Contraction properties of Feynman-Kac semigroups

Size: px
Start display at page:

Download "Contraction properties of Feynman-Kac semigroups"

Transcription

1 Journées de Statistique Marne La Vallée, January 2005 Contraction properties of Feynman-Kac semigroups Pierre DEL MORAL, Laurent MICLO Lab. J. Dieudonné, Nice Univ., LATP Univ. Provence, Marseille 1

2 Notations (E, E) measurable space P(E) = {µ probability on E} B b (E) = {f : E R bounded + E-measurable} (µ, f) P(E) B b (E) µ(f) = f(x)µ(dx) M(x, dx ) Markov kernel on E µm(dx ) = µ(dx)m(x, dx ) and M(f)(x) = M(x, dx )f(x ) and, with X n Markov chain M(x, dy) M n (x, dz) = M n 1 (x, dy)m(y, dz) = P x (X n dz) 2

3 Feynman-Kac models X n Markov chain M n (x, dy) on (E, E) Potential function G n : E [0, ) Feynman-Kac measures ( test funct. f : E R) η n (f) = γ n (f)/γ n (1) with γ n (f) = E η0 (f(x n ) 0 p<n G p (X p )) Ex.: Updated models γ n (f) = γ n (fg n ) η n (f) = γ n (f)/ γ n (1) = η n (fg n )/η n (G n ). G n = e βv n η n = n-th marginal path. measure Q n = 1 Z n exp { β 0 p<n V p(x p )} dp n G n = 1 A η n =Law(X n 0 p < n X p A) Note: Z n = γ n (1) and γ n (f) = η n (f) 0 p<n η p(g p ) 1 n log Z n = 1 n 0 p<n log η p(g p ) 3

4 Feynman-Kac semigroups Unnormalized models γ n = γ p Q p,n linear semigroup Q p,n (f)(x) = E p,x (f(x n ) p q<n G q (X q )) Normalized models η n = Φ p,n (η p ) nonlinear semigroup Φ p,n = Φ n 1,n Φ p,p+1 with Φ p,p+1 (η) = Ψ p (η)m p+1 and Ψ p (η)(dx) = 1 η(g p ) G p(x) η(dx) Pb.: Asymptotic stability, contraction properties, functional entropy inequalities, decays estimates... 4

5 Applications/Motivations Particle physics: Markov evolution X n Absorbing medium G(x) = e V (x) [0, 1] X c n Ec = E {c} absorption Xc n exploration X c n+1 Absorption/killing: Xc n = X c n, with proba G(Xc n ); otherwise the particle is killed and Xc n = c. A = {x : G(x) = 0} Hard obstacles T = inf {n 0 ; Xc n = c} Absorption time X c T +n = Xc T +n = c Feynman-Kac models (G, X n ) : γ n = Law(X c n ; T n) and η n = Law(X c n T n) 5

6 Genetics/Stoch. algo ( particle methods = local perturbation/stoch. linearization) ξ n E N selection ξn E N mutation ξ n+1 E N iid Φ n 1,n ( 1 N 1 i N δ ξ i n 1 ) Selection transition ξ n = ( ξi n ) 1 i N iid Ψ n ( 1 N 1 j N δ ξ j ) = n 1 1 j N G n (ξ j n) 1 k N G n(ξ k n )δ ξ j n Mutation transition ξi n ξn+1 i M n+1( ξi n,.) Particle occupation measures: η N n = 1 N N δ ξ i n N η n and γ N n (.) = η N n (.) i=1 0 p<n η N p (G p ) N γ n (.)

7 Advanced signal processing ( filtering/hidden Markov chains/bayesian methodology) Signal process: X n = Markov chain E, η 0 = Law(X 0 ) Observation/Sensor eq.: Y n = H n (X n, V n ) F with P(H n (x n, V n ) dy n ) = g n (x n, y n ) λ n (dy n ) Example: Y n = h n (X n ) + V n F = R, with Gaussian noise V n = N (0, 1) P(h n (x n ) + V n dy n ) = (2π) 1/2 e 1 2 (y n h n (x n )) 2 dy n = exp [h n (x n )y n h 2 n (x n)/2] }{{} g n (x n,y n ) N (0, 1)(dy n ) }{{} λ n (dy n ) Prediction/filtering Feynman-Kac representation G n (x n ) = g n (x n, y n ) η n = Law(X n 0 p < n Y p = y p ) and η n = Law(X n 0 p n Y p = y p )

