafts Wind Turbines Offshore Structures All pictures are taken from Wikimedia Commons, 3

4 Multidisciplinary Systems X: Random variables; Y: Stochastic processes 4

5 Inputs: X: Random variables Response of subsystem i Problem Statement Y: Stationary stochastic processes Zi () t = gzi ( Xs, Xi, Ys (), t Yi (), t L i ()) t L: Linking variables Time-dependent reliability over [ t0, t s ] R( t, t ) = Pr{ Z ( t) = g ( X, X, Y ( t), Y( t), L ( t)) < e, t [ t, t ]} 0 s i Zi s i s i i 0 s Since the involvement of stochastic processes, the responses are time-dependent random variables, calculating the reliability is difficult. 5

6 Time-Dependent Reliability Methods Upcrossing rate methods -Asymptotic upcrossing rate of a Gaussian stochastic process (i.e. Lindgren 1984, Breitung 1984, 1988) - Vector out-crossing rate using parallel approach (i.e. Hagen, 1992) - The Rice s formula based method (i.e. Rice, 1944, Sudret, Lemaire, 2004, Hu and Du, 2012) - The joint-upcrossing rate method (i.e. Hu and Du, 2013) Surrogate model methods - Composite limit-state function method (i.e. Mourelatos, 2011) - Nested extreme value response method (i.e. Wang and Wang, 2014) - Mixed Efficient Global Optimization method (i.e. Hu and Du, 2015) Sampling methods - Importance sampling approach (i.e. Singh and Mourelatos, 2011) - Markov Chain Monte Carlo method (i.e. Wang and Mourelatos, 2013) - Sampling of extreme value distribution (i.e. Hu and Du, 2013) These methods are for components and may not be applicable for multidisciplinary systems. 6

7 Proposed Method Approximate a response w.r.t. X by FORM and SORM at MPP Then the response is a linear stationary Gaussian process (FORM), or a quadratic stationary Gaussian process (SORM) Use MCS 7

8 Step 1 MPP Search Optimization [1] min u ( ul, ) st.. Failure constraint gˆ Z ( u, ) 0 i i L i > L j ( t) = gl ( u, ), 1,2,, j j L j j = n Coupling between subsystems [1] Du, X., Guo, J., and Beeram, H., 2008, "Sequential optimization and reliability assessment for multidisciplinary systems design," Structural and Multidisciplinary Optimization. 8

9 Step 2 Approximation FORM gˆ gˆ gˆ * * * T Z ( U) Z ( ui) + Z ( ui)( Ui ui) i i i { Z t > e} = { Ht > β} Pr ( ) Pr ( ) i SORM gˆ gˆ gˆ * * * T Z ( U) Z ( ui) + Z ( ui)( Ui ui) i i i 1 + ˆ i 2 * 2 * * T ( Ui ui) gz ( ui)( Ui ui) 9

10 Step 3 Simulation The Expansion Optimal Linear Estimation (EOLE) method [2]. Ut p i T ( ) ϕ ρ ( tt, ) = i= 1 V η i i U i T V i are independent standard normal random variables; i and are the eigenvalues and eigenvectors of the matrix, respectively. ( ) ( t1, t1) ( t1, t2) ( t1, t ) ( t, t ) ( t, t ) ( t, t ) ρ ρ ρ ρ ρ ρ ρ ρ ρ U U U m U 2 1 U 2 2 U 2 m = ( t, t ) ( t, t ) ( t, t ) ρ t 1, t U 2 is the autocorrelation function of Ut (). N f pf ( t0, ts) = N [2] Li, C. C., Kiureghian, A. D., 1993, "Optimal discretization of random fields," Journal of Engineering Mechanics. η U m 1 U m 2 U m m m m ϕ i 10

11 Examples Two examples are solved using: 1. Proposed method based on FORM (FORM-MCS) 2. Proposed method based on SORM (SORM-MCS) 3. Upcrossing rate method (Upcrossing) 4. Direct MCS with the original limit-state function (MCS) 11

