A Backward Particle Interpretation of Feynman-Kac Formulae

Size: px
Start display at page:

Download "A Backward Particle Interpretation of Feynman-Kac Formulae"

Transcription

1 A Backward Particle Interpretation of Feynman-Kac Formulae P. Del Moral Centre INRIA de Bordeaux - Sud Ouest Workshop on Filtering, Cambridge Univ., June 14-15th 2010 Preprints (with hyperlinks), joint works with A. Doucet & S.S. Singh: A Backward Particle Interpretation of Feynman-Kac Formulae HAL-INRIA RR-7019 (2009), to appear in M2AN (2010). Forward Smoothing Using Sequential Monte Carlo CUED/F-INFENG/TR.638. Cambridge University, Engineering Dpt. (2009). P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 1 / 26

2 Outline 1 Introduction, motivations 2 Nonlinear Markov models 3 Some convergence results 4 Additive functionals P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 2 / 26

3 Summary 1 Introduction, motivations Some notation Feynman-Kac measures Filtering and sensitivity analysis 2 Nonlinear Markov models 3 Some convergence results 4 Additive functionals P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 3 / 26

4 Some notation E measurable state space, P(E) proba. on E, B(E) bounded meas. functions (µ, f ) P(E) B(E) µ(f ) = µ(dx) f (x) M(x, dy) integral operator over E M(f )(x) = M(x, dy)f (y) [µm](dy) = µ(dx)m(x, dy) (= [µm](f ) = µ[m(f )] ) Bayes-Boltzmann-Gibbs transformation : G : E [0, [ with µ(g) > 0 Ψ G (µ)(dx) = 1 µ(g) G(x) µ(dx) E finite Vector-Matrix notation µ = [µ(1),..., µ(d)] and f = [f (1),..., f (d)] P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 4 / 26

5 Feynman-Kac measures Markov X n with transitions M n (x n 1, dx n ) on some state space E n. Potential functions G n : x n E n G n (x n ) [0, [ Feynman-Kac path measures: dq n := 1 G p (X p ) Z n dp n with P n := Law(X 0,..., X n ) 0 p<n The n-time marginals: f n B(E n ) η n (f n ) := γ n(f n ) γ n (1) with γ n (f n ) := E f n (X n ) G p (X p ) 0 p<n Updated measures Q n, η n, and γ n w.r.t. the product 0 p n P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 5 / 26

6 Example : Nonlinear filtering P ((X n, Y n ) d(x, y) (X n 1, Y n 1 )) := M n (X n 1, dx) g n (x, y) λ Y n (dy) Given the observation sequence Y = y with G n (x n ) = g n (x n, y n ) η n = Law(X n 0 p n Y p = y p ) γ n (1) = p n (y 0,..., y n ) ( density w.r.t. 0 p n λ Y ) p In path space settings smoothing and path estimation Q n = Law((X 0,..., X n ) 0 p n Y p = y p ) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 6 / 26

7 Sensitivity analysis Expected Maximization θ M n (x n 1, dx n ) = p θ n(x n 1, x n ) λ X n (dx n ) and g θ n (x, y) λ Y n (dy) Parametric Feynman-Kac models : (G n, Q n, γ n, η n,...) (G θ n, Q θ n, γ θ n, η θ n,...) θ log γθ n(1) = Q θ n(f θ n ) with the additive functional and F θ n (x 0,..., x n ) := θ Q θ n(ϕ n ) = Q ( θ n Fn θ [ϕ n Q ) θ n(ϕ n )] 0 k n f θ k (x k 1, x k ) fk θ (x k 1, x p ) := log G p θ (x k ) + log pθ k (x k 1, x k ) θ θ Expected Maximization min entropy (additive fct. F θ n θ E n (θ, θ ) := Q θ n ( log (d Q θ n/d without derivatives) )) θ Q n Q θ n(fn θ ) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 7 / 26