8 Statistics: ( Sequential MCMC and Feynman-Kac-Metropolis models) Metropolis potential [π target measure]+[(k, L) pair Markov transitions] G(y 1, y 2 ) = π(dy 2)L(y 2, dy 1 ) π(dy 1 )K(y 1, dy 2 ) Th.: (Time reversal formula), [A. Doucet, P.DM; (Séminaire Probab. 2003)] In addition : E L π (f n(y n, Y n 1..., Y 0 ) Y n = y) = EK y (f n(y 0, Y 1,..., Y n ) { 0 p<n G(Y p, Y p+1 )}) E K y ({ 0 p<n G(Y p, Y p+1 )}) FK-Metropolis n-marginal: lim n η n = π (cv. decays π) Nonhomogeneous models: (π n, L n, K n ) π n (dy) e β nv (y) λ(dy), cooling schedule β n, mutation s.t. π n = π n K n, and Law(X 0 ) = π 0 G n (y 1, y 2 ) = exp [ (β n+1 β n )V (y 1 )] = η n = π n

9 Spectral analysis (time homogeneous models) G M(h) = λ h (> 0), G = λh/m(h) = γ n (fm(h)) Ψ h (η 0 )M n h (f) with Then Ψ h (η 0 )(dx) = 1 η 0 (h) h(x) η 0(dx) and M h (x, dy) = 1 M(h)(x) M(x, dy)h(y) Ψ M(h) ( η n ) = Ψ h (η 0 )M n h (f) = Law(Y n) with Y n Markov chain M h Φ 0,n = Φ n contractive! η = Φ(η ) If M µ-reversible then: M(Gh) = λh (> 0) η = Ψ h (µ) and η (G) = λ Note: (H) m : M m (x,.) ɛ M m (y,.) and G n (x) r G n (y) h = dη /dµ [ɛ/r m, r m /ɛ] 6

10 h-relative entropy, h convex, h(ax, ay) = ah(x, y) R { }, h(1, 1) = 0 H(η, µ) = h(dη, dµ) = g(dη/dµ) dµ with g(x) = h(x, 1) Ex.: Total variation and L p -norms: g(t) t 1 p Boltzmann or Shannon-Kullback entropy: g(t) = t log t Havrda-Charvat entropy order p > 1: g(t) = 1 p 1 (tp 1) Kakutani-Hellinger integrals order α (0, 1): g(t) = t t α 7

11 Dobushin s contraction coefficient ηm µm tv β(m) = def. sup M(x,.) M(y,.) tv = sup x,y η,µ η µ tv Th. [L.Miclo, M. Ledoux, P.DM (PTRF 2003)] H(µM, ηm) β(m)h(µ, η) Ex.: M(x,.) ɛm(y,.) = β(m) (1 ɛ) = H(µM, ηm) (1 ɛ)h(µ, η) Corollary (Filtering with a wrong initial condition η 0 η n η n ) [ n ] E(Ent( η n η n)) E(Ent(η n η n)) p=1 β(m p ) Ent(η 0 η 0 ) 8

12 Feynman-Kac semigroups Φ p,n (µ)(f) = µq p,nf µq p,n 1 = µ(g p,np p,n (f)) µ(g p,n ) with G p,n = def. Q p,n (1) and P p,n (f) = def. Q p,n (f) Q p,n (1) Note: β(p p,n ) = sup µ,η Φ p,n (η) Φ p,n (µ) tv and let g p,n = def. sup G p,n (x)/g p,n (y) x,y Th. h(x, y) suff. regular. α h (t) s.t. H(Φ p,n (µ), Φ p,n (η)) α h (g p,n ) β(p p,n ) H(µ, η) Ex.: α h (t) = t (total variation norm and Boltzmann entropy), α h (t) = t 1+p (Havrda-Charvat and Kakutani-Hellinger integrals of order p, α h (t) = t 3 (L 2 -norms),... 9

13 Contraction estimates (H) m : (M m (x,.) ɛ M m (y,.) and G n (x) r G n (y) ) Lemma Th. (H) m = p 0 sup g p,n r m /ɛ and β(p p,p+nm ) (1 ɛ 2 /r m 1 ) n n p Φ p,p+nm (η) Φ p,p+nm (µ) tv (1 ɛ 2 /r m 1 ) n ( = (1 ɛ 2 ) n = (H) 1 ) and H(Φ p,p+nm (µ), Φ p,p+nm (η)) α h (r m /ɛ) (1 ɛ 2 /r m 1 ) n H(µ, η) Extensions: nonhomogeneous models, continuous time FK semigroups,... 10