12 Example 1 For subsystem 1 L () t = X + X + Y () t 0.2 L () t Z () t = X + Y () t + L () t + L () t For subsystem L () t = L () t + X + Y () t Z () t = X + Y () t + L () t + e L 12 () t The autocorrelation coefficient function of Y () t 1 1 { 2 λ } ( ) = ( ) ρy t1, t2 exp t2 t1 / λ = 0.9 is a correlation length. Limit state e = 22 For MCS, Time interval [0,10] is divided into 200 time instants and 10 6 samples are generated at each time instant. 12

13 Example Upcrossing FORM-MCS SORM-MCS MCS Probability of failure Time 13

14 Example 2 System structure of the compound cylinders 14

15 Example 2 Upcrossing FORM-MCS SORM-MCS MCS Probability of failure Time 15

16 Conclusions A reliability analysis method for time-dependent multidisciplinary system with stationary stochastic processes is developed. The results of the examples showed the efficiency and accuracy of the proposed method. Explicit functions of time Non-stationary processes Higher efficiency Future Work 16

17 Acknowledgement National Science Foundation through grant CMMI The Intelligent Systems Center (ISC) at the Missouri University of Science and Technology 17

A Mixed Efficient Global Optimization (m- EGO) Based Time-Dependent Reliability Analysis Method

A Mixed Efficient Global Optimization (m- EGO) Based Time-Dependent Reliability Analysis Method A Mixed Efficient Global Optimization (m- EGO) Based Time-Dependent Reliability Analysis Method ASME 2014 IDETC/CIE 2014 Paper number: DETC2014-34281 Zhen Hu, Ph.D. Candidate Advisor: Dr. Xiaoping Du Department

More information

ASME 2013 IDETC/CIE 2013 Paper number: DETC A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS

ASME 2013 IDETC/CIE 2013 Paper number: DETC A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS ASME 2013 IDETC/CIE 2013 Paper number: DETC2013-12033 A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS Zhen Hu, Xiaoping Du Department of Mechanical & Aerospace Engineering

More information

A Random Field Approach to Reliability Analysis with. Random and Interval Variables

A Random Field Approach to Reliability Analysis with. Random and Interval Variables ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering Volume Issue 4 Research Paper A Random Field Approach to Reliability Analysis with Random and Interval Variables

More information

Probabilistic engineering analysis and design under time-dependent uncertainty

Probabilistic engineering analysis and design under time-dependent uncertainty Scholars' Mine Doctoral Dissertations Student Research & Creative Works Fall 2014 Probabilistic engineering analysis and design under time-dependent uncertainty Zhen Hu Follow this and additional works

More information

Probabilistic Inverse Simulation and Its Application in Vehicle Accident Reconstruction

Probabilistic Inverse Simulation and Its Application in Vehicle Accident Reconstruction ASME 2013 IDETC/CIE 2013 Paper number: DETC2013-12073 Probabilistic Inverse Simulation and Its Application in Vehicle Accident Reconstruction Xiaoyun Zhang Shanghai Jiaotong University, Shanghai, China

More information

Recent Advances in Reliability Estimation of Time-Dependent Problems Using the Concept of Composite Limit State

Recent Advances in Reliability Estimation of Time-Dependent Problems Using the Concept of Composite Limit State Automotive Research Center A U.S. Army Center of Excellence for Modeling and Simulation of Ground Vehicles Recent Advances in Reliability Estimation of Time-Dependent Problems Using the Concept of Composite

More information

Reliability Theory of Dynamically Loaded Structures (cont.)

Reliability Theory of Dynamically Loaded Structures (cont.) Outline of Reliability Theory of Dynamically Loaded Structures (cont.) Probability Density Function of Local Maxima in a Stationary Gaussian Process. Distribution of Extreme Values. Monte Carlo Simulation

More information

Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades

Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades Struct Multidisc Optim DOI 1.17/s158-12-839-8 INDUSTRIAL APPLICATION Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades Zhen Hu Haifeng Li Xiaoping Du K. Chandrashekhara

More information

Reliability Based Topology Optimization under Stochastic Excitation

Reliability Based Topology Optimization under Stochastic Excitation The 11th US National Congress on Computational Mechanics Reliability Based Topology Optimization under Stochastic Excitation Junho Chun 07/26/2011 Advisors : Junho Song & Glaucio H. Paulino Department