8 3 Key observations η n (f n ) := γ n(f n ) γ n (1) with γ n (f n ) := E f n (X n ) G p (X p ) 0 p<n Path space models: [ X n := (X 0,..., X n) & G n (X n ) := G n(x n)] = η n = Q n A multiplicative formula: Z n = E G p (X p ) = η p (G p ) 0 p<n 0 p<n Proof: Z n := γ n (1) = γ n 1 (G n 1 ) = η n 1 (G n 1 ) γ n 1 (1) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 8 / 26

9 3 Key observations Path space models: M n (X n 1, dx n ) = P (X n dx n X n 1 ) = H n (X n 1, x n ) λ n (dx n ) Q n (d(x 0,..., x n )) = η n (dx n ) M n,ηn 1 (x n, dx n 1 )... M 1,η0 (x 1, dx 0 ) with the backward Markov transitions : M n,ηn 1 (x n, dx n 1 ) G n 1 (x n 1 ) H n (x n 1, x n ) η n 1 (dx n 1 ) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 9 / 26

10 Summary 1 Introduction, motivations 2 Nonlinear Markov models McKean distribution models Mean field particle interpretations The 4 types of particle approximation measures 3 Some convergence results 4 Additive functionals P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 10 / 26

11 Nonlinear Markov models Flows of Feynman-Kac measures A two step correction prediction model η n Updating-correction Prediction/Markov transport η n = Ψ Gn (η n ) η n+1 = η n M n+1 Selection nonlinear transport formulae Ψ Gn (η n ) = η n S n,ηn with, for any ɛ n = ɛ n (η n ) [0, 1] s.t. ɛ n G n 1 S n,ηn (x,.) := ɛ n G n (x) δ x + (1 ɛ n G n (x)) Ψ Gn (η n ) η n+1 = η n (S n,ηn M n+1 ) := η n K n+1,ηn P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 11 / 26

12 Nonlinear Markov chains η n = Law(X n )=Perfect sampling algorithm Nonlinear transport formulae : η n+1 = η n K n+1,ηn with the collection of Markov probability transitions : K n+1,ηn = S n,ηn M n+1 Local transitions : P(X n dx n X n 1 ) = K n,η n 1 (X n 1, dx n ) avec η n 1 = Law(X n 1 ) McKean measures (canonical process) : P n (d(x 0,..., x n )) = η 0 (dx 0 ) K 1,η0 (x 0, dx 1 )... K n,ηn 1 (x n 1, dx n ) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 12 / 26

13 Mean field particle interpretations Sampling pb Mean field particle interpretations Markov Chain ξ n = (ξn, 1..., ξn N ) En N s.t. η N n := 1 δ N ξ i n N η n 1 i N Approximated local transitions ( 1 i N) ξn 1 i ξn i K n,η N n 1 (ξn 1, i dx n ) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 13 / 26

14 Schematic picture : ξ n E N n ξ n+1 E N n+1 Rationale : ξ 1 n. ξ i n. ξ N n K n+1,η N n ξ 1 n+1. ξ i n+1. ξ N n+1 η N n N η n = K n+1,η N n N K n+1,ηn = ξ i i.i.d. copies of X Particle McKean measures : 1 N N δ (ξ i 0,...,ξn i ) N Law(X 0,..., X n ) i=1 P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 14 / 26

15 Some key advantages Mean field models=stochastic linearization/perturbation technique : η N n = η N n 1K n,η N n N W N n avec Wn N W n Centered Gaussian Fields. η n = η n 1 K n,ηn 1 stable No propagation of local sampling errors = Uniform control w.r.t. the time horizon No burning, no need to study the stability of MCMC models. Stochastic adaptive grid approximation Nonlinear system positive-benefic interactions. Simple and natural sampling algorithm. P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 15 / 26