14 Some application model areas Asymptotic stability of optimal filters. Uniform estimates for particle approximation models (w.r.t time parameter). Spectral analysis of FK-Schrödinger s.g., new probab./particle interpretations. Long time behavior of Feynman-Kac-Metropolis models. Stability properties of infinite population genetic models. 11

A Backward Particle Interpretation of Feynman-Kac Formulae

A Backward Particle Interpretation of Feynman-Kac Formulae A Backward Particle Interpretation of Feynman-Kac Formulae P. Del Moral Centre INRIA de Bordeaux - Sud Ouest Workshop on Filtering, Cambridge Univ., June 14-15th 2010 Preprints (with hyperlinks), joint

More information

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand Concentration inequalities for Feynman-Kac particle models P. Del Moral INRIA Bordeaux & IMB & CMAP X Journées MAS 2012, SMAI Clermond-Ferrand Some hyper-refs Feynman-Kac formulae, Genealogical & Interacting

More information

Advanced Monte Carlo integration methods. P. Del Moral (INRIA team ALEA) INRIA & Bordeaux Mathematical Institute & X CMAP

Advanced Monte Carlo integration methods. P. Del Moral (INRIA team ALEA) INRIA & Bordeaux Mathematical Institute & X CMAP Advanced Monte Carlo integration methods P. Del Moral (INRIA team ALEA) INRIA & Bordeaux Mathematical Institute & X CMAP MCQMC 2012, Sydney, Sunday Tutorial 12-th 2012 Some hyper-refs Feynman-Kac formulae,

More information

Mean field simulation for Monte Carlo integration. Part II : Feynman-Kac models. P. Del Moral

Mean field simulation for Monte Carlo integration. Part II : Feynman-Kac models. P. Del Moral Mean field simulation for Monte Carlo integration Part II : Feynman-Kac models P. Del Moral INRIA Bordeaux & Inst. Maths. Bordeaux & CMAP Polytechnique Lectures, INLN CNRS & Nice Sophia Antipolis Univ.

More information

A new class of interacting Markov Chain Monte Carlo methods

A new class of interacting Markov Chain Monte Carlo methods A new class of interacting Marov Chain Monte Carlo methods P Del Moral, A Doucet INRIA Bordeaux & UBC Vancouver Worshop on Numerics and Stochastics, Helsini, August 2008 Outline 1 Introduction Stochastic

More information

An introduction to particle simulation of rare events

An introduction to particle simulation of rare events An introduction to particle simulation of rare events P. Del Moral Centre INRIA de Bordeaux - Sud Ouest Workshop OPUS, 29 juin 2010, IHP, Paris P. Del Moral (INRIA) INRIA Bordeaux-Sud Ouest 1 / 33 Outline

More information

Mean field simulation for Monte Carlo integration. Part I : Intro. nonlinear Markov models (+links integro-diff eq.) P. Del Moral

Mean field simulation for Monte Carlo integration. Part I : Intro. nonlinear Markov models (+links integro-diff eq.) P. Del Moral Mean field simulation for Monte Carlo integration Part I : Intro. nonlinear Markov models (+links integro-diff eq.) P. Del Moral INRIA Bordeaux & Inst. Maths. Bordeaux & CMAP Polytechnique Lectures, INLN

More information

Stability of Feynman-Kac Semigroup and SMC Parameters' Tuning

Stability of Feynman-Kac Semigroup and SMC Parameters' Tuning Stability of Feynman-Kac Semigroup and SMC Parameters' Tuning François GIRAUD PhD student, CEA-CESTA, INRIA Bordeaux Tuesday, February 14th 2012 1 Recalls and context of the analysis Feynman-Kac semigroup

More information

On the Concentration Properties of Interacting Particle Processes. Contents

On the Concentration Properties of Interacting Particle Processes. Contents Foundations and Trends R in Machine Learning Vol. 3, Nos. 3 4 (2010) 225 389 c 2012 P. Del Moral, P. Hu, and L. Wu DOI: 10.1561/2200000026 On the Concentration Properties of Interacting Particle Processes