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

DETC A GENERALIZED MAX-MIN SAMPLE FOR RELIABILITY ASSESSMENT WITH DEPENDENT VARIABLES

DETC A GENERALIZED MAX-MIN SAMPLE FOR RELIABILITY ASSESSMENT WITH DEPENDENT VARIABLES Proceedings o the ASME International Design Engineering Technical Conerences & Computers and Inormation in Engineering Conerence IDETC/CIE August 7-,, Bualo, USA DETC- A GENERALIZED MAX-MIN SAMPLE FOR

More information

Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction

Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction CHEN Quan & WONG Ngai Department of Electrical & Electronic Engineering The University of Hong

More information

RELIABILITY ANALYSIS AND DESIGN CONSIDERING DISJOINT ACTIVE FAILURE REGIONS

RELIABILITY ANALYSIS AND DESIGN CONSIDERING DISJOINT ACTIVE FAILURE REGIONS RELIABILITY ANALYSIS AND DESIGN CONSIDERING DISJOINT ACTIVE FAILURE REGIONS A Thesis by Xiaolong Cui Master of Science, Wichita State University, 2016 Bachelor of Science, Wichita State University, 2013

More information

Short Questions (Do two out of three) 15 points each

Short Questions (Do two out of three) 15 points each Econometrics Short Questions Do two out of three) 5 points each ) Let y = Xβ + u and Z be a set of instruments for X When we estimate β with OLS we project y onto the space spanned by X along a path orthogonal

More information

Analytical derivation of the outcrossing rate in time-variant reliability problems

Analytical derivation of the outcrossing rate in time-variant reliability problems November 4, 2006 :38 Structures and Infrastructure Engineering sudret-rev Structures and Infrastructure Engineering, Vol. 00, No. 00, March 2006, 4 Analytical derivation of the outcrossing rate in time-variant

More information

Guideline for Offshore Structural Reliability Analysis - General 3. RELIABILITY ANALYSIS 38

Guideline for Offshore Structural Reliability Analysis - General 3. RELIABILITY ANALYSIS 38 FEBRUARY 20, 1995 3. RELIABILITY ANALYSIS 38 3.1 General 38 3.1.1 Variables 38 3.1.2 Events 39 3.1.3 Event Probability 41 3.1.4 The Reliability Index 41 3.1.5 The Design Point 42 3.1.6 Transformation of

More information

Basics of Uncertainty Analysis

Basics of Uncertainty Analysis Basics of Uncertainty Analysis Chapter Six Basics of Uncertainty Analysis 6.1 Introduction As shown in Fig. 6.1, analysis models are used to predict the performances or behaviors of a product under design.

More information

A Structural Reliability Analysis Method Based on Radial Basis Function

A Structural Reliability Analysis Method Based on Radial Basis Function Copyright 2012 Tech Science Press CMC, vol.27, no.2, pp.128-142, 2012 A Structural Reliability Analysis Method Based on Radial Basis Function M. Q. Chau 1,2, X. Han 1, Y. C. Bai 1 and C. Jiang 1 Abstract:

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Mixed effects models - Part IV Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

A Saddlepoint Approximation Based Simulation Method for Uncertainty Analysis

A Saddlepoint Approximation Based Simulation Method for Uncertainty Analysis International Journal of Reliability and Safety Volume 1, Issue 1-2 DOI: 10.1504/IJRS.2006.010698 A Saddlepoint Approximation Based Simulation Method for Uncertainty Analysis Beiqing Huang Graduate Research

More information

A Robust Design Method Using Variable Transformation and Gauss-Hermite Integration

A Robust Design Method Using Variable Transformation and Gauss-Hermite Integration International Journal for Numerical Methods in Engineering, 66(), pp. 84 858 A Robust Design Method Using Variable Transformation and Gauss-Hermite Integration Beiqing Huang Graduate Research Assistant,

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Robust and Reliability Based Design Optimization

Robust and Reliability Based Design Optimization Robust and Reliability Based Design Optimization Frederico Afonso Luís Amândio André Marta Afzal Suleman CCTAE, IDMEC, LAETA Instituto Superior Técnico Univerdade de Lisboa Lisboa, Portugal May 22, 2015

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Addressing high dimensionality in reliability analysis using low-rank tensor approximations