16 Feynman-Kac models Genetic type stochastic algo. ξṇ 1 ξ 1 M n+1 n ξn+1 1. S ξṇ i n,η N n.. ξ n i ξn+1 i... ξn N ξn+1 N Acceptance/Rejection-Selection : [Geometric type clocks] ξ N n S n,η N n (ξ i n, dx) := ɛ n G n (ξn) i δ ξ i n (dx) + ( 1 ɛ n G n (ξn) ) i N G n(ξ j P n ) j=1 N k=1 Gn(ξk )δ ξ j (dx) n n Ex. : G n = 1 A G n (ξ i n) = 1 A (ξ i n) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 16 / 26

17 Interaction/branch. process 4 types of occupation measures (N = 3) = = = Current population 1 N Genealogical tree 1 N N i=1 N i=1 Unbias particle normalizing Constants Zn N := ηp N (G p ) 0 p<n δ ξ i n i-th individual at time n η n δ (ξ i 0,n,ξ i 1,n,...,ξi n,n) i-th ancestral line Q n 0 p<n η p (G p ) = Z n P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 17 / 26

18 Interaction/branch. process 4 types of occupation measures (N = 3) = = = Complete genealogical tree McKean measures 1 N N i=1 δ (ξ i 0,ξ i 1,...,ξi n) η 0(dx 0 )K 1,η0 (x 0, dx 1 )... K n,ηn 1 (x n 1, dx n ) Backward Feynman-Kac path measures [ elementary Matrices operations] Q N n (d(x 0,..., x n )) = ηn N (dx n ) M n,η N n 1 (x n, dx n 1 )... M 1,η N 0 (x 1, dx 0 ) η n (dx n ) M n,ηn 1 (x n, dx n 1 )... M 1,η0 (x 1, dx 0 ) = Q n (d(x 0,..., x n )) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 18 / 26

19 Equivalent Stochastic Algorithms : Genetic and evolutionary type algorithms. Spatial branching models. Sequential Monte Carlo methods. Population Monte Carlo models. Diffusion Monte Carlo (DMC), Quantum Monte Carlo (QMC),... Some botanical names = application domain areas : particle filters, bootsrapping, selection, pruning-enrichment, reconfiguration, cloning, go with the winner, spawning, condensation, grouping, rejuvenations, harmony searches, biomimetics, splitting, [(Meta)Heuristics] 1996 Feynman-Kac mean field particle model P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 19 / 26

20 Summary 1 Introduction, motivations 2 Nonlinear Markov models 3 Some convergence results Non asymptotic theorems Unnormalized models 4 Additive functionals P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 20 / 26

21 Asympt. theo. TCL,PGD, PDM (n,n) fixed some examples : Empirical processes : sup sup N E( η N n η n p F n ) < n 0 N 1 Concentration inequalities uniform w.r.t. time : sup P( ηn N (f n ) η n (f n ) > ɛ) c exp (Nɛ 2 )/(2 σ 2 ) n 0 + Guionnet sup n 0 (IHP 01) & Ledoux sup Fn (JTP 00) & Rio AAP 10 Propagations of chaos exansions (+Patras,Rubenthaler (AAP 09)) : P N n,q := Loi(ξ 1 n,..., ξ q n) η q n + 1 N 1 P n,q N k k P n,q + 1 N k+1 k+1 P N n,q with sup N 1 k+1 P N n,q tv < & sup n 0 1 P n,q tv c q 2. P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 21 / 26

22 Unnormalized models Un-bias particle approximation measures γn N (f n ) := ηn N (f n ) ηp N (G p ) 0 p<n Asymptotic theorms : fluctuations & deviations + A. Guionnet (AAP 99, SPA 98), + L. Miclo (SP 2000), + D. Dawson Non asymptotic theory : bias and variance estimates 1 Taylor type expansion (+Patras & Rubenthaler (AAP 09) : E ( (γ N n ) q (F ) ) =: Q N n,q(f ) = γ q n (F ) + 1 k (q 1)(n+1) 1 N k k Q n,q (F ) 2 Variance estimates (+Cerou & Guyader Hal-INRIA 08 & IPH 2010) : ( [γ N E n (f n ) γ n (f n ) ] ) 2 c n N γ n(1) 2 P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 22 / 26