More information

STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR FILTERS USING THE HILBERT METRIC, AND APPLICATION TO PARTICLE FILTERS 1

STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR FILTERS USING THE HILBERT METRIC, AND APPLICATION TO PARTICLE FILTERS 1 The Annals of Applied Probability 0000, Vol. 00, No. 00, 000 000 STABILITY AND UNIFORM APPROXIMATION OF NONLINAR FILTRS USING TH HILBRT MTRIC, AND APPLICATION TO PARTICL FILTRS 1 By François LeGland and

More information

A Backward Particle Interpretation of Feynman-Kac Formulae

A Backward Particle Interpretation of Feynman-Kac Formulae A Backward Particle Interpretation of Feynman-Kac Formulae Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh To cite this version: Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh. A Backward Particle Interpretation

More information

COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX

COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX F. OTTO AND C. VILLANI In their remarkable work [], Bobkov, Gentil and Ledoux improve, generalize and

More information

On the stability and the applications of interacting particle systems

On the stability and the applications of interacting particle systems 1/42 On the stability and the applications of interacting particle systems P. Del Moral INRIA Bordeaux Sud Ouest PDE/probability interactions - CIRM, April 2017 Synthesis joint works with A.N. Bishop,

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture : Mutual Information Method Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar, 06 Ed. Mar 9 Quick review: Assouad s lemma

More information

Entropy, Inference, and Channel Coding

Entropy, Inference, and Channel Coding Entropy, Inference, and Channel Coding Sean Meyn Department of Electrical and Computer Engineering University of Illinois and the Coordinated Science Laboratory NSF support: ECS 02-17836, ITR 00-85929

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations 2.1 9 10 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Equations A first order differential equation = f(x, y) is called separable if f(x, y)

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. Christoph Schnörr Bodo Rosenhahn Hans-Peter Seidel

Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. Christoph Schnörr Bodo Rosenhahn Hans-Peter Seidel Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications Jürgen Gall Jürgen Potthoff Christoph Schnörr Bodo Rosenhahn Hans-Peter Seidel MPI I 2006 4 009 September 2006 Authors

More information

Convergence of Particle Filtering Method for Nonlinear Estimation of Vortex Dynamics

Convergence of Particle Filtering Method for Nonlinear Estimation of Vortex Dynamics Convergence of Particle Filtering Method for Nonlinear Estimation of Vortex Dynamics Meng Xu Department of Mathematics University of Wyoming February 20, 2010 Outline 1 Nonlinear Filtering Stochastic Vortex

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

SOLUTIONS OF SELECTED PROBLEMS

SOLUTIONS OF SELECTED PROBLEMS SOLUTIONS OF SELECTED PROBLEMS Problem 36, p. 63 If µ(e n < and χ En f in L, then f is a.e. equal to a characteristic function of a measurable set. Solution: By Corollary.3, there esists a subsequence

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

On Adaptive Resampling Procedures for Sequential Monte Carlo Methods

On Adaptive Resampling Procedures for Sequential Monte Carlo Methods On Adaptive Resampling Procedures for Sequential Monte Carlo Methods Pierre Del Moral, Arnaud Doucet, Ajay Jasra To cite this version: Pierre Del Moral, Arnaud Doucet, Ajay Jasra. On Adaptive Resampling

More information

Entropy and Large Deviations

Entropy and Large Deviations Entropy and Large Deviations p. 1/32 Entropy and Large Deviations S.R.S. Varadhan Courant Institute, NYU Michigan State Universiy East Lansing March 31, 2015 Entropy comes up in many different contexts.

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Information theoretic perspectives on learning algorithms

Information theoretic perspectives on learning algorithms Information theoretic perspectives on learning algorithms Varun Jog University of Wisconsin - Madison Departments of ECE and Mathematics Shannon Channel Hangout! May 8, 2018 Jointly with Adrian Tovar-Lopez

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

Free Entropy for Free Gibbs Laws Given by Convex Potentials

Free Entropy for Free Gibbs Laws Given by Convex Potentials Free Entropy for Free Gibbs Laws Given by Convex Potentials David A. Jekel University of California, Los Angeles Young Mathematicians in C -algebras, August 2018 David A. Jekel (UCLA) Free Entropy YMC