Addressing high dimensionality in reliability analysis using low-rank tensor approximations Addressing high dimensionality in reliability analysis using low-rank tensor approximations K Konakli, Bruno Sudret To cite this version: K Konakli, Bruno Sudret. Addressing high dimensionality in reliability

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

14 - Gaussian Stochastic Processes

14 - Gaussian Stochastic Processes 14-1 Gaussian Stochastic Processes S. Lall, Stanford 211.2.24.1 14 - Gaussian Stochastic Processes Linear systems driven by IID noise Evolution of mean and covariance Example: mass-spring system Steady-state

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics

New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics New Developments in Tail-Equivalent Linearization method for Nonlinear Stochastic Dynamics Armen Der Kiureghian President, American University of Armenia Taisei Professor of Civil Engineering Emeritus

More information

Reliability assessment of cutting tools life based on advanced approximation methods

Reliability assessment of cutting tools life based on advanced approximation methods Reliability assessment of cutting tools life based on advanced approximation methods K. Salonitis 1*, A. Kolios 2 1 Cranfield University, Manufacturing and Materials Department 2 Cranfield University,

More information

An Efficient Computational Solution Scheme of the Random Eigenvalue Problems

An Efficient Computational Solution Scheme of the Random Eigenvalue Problems 50th AIAA SDM Conference, 4-7 May 2009 An Efficient Computational Solution Scheme of the Random Eigenvalue Problems Rajib Chowdhury & Sondipon Adhikari School of Engineering Swansea University Swansea,

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

First Excursion Probabilities of Non-Linear Dynamical Systems by Importance Sampling. REN Limei [a],*

First Excursion Probabilities of Non-Linear Dynamical Systems by Importance Sampling. REN Limei [a],* Progress in Applied Mathematics Vol. 5, No. 1, 2013, pp. [41 48] DOI: 10.3968/j.pam.1925252820130501.718 ISSN 1925-251X [Print] ISSN 1925-2528 [Online] www.cscanada.net www.cscanada.org First Excursion

More information

Mixed Efficient Global Optimization for Time- Dependent Reliability Analysis

Mixed Efficient Global Optimization for Time- Dependent Reliability Analysis Journal of Mechanical Deign Volume 137 Iue 5 Mixed Efficient Global Optimization for Time- Dependent Reliability Analyi Zhen Hu and Xiaoping Du 1 Department of Mechanical and Aeropace Engineering Miouri

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Lecture 1: Introduction Course Objectives: The focus of this course is on gaining understanding on how to make an

More information

Extreme value distributions for nonlinear transformations of vector Gaussian processes

Extreme value distributions for nonlinear transformations of vector Gaussian processes Probabilistic Engineering Mechanics 22 (27) 136 149 www.elsevier.com/locate/probengmech Extreme value distributions for nonlinear transformations of vector Gaussian processes Sayan Gupta, P.H.A.J.M. van

More information

Reduction of Random Variables in Structural Reliability Analysis

Reduction of Random Variables in Structural Reliability Analysis Reduction of Random Variables in Structural Reliability Analysis S. ADHIKARI AND R. S. LANGLEY Cambridge University Engineering Department Cambridge, U.K. Random Variable Reduction in Reliability Analysis

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Markov Processes. Stochastic process. Markov process

Markov Processes. Stochastic process. Markov process Markov Processes Stochastic process movement through a series of well-defined states in a way that involves some element of randomness for our purposes, states are microstates in the governing ensemble

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

System Reliability-Based Design Optimization of Structures Constrained by First Passage Probability

System Reliability-Based Design Optimization of Structures Constrained by First Passage Probability System Reliability-Based Design Optimization of Structures Constrained by First Passage Probability Junho Chun* University of Illinois at Urbana-Champaign, USA Junho Song Seoul National University, Korea

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS (Semester I: AY 2014-15) Time Allowed: 2 Hours INSTRUCTIONS TO CANDIDATES 1. Please write your student number only. 2. This examination

More information

component risk analysis

component risk analysis 273: Urban Systems Modeling Lec. 3 component risk analysis instructor: Matteo Pozzi 273: Urban Systems Modeling Lec. 3 component reliability outline risk analysis for components uncertain demand and uncertain

More information

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Brian Williams and Rick Picard LA-UR-12-22467 Statistical Sciences Group, Los Alamos National Laboratory Abstract Importance