23 Summary 1 Introduction, motivations 2 Nonlinear Markov models 3 Some convergence results 4 Additive functionals P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 23 / 26

24 Additive funct. (+ Doucet & Singh Hal-INRIA 09 & M2AN 2010) Path space models P n := Law(X 0,..., X n ) dq n := 1 G p (X p ) Z n dp n 0 p<n Hyp. : M n (x n 1, dx n ) = H n (x n 1, x n ) λ n (dx n ) Q n (d(x 0,..., x n )) = η n (dx n ) M n,ηn 1 (x n, dx n 1 )... M 1,η0 (x 1, dx 0 ) with the backward transitions : M p+1,η (x, dx ) G p (x ) H p+1 (x, x) η(dx ) Particle estimates complete genealogical tree : Q N n (d(x 0,..., x n )) = η N n (dx n ) M n,η N n 1 (x n, dx n 1 )... M 1,η N 0 (x 1, dx 0 ) P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 24 / 26

25 2 type of path-space estimates Complete genealogical tree = McKean meas. FK-Path space 1 N N δ (ξ i 0,...,ξn i ) N Loi(X 0,..., X n ) & Q N n N Q n i=1 Simple genealogical tree = FK-Path space N η N n = 1 N i=1 δ (ξ i 0,n,ξ i 1,n,...,ξi n,n ) N Q n = η n Main problem : Path degeneracy w.r.t. time horizon (as any genetic ancestral tree) Roughly : Uniform estimates linear estimates w.r.t. the time horizon P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 25 / 26

26 Some non asymptotic estimates Additive functional : F n (x 0,..., x n ) = 1 n p n f p (x p ) Bias estimate+uniform L p -bounds + variance (1/N 2 ) N E ( [(Q N n Q n )(F n )] 2) c 1/n +1/N }{{} bias term Uniform exponential concentration 1 log sup P N n 0 ( [Q N n Q n ](F n ) b ) + ɛ ɛ 2 /(2b 2 ) N P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 26 / 26

An introduction to particle simulation of rare events

An introduction to particle simulation of rare events An introduction to particle simulation of rare events P. Del Moral Centre INRIA de Bordeaux - Sud Ouest Workshop OPUS, 29 juin 2010, IHP, Paris P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 1 / 33 Outline

More information

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand Concentration inequalities for Feynman-Kac particle models P. Del Moral INRIA Bordeaux & IMB & CMAP X Journées MAS 2012, SMAI Clermond-Ferrand Some hyper-refs Feynman-Kac formulae, Genealogical & Interacting

More information

Advanced Monte Carlo integration methods. P. Del Moral (INRIA team ALEA) INRIA & Bordeaux Mathematical Institute & X CMAP

Advanced Monte Carlo integration methods. P. Del Moral (INRIA team ALEA) INRIA & Bordeaux Mathematical Institute & X CMAP Advanced Monte Carlo integration methods P. Del Moral (INRIA team ALEA) INRIA & Bordeaux Mathematical Institute & X CMAP MCQMC 2012, Sydney, Sunday Tutorial 12-th 2012 Some hyper-refs Feynman-Kac formulae,

More information

Mean field simulation for Monte Carlo integration. Part II : Feynman-Kac models. P. Del Moral

Mean field simulation for Monte Carlo integration. Part II : Feynman-Kac models. P. Del Moral Mean field simulation for Monte Carlo integration Part II : Feynman-Kac models P. Del Moral INRIA Bordeaux & Inst. Maths. Bordeaux & CMAP Polytechnique Lectures, INLN CNRS & Nice Sophia Antipolis Univ.

More information

A new class of interacting Markov Chain Monte Carlo methods

A new class of interacting Markov Chain Monte Carlo methods A new class of interacting Marov Chain Monte Carlo methods P Del Moral, A Doucet INRIA Bordeaux & UBC Vancouver Worshop on Numerics and Stochastics, Helsini, August 2008 Outline 1 Introduction Stochastic

More information

Mean field simulation for Monte Carlo integration. Part I : Intro. nonlinear Markov models (+links integro-diff eq.) P. Del Moral

Mean field simulation for Monte Carlo integration. Part I : Intro. nonlinear Markov models (+links integro-diff eq.) P. Del Moral Mean field simulation for Monte Carlo integration Part I : Intro. nonlinear Markov models (+links integro-diff eq.) P. Del Moral INRIA Bordeaux & Inst. Maths. Bordeaux & CMAP Polytechnique Lectures, INLN

More information

Contraction properties of Feynman-Kac semigroups

Contraction properties of Feynman-Kac semigroups Journées de Statistique Marne La Vallée, January 2005 Contraction properties of Feynman-Kac semigroups Pierre DEL MORAL, Laurent MICLO Lab. J. Dieudonné, Nice Univ., LATP Univ. Provence, Marseille 1 Notations

More information

On the stability and the applications of interacting particle systems

On the stability and the applications of interacting particle systems 1/42 On the stability and the applications of interacting particle systems P. Del Moral INRIA Bordeaux Sud Ouest PDE/probability interactions - CIRM, April 2017 Synthesis joint works with A.N. Bishop,

More information

On the Concentration Properties of Interacting Particle Processes. Contents

On the Concentration Properties of Interacting Particle Processes. Contents Foundations and Trends R in Machine Learning Vol. 3, Nos. 3 4 (2010) 225 389 c 2012 P. Del Moral, P. Hu, and L. Wu DOI: 10.1561/2200000026 On the Concentration Properties of Interacting Particle Processes

More information

A Backward Particle Interpretation of Feynman-Kac Formulae

A Backward Particle Interpretation of Feynman-Kac Formulae A Backward Particle Interpretation of Feynman-Kac Formulae Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh To cite this version: Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh. A Backward Particle Interpretation

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

On the concentration properties of Interacting particle processes

On the concentration properties of Interacting particle processes ISTITUT ATIOAL DE RECHERCHE E IFORMATIQUE ET E AUTOMATIQUE arxiv:1107.1948v2 [math.a] 12 Jul 2011 On the concentration properties of Interacting particle processes Pierre Del Moral, Peng Hu, Liming Wu

More information

Stability of Feynman-Kac Semigroup and SMC Parameters' Tuning

Stability of Feynman-Kac Semigroup and SMC Parameters' Tuning Stability of Feynman-Kac Semigroup and SMC Parameters' Tuning François GIRAUD PhD student, CEA-CESTA, INRIA Bordeaux Tuesday, February 14th 2012 1 Recalls and context of the analysis Feynman-Kac semigroup

More information

Full text available at: On the Concentration Properties of Interacting Particle Processes

Full text available at:  On the Concentration Properties of Interacting Particle Processes On the Concentration Properties of Interacting Particle Processes On the Concentration Properties of Interacting Particle Processes Pierre Del Moral INRIA, Université Bordeaux 1 France Peng Hu INRIA, Université

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Perfect simulation algorithm of a trajectory under a Feynman-Kac law Perfect simulation algorithm of a trajectory under a Feynman-Kac law Data Assimilation, 24th-28th September 212, Oxford-Man Institute C. Andrieu, N. Chopin, A. Doucet, S. Rubenthaler University of Bristol,

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

On Adaptive Resampling Procedures for Sequential Monte Carlo Methods

On Adaptive Resampling Procedures for Sequential Monte Carlo Methods On Adaptive Resampling Procedures for Sequential Monte Carlo Methods Pierre Del Moral, Arnaud Doucet, Ajay Jasra To cite this version: Pierre Del Moral, Arnaud Doucet, Ajay Jasra. On Adaptive Resampling