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Practical unbiased Monte Carlo for Uncertainty Quantification

Practical unbiased Monte Carlo for Uncertainty Quantification Practical unbiased Monte Carlo for Uncertainty Quantification Sergios Agapiou Department of Statistics, University of Warwick MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University

More information

A Backward Particle Interpretation of Feynman-Kac Formulae

A Backward Particle Interpretation of Feynman-Kac Formulae A Backward Particle Interpretation of Feynman-Kac Formulae P. Del Moral Centre INRIA de Bordeaux - Sud Ouest Workshop on Filtering, Cambridge Univ., June 14-15th 2010 Preprints (with hyperlinks), joint

More information

Monte Carlo Methods in Statistical Mechanics

Monte Carlo Methods in Statistical Mechanics Monte Carlo Methods in Statistical Mechanics Mario G. Del Pópolo Atomistic Simulation Centre School of Mathematics and Physics Queen s University Belfast Belfast Mario G. Del Pópolo Statistical Mechanics

More information

QUALIFYING EXAM IN SYSTEMS ENGINEERING

QUALIFYING EXAM IN SYSTEMS ENGINEERING QUALIFYING EXAM IN SYSTEMS ENGINEERING Written Exam: MAY 23, 2017, 9:00AM to 1:00PM, EMB 105 Oral Exam: May 25 or 26, 2017 Time/Location TBA (~1 hour per student) CLOSED BOOK, NO CHEAT SHEETS BASIC SCIENTIFIC

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

DYNAMIC RELIABILITY ANALYSIS AND DESIGN FOR COMPLEX ENGINEERED SYSTEMS. A Dissertation by. Zequn Wang

DYNAMIC RELIABILITY ANALYSIS AND DESIGN FOR COMPLEX ENGINEERED SYSTEMS. A Dissertation by. Zequn Wang DYNAMIC RELIABILITY ANALYSIS AND DESIGN FOR COMPLEX ENGINEERED SYSTEMS A Dissertation by Zequn Wang Bachelor of Engineering, University of Science and Technology Beijing, China, 2006 Master of Science,

More information

A general procedure for rst/second-order reliability method (FORM/SORM)

A general procedure for rst/second-order reliability method (FORM/SORM) Structural Safety 21 (1999) 95±112 www.elsevier.nl/locate/strusafe A general procedure for rst/second-order reliability method (FORM/SORM) Yan-Gang Zhao*, Tetsuro Ono Department of Architecture, Nagoya

More information

8 Error analysis: jackknife & bootstrap

8 Error analysis: jackknife & bootstrap 8 Error analysis: jackknife & bootstrap As discussed before, it is no problem to calculate the expectation values and statistical error estimates of normal observables from Monte Carlo. However, often

More information

Accelerated Life Testing (ALT) Design Based on Computational Reliability Analysis

Accelerated Life Testing (ALT) Design Based on Computational Reliability Analysis Research Article (wileyonlinelibrary.com) DOI: 10.1002/qre.1929 Published online in Wiley Online Library Accelerated Life Testing (ALT) Design Based on Computational Reliability Analysis Zhen Hu and Sankaran

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Research Collection. Basics of structural reliability and links with structural design codes FBH Herbsttagung November 22nd, 2013.

Research Collection. Basics of structural reliability and links with structural design codes FBH Herbsttagung November 22nd, 2013. Research Collection Presentation Basics of structural reliability and links with structural design codes FBH Herbsttagung November 22nd, 2013 Author(s): Sudret, Bruno Publication Date: 2013 Permanent Link:

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Reliability Based Design Optimization of Systems with. Dynamic Failure Probabilities of Components. Arun Bala Subramaniyan

Reliability Based Design Optimization of Systems with. Dynamic Failure Probabilities of Components. Arun Bala Subramaniyan Reliability Based Design Optimization of Systems with Dynamic Failure Probabilities of Components by Arun Bala Subramaniyan A Thesis Presented in Partial Fulfillment of the Requirements for the Degree

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

Professor Terje Haukaas University of British Columbia, Vancouver Sampling ( ) = f (x)dx

Professor Terje Haukaas University of British Columbia, Vancouver   Sampling ( ) = f (x)dx Sampling There exist several sampling schemes to address the reliability problem. In fact, sampling is equally applicable to component and system reliability problems. For this reason, the failure region