More information

A Backward Particle Interpretation of Feynman-Kac Formulae

A Backward Particle Interpretation of Feynman-Kac Formulae A Backward Particle Interpretation of Feynman-Kac Formulae Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh To cite this version: Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh. A Backward Particle Interpretation

More information

Introduction. log p θ (y k y 1:k 1 ), k=1

Introduction. log p θ (y k y 1:k 1 ), k=1 ESAIM: PROCEEDINGS, September 2007, Vol.19, 115-120 Christophe Andrieu & Dan Crisan, Editors DOI: 10.1051/proc:071915 PARTICLE FILTER-BASED APPROXIMATE MAXIMUM LIKELIHOOD INFERENCE ASYMPTOTICS IN STATE-SPACE

More information

Importance splitting for rare event simulation

Importance splitting for rare event simulation Importance splitting for rare event simulation F. Cerou Frederic.Cerou@inria.fr Inria Rennes Bretagne Atlantique Simulation of hybrid dynamical systems and applications to molecular dynamics September

More information

On the Robustness of the Snell envelope

On the Robustness of the Snell envelope On the Robustness of the Snell envelope Pierre Del Moral, Peng Hu, adia Oudjane, Bruno Rémillard To cite this version: Pierre Del Moral, Peng Hu, adia Oudjane, Bruno Rémillard On the Robustness of the

More information

STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR FILTERS USING THE HILBERT METRIC, AND APPLICATION TO PARTICLE FILTERS 1

STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR FILTERS USING THE HILBERT METRIC, AND APPLICATION TO PARTICLE FILTERS 1 The Annals of Applied Probability 0000, Vol. 00, No. 00, 000 000 STABILITY AND UNIFORM APPROXIMATION OF NONLINAR FILTRS USING TH HILBRT MTRIC, AND APPLICATION TO PARTICL FILTRS 1 By François LeGland and

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

Markov Chain Monte Carlo Methods for Stochastic

Markov Chain Monte Carlo Methods for Stochastic Markov Chain Monte Carlo Methods for Stochastic Optimization i John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U Florida, Nov 2013

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Particle Filters: Convergence Results and High Dimensions

Particle Filters: Convergence Results and High Dimensions Particle Filters: Convergence Results and High Dimensions Mark Coates mark.coates@mcgill.ca McGill University Department of Electrical and Computer Engineering Montreal, Quebec, Canada Bellairs 2012 Outline

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Perturbed Proximal Gradient Algorithm

Perturbed Proximal Gradient Algorithm Perturbed Proximal Gradient Algorithm Gersende FORT LTCI, CNRS, Telecom ParisTech Université Paris-Saclay, 75013, Paris, France Large-scale inverse problems and optimization Applications to image processing

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Weak convergence of Markov chain Monte Carlo II

Weak convergence of Markov chain Monte Carlo II Weak convergence of Markov chain Monte Carlo II KAMATANI, Kengo Mar 2011 at Le Mans Background Markov chain Monte Carlo (MCMC) method is widely used in Statistical Science. It is easy to use, but difficult

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 7 Sequential Monte Carlo methods III 7 April 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Convergence of Quantum Statistical Experiments

Convergence of Quantum Statistical Experiments Convergence of Quantum Statistical Experiments M!d!lin Gu"! University of Nottingham Jonas Kahn (Paris-Sud) Richard Gill (Leiden) Anna Jen#ová (Bratislava) Statistical experiments and statistical decision

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

An introduction to stochastic particle integration methods: with applications to risk and insurance

An introduction to stochastic particle integration methods: with applications to risk and insurance An introduction to stochastic particle integration methods: with applications to risk and insurance P. Del Moral, G. W. Peters, C. Vergé Abstract This article presents a guided introduction to a general