More information

Markov Chain Monte Carlo Methods for Stochastic

Markov Chain Monte Carlo Methods for Stochastic Markov Chain Monte Carlo Methods for Stochastic Optimization i John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U Florida, Nov 2013

More information

Risk Analysis: Efficient Computation of Failure Probability

Risk Analysis: Efficient Computation of Failure Probability Risk Analysis: Efficient Computation of Failure Probability Nassim RAZAALY CWI - INRIA Bordeaux nassim.razaaly@inria.fr 20/09/2017 Nassim RAZAALY (INRIA-CWI) Tail Probability 20/09/2017 1 / 13 Motivation:

More information

Particle Filtering for Data-Driven Simulation and Optimization

Particle Filtering for Data-Driven Simulation and Optimization Particle Filtering for Data-Driven Simulation and Optimization John R. Birge The University of Chicago Booth School of Business Includes joint work with Nicholas Polson. JRBirge INFORMS Phoenix, October

More information

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS Markus Holzmann LPMMC, UJF, Grenoble, and LPTMC, UPMC, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus (Dated: January 24, 2012)

More information

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit David Vener Department of Mathematics, MIT May 5, 3 Introduction In 8.366, we discussed the relationship

More information

Robustesse des techniques de Monte Carlo dans l analyse d événements rares

Robustesse des techniques de Monte Carlo dans l analyse d événements rares Institut National de Recherche en Informatique et Automatique Institut de Recherche en Informatique et Systèmes Aléatoires Robustesse des techniques de Monte Carlo dans l analyse d événements rares H.

More information

Finite-Horizon Statistics for Markov chains

Finite-Horizon Statistics for Markov chains Analyzing FSDT Markov chains Friday, September 30, 2011 2:03 PM Simulating FSDT Markov chains, as we have said is very straightforward, either by using probability transition matrix or stochastic update

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

Uncertainty Quantification in Remaining Useful Life Prediction using First-Order Reliability Methods

Uncertainty Quantification in Remaining Useful Life Prediction using First-Order Reliability Methods ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON RELIABILITY 1 Uncertainty Quantification in Remaining Useful Life Prediction using First-Order Reliability Methods Shankar Sankararaman*, Member, IEEE,

More information

Duality revisited. Javier Peña Convex Optimization /36-725

Duality revisited. Javier Peña Convex Optimization /36-725 Duality revisited Javier Peña Conve Optimization 10-725/36-725 1 Last time: barrier method Main idea: approimate the problem f() + I C () with the barrier problem f() + 1 t φ() tf() + φ() where t > 0 and

More information

Matrix analytic methods. Lecture 1: Structured Markov chains and their stationary distribution

Matrix analytic methods. Lecture 1: Structured Markov chains and their stationary distribution 1/29 Matrix analytic methods Lecture 1: Structured Markov chains and their stationary distribution Sophie Hautphenne and David Stanford (with thanks to Guy Latouche, U. Brussels and Peter Taylor, U. Melbourne

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Using the Empirical Probability Integral Transformation to Construct a Nonparametric CUSUM Algorithm

Using the Empirical Probability Integral Transformation to Construct a Nonparametric CUSUM Algorithm Using the Empirical Probability Integral Transformation to Construct a Nonparametric CUSUM Algorithm Daniel R. Jeske University of California, Riverside Department of Statistics Joint work with V. Montes

More information

Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling

Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling Brian A. Lockwood, Markus P. Rumpfkeil, Wataru Yamazaki and Dimitri J. Mavriplis Mechanical Engineering

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Reliability Prediction of a Return Thermal Expansion Joint

Reliability Prediction of a Return Thermal Expansion Joint Reliability Prediction of a Return Thermal Expansion Joint O.M. Al-Habahbeh 1,*, D.K. Aidun 2, P. Marzocca 2 1 Mechatronic Engineering Dept., The University of Jordan, Amman, 11942 Jordan 2 Mechanical

More information

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit Paul Dupuis Division of Applied Mathematics Brown University IPAM (J. Doll, M. Snarski,

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Department of Biomedical Engineering and Computational Science Aalto University April 28, 2010 Contents 1 Multiple Model

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

On the Optimal Scaling of the Modified Metropolis-Hastings algorithm

On the Optimal Scaling of the Modified Metropolis-Hastings algorithm On the Optimal Scaling of the Modified Metropolis-Hastings algorithm K. M. Zuev & J. L. Beck Division of Engineering and Applied Science California Institute of Technology, MC 4-44, Pasadena, CA 925, USA

More information

However, reliability analysis is not limited to calculation of the probability of failure.