More information

SMC 2 : an efficient algorithm for sequential analysis of state-space models

SMC 2 : an efficient algorithm for sequential analysis of state-space models SMC 2 : an efficient algorithm for sequential analysis of state-space models N. CHOPIN 1, P.E. JACOB 2, & O. PAPASPILIOPOULOS 3 1 ENSAE-CREST 2 CREST & Université Paris Dauphine, 3 Universitat Pompeu Fabra

More information

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz 1 Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz Technische Universität München Fakultät für Mathematik Lehrstuhl für Numerische Mathematik jonas.latz@tum.de November

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Boltzmann-Gibbs Preserving Langevin Integrators

Boltzmann-Gibbs Preserving Langevin Integrators Boltzmann-Gibbs Preserving Langevin Integrators Nawaf Bou-Rabee Applied and Comp. Math., Caltech INI Workshop on Markov-Chain Monte-Carlo Methods March 28, 2008 4000 atom cluster simulation Governing Equations

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

A Note on Auxiliary Particle Filters

A Note on Auxiliary Particle Filters A Note on Auxiliary Particle Filters Adam M. Johansen a,, Arnaud Doucet b a Department of Mathematics, University of Bristol, UK b Departments of Statistics & Computer Science, University of British Columbia,

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

dans les modèles à vraisemblance non explicite par des algorithmes gradient-proximaux perturbés

dans les modèles à vraisemblance non explicite par des algorithmes gradient-proximaux perturbés Inférence pénalisée dans les modèles à vraisemblance non explicite par des algorithmes gradient-proximaux perturbés Gersende Fort Institut de Mathématiques de Toulouse, CNRS and Univ. Paul Sabatier Toulouse,

More information

An introduction to Approximate Bayesian Computation methods

An introduction to Approximate Bayesian Computation methods An introduction to Approximate Bayesian Computation methods M.E. Castellanos maria.castellanos@urjc.es (from several works with S. Cabras, E. Ruli and O. Ratmann) Valencia, January 28, 2015 Valencia Bayesian

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

An introduction to particle filters

An introduction to particle filters An introduction to particle filters Andreas Svensson Department of Information Technology Uppsala University June 10, 2014 June 10, 2014, 1 / 16 Andreas Svensson - An introduction to particle filters Outline

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Adaptive Multilevel Splitting Algorithm

A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Adaptive Multilevel Splitting Algorithm A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Algorithm F. Cérou 1,2 B. Delyon 2 A. Guyader 3 M. Rousset 1,2 1 Inria Rennes Bretagne Atlantique 2 IRMAR, Université de Rennes

More information

On the Robustness of the Snell envelope

On the Robustness of the Snell envelope On the Robustness of the Snell envelope Pierre Del Moral, Peng Hu, adia Oudjane, Bruno Rémillard To cite this version: Pierre Del Moral, Peng Hu, adia Oudjane, Bruno Rémillard On the Robustness of the

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. Christoph Schnörr Bodo Rosenhahn Hans-Peter Seidel

Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. Christoph Schnörr Bodo Rosenhahn Hans-Peter Seidel Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications Jürgen Gall Jürgen Potthoff Christoph Schnörr Bodo Rosenhahn Hans-Peter Seidel MPI I 2006 4 009 September 2006 Authors

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Particle Filtering for Data-Driven Simulation and Optimization

Particle Filtering for Data-Driven Simulation and Optimization Particle Filtering for Data-Driven Simulation and Optimization John R. Birge The University of Chicago Booth School of Business Includes joint work with Nicholas Polson. JRBirge INFORMS Phoenix, October

More information

Variantes Algorithmiques et Justifications Théoriques

Variantes Algorithmiques et Justifications Théoriques complément scientifique École Doctorale MATISSE IRISA et INRIA, salle Markov jeudi 26 janvier 2012 Variantes Algorithmiques et Justifications Théoriques François Le Gland INRIA Rennes et IRMAR http://www.irisa.fr/aspi/legland/ed-matisse/

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Information theoretic perspectives on learning algorithms

Information theoretic perspectives on learning algorithms Information theoretic perspectives on learning algorithms Varun Jog University of Wisconsin - Madison Departments of ECE and Mathematics Shannon Channel Hangout! May 8, 2018 Jointly with Adrian Tovar-Lopez

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Pseudo-marginal MCMC methods for inference in latent variable models

Pseudo-marginal MCMC methods for inference in latent variable models Pseudo-marginal MCMC methods for inference in latent variable models Arnaud Doucet Department of Statistics, Oxford University Joint work with George Deligiannidis (Oxford) & Mike Pitt (Kings) MCQMC, 19/08/2016

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

ON COMPOUND POISSON POPULATION MODELS

ON COMPOUND POISSON POPULATION MODELS ON COMPOUND POISSON POPULATION MODELS Martin Möhle, University of Tübingen (joint work with Thierry Huillet, Université de Cergy-Pontoise) Workshop on Probability, Population Genetics and Evolution Centre

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 8: Importance Sampling 8.1 Importance Sampling Importance sampling

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Robustesse des techniques de Monte Carlo dans l analyse d événements rares

Robustesse des techniques de Monte Carlo dans l analyse d événements rares Institut National de Recherche en Informatique et Automatique Institut de Recherche en Informatique et Systèmes Aléatoires Robustesse des techniques de Monte Carlo dans l analyse d événements rares H.

More information

Asymptotics and Simulation of Heavy-Tailed Processes

Asymptotics and Simulation of Heavy-Tailed Processes Asymptotics and Simulation of Heavy-Tailed Processes Department of Mathematics Stockholm, Sweden Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013 Outline

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 1: Introduction

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 1: Introduction Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 1: Introduction 19 Winter M106 Class: MWF 12:50-1:55 pm @ 200

More information

Inference in state-space models with multiple paths from conditional SMC

Inference in state-space models with multiple paths from conditional SMC Inference in state-space models with multiple paths from conditional SMC Sinan Yıldırım (Sabancı) joint work with Christophe Andrieu (Bristol), Arnaud Doucet (Oxford) and Nicolas Chopin (ENSAE) September

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Using systematic sampling for approximating Feynman-Kac solutions by Monte Carlo methods

Using systematic sampling for approximating Feynman-Kac solutions by Monte Carlo methods Using systematic sampling for approximating Feynman-Kac solutions by Monte Carlo methods Ivan Gentil and Bruno Rémillard Abstract While convergence properties of many sampling selection methods can be

More information

Annealing Between Distributions by Averaging Moments

Annealing Between Distributions by Averaging Moments Annealing Between Distributions by Averaging Moments Chris J. Maddison Dept. of Comp. Sci. University of Toronto Roger Grosse CSAIL MIT Ruslan Salakhutdinov University of Toronto Partition Functions We

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

A Conditional Approach to Modeling Multivariate Extremes

A Conditional Approach to Modeling Multivariate Extremes A Approach to ing Multivariate Extremes By Heffernan & Tawn Department of Statistics Purdue University s April 30, 2014 Outline s s Multivariate Extremes s A central aim of multivariate extremes is trying

More information

Sequential Monte Carlo methods for system identification

Sequential Monte Carlo methods for system identification Technical report arxiv:1503.06058v3 [stat.co] 10 Mar 2016 Sequential Monte Carlo methods for system identification Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth,

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Minimizing D(Q,P) def = Q(h)

Minimizing D(Q,P) def = Q(h) Inference Lecture 20: Variational Metods Kevin Murpy 29 November 2004 Inference means computing P( i v), were are te idden variables v are te visible variables. For discrete (eg binary) idden nodes, exact

More information

Average-cost temporal difference learning and adaptive control variates

Average-cost temporal difference learning and adaptive control variates Average-cost temporal difference learning and adaptive control variates Sean Meyn Department of ECE and the Coordinated Science Laboratory Joint work with S. Mannor, McGill V. Tadic, Sheffield S. Henderson,

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information