However, reliability analysis is not limited to calculation of the probability of failure. Probabilistic Analysis probabilistic analysis methods, including the first and second-order reliability methods, Monte Carlo simulation, Importance sampling, Latin Hypercube sampling, and stochastic expansions

More information

Module 8. Lecture 5: Reliability analysis

Module 8. Lecture 5: Reliability analysis Lecture 5: Reliability analysis Reliability It is defined as the probability of non-failure, p s, at which the resistance of the system exceeds the load; where P() denotes the probability. The failure

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

Interactions of Information Theory and Estimation in Single- and Multi-user Communications

Interactions of Information Theory and Estimation in Single- and Multi-user Communications Interactions of Information Theory and Estimation in Single- and Multi-user Communications Dongning Guo Department of Electrical Engineering Princeton University March 8, 2004 p 1 Dongning Guo Communications

More information

MCMC algorithms for Subset Simulation

MCMC algorithms for Subset Simulation To appear in Probabilistic Engineering Mechanics June 2015 MCMC algorithms for Subset Simulation Iason Papaioannou *, Wolfgang Betz, Kilian Zwirglmaier, Daniel Straub Engineering Risk Analysis Group, Technische

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Real roots of random polynomials and zero crossing properties of diffusion equation

Real roots of random polynomials and zero crossing properties of diffusion equation Real roots of random polynomials and zero crossing properties of diffusion equation Grégory Schehr Laboratoire de Physique Théorique et Modèles Statistiques Orsay, Université Paris XI G. S., S. N. Majumdar,

More information

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring Communications of the Korean Statistical Society 2011, Vol. 18, No. 5, 657 666 DOI: http://dx.doi.org/10.5351/ckss.2011.18.5.657 Estimation in an Exponentiated Half Logistic Distribution under Progressively

More information

Structural reliability analysis of rotor blades in ultimate loading

Structural reliability analysis of rotor blades in ultimate loading EWEA 2011 Brussels, Belgium: Europe s Premier Wind Energy Event Structural reliability analysis of rotor blades in ultimate loading K. C. Bacharoudis 1, D. J. Lekou 2, T. P. Philippidis 1 1. University

More information

A framework for adaptive Monte-Carlo procedures

A framework for adaptive Monte-Carlo procedures A framework for adaptive Monte-Carlo procedures Jérôme Lelong (with B. Lapeyre) http://www-ljk.imag.fr/membres/jerome.lelong/ Journées MAS Bordeaux Friday 3 September 2010 J. Lelong (ENSIMAG LJK) Journées

More information

RELIABILITY MODELING OF IMPACTED COMPOSITE MATERIALS FOR RAILWAYS

RELIABILITY MODELING OF IMPACTED COMPOSITE MATERIALS FOR RAILWAYS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS RELIABILITY MODELING OF IMPACTED COMPOSITE MATERIALS FOR RAILWAYS Guillaumat L*, Dau F*, Cocheteux F**, Chauvin T** *LAMEFIP ENSAM Esplanade des Arts

More information

Reliability Theory of Dynamic Loaded Structures (cont.) Calculation of Out-Crossing Frequencies Approximations to the Failure Probability.

Reliability Theory of Dynamic Loaded Structures (cont.) Calculation of Out-Crossing Frequencies Approximations to the Failure Probability. Outline of Reliability Theory of Dynamic Loaded Structures (cont.) Calculation of Out-Crossing Frequencies Approximations to the Failure Probability. Poisson Approximation. Upper Bound Solution. Approximation

More information

Manifold Monte Carlo Methods

Manifold Monte Carlo Methods Manifold Monte Carlo Methods Mark Girolami Department of Statistical Science University College London Joint work with Ben Calderhead Research Section Ordinary Meeting The Royal Statistical Society October

More information