More information

Hypercontractivity of spherical averages in Hamming space

Hypercontractivity of spherical averages in Hamming space Hypercontractivity of spherical averages in Hamming space Yury Polyanskiy Department of EECS MIT yp@mit.edu Allerton Conference, Oct 2, 2014 Yury Polyanskiy Hypercontractivity in Hamming space 1 Hypercontractivity:

More information

AdaGAN: Boosting Generative Models

AdaGAN: Boosting Generative Models AdaGAN: Boosting Generative Models Ilya Tolstikhin ilya@tuebingen.mpg.de joint work with Gelly 2, Bousquet 2, Simon-Gabriel 1, Schölkopf 1 1 MPI for Intelligent Systems 2 Google Brain Radford et al., 2015)

More information

A Note On Large Deviation Theory and Beyond

A Note On Large Deviation Theory and Beyond A Note On Large Deviation Theory and Beyond Jin Feng In this set of notes, we will develop and explain a whole mathematical theory which can be highly summarized through one simple observation ( ) lim

More information

On Convergence of Recursive Monte Carlo Filters in Non-Compact State Spaces

On Convergence of Recursive Monte Carlo Filters in Non-Compact State Spaces Convergence of Particle Filters 1 On Convergence of Recursive Monte Carlo Filters in Non-Compact State Spaces Jing Lei and Peter Bickel Carnegie Mellon University and University of California, Berkeley

More information

Full text available at: On the Concentration Properties of Interacting Particle Processes

Full text available at:  On the Concentration Properties of Interacting Particle Processes On the Concentration Properties of Interacting Particle Processes On the Concentration Properties of Interacting Particle Processes Pierre Del Moral INRIA, Université Bordeaux 1 France Peng Hu INRIA, Université

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Optimal filtering and the dual process

Optimal filtering and the dual process Optimal filtering and the dual process Omiros Papaspiliopoulos ICREA & Universitat Pompeu Fabra Joint work with Matteo Ruggiero Collegio Carlo Alberto & University of Turin The filtering problem X t0 X

More information

On the concentration properties of Interacting particle processes

On the concentration properties of Interacting particle processes ISTITUT ATIOAL DE RECHERCHE E IFORMATIQUE ET E AUTOMATIQUE arxiv:1107.1948v2 [math.a] 12 Jul 2011 On the concentration properties of Interacting particle processes Pierre Del Moral, Peng Hu, Liming Wu

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

University of Toronto Department of Statistics

University of Toronto Department of Statistics Norm Comparisons for Data Augmentation by James P. Hobert Department of Statistics University of Florida and Jeffrey S. Rosenthal Department of Statistics University of Toronto Technical Report No. 0704

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Variantes Algorithmiques et Justifications Théoriques

Variantes Algorithmiques et Justifications Théoriques complément scientifique École Doctorale MATISSE IRISA et INRIA, salle Markov jeudi 26 janvier 2012 Variantes Algorithmiques et Justifications Théoriques François Le Gland INRIA Rennes et IRMAR http://www.irisa.fr/aspi/legland/ed-matisse/

More information

Introduction. log p θ (y k y 1:k 1 ), k=1

Introduction. log p θ (y k y 1:k 1 ), k=1 ESAIM: PROCEEDINGS, September 2007, Vol.19, 115-120 Christophe Andrieu & Dan Crisan, Editors DOI: 10.1051/proc:071915 PARTICLE FILTER-BASED APPROXIMATE MAXIMUM LIKELIHOOD INFERENCE ASYMPTOTICS IN STATE-SPACE

More information

Review of Multi-Calculus (Study Guide for Spivak s CHAPTER ONE TO THREE)

Review of Multi-Calculus (Study Guide for Spivak s CHAPTER ONE TO THREE) Review of Multi-Calculus (Study Guide for Spivak s CHPTER ONE TO THREE) This material is for June 9 to 16 (Monday to Monday) Chapter I: Functions on R n Dot product and norm for vectors in R n : Let X

More information

Contents 1. Introduction 1 2. Main results 3 3. Proof of the main inequalities 7 4. Application to random dynamical systems 11 References 16

Contents 1. Introduction 1 2. Main results 3 3. Proof of the main inequalities 7 4. Application to random dynamical systems 11 References 16 WEIGHTED CSISZÁR-KULLBACK-PINSKER INEQUALITIES AND APPLICATIONS TO TRANSPORTATION INEQUALITIES FRANÇOIS BOLLEY AND CÉDRIC VILLANI Abstract. We strengthen the usual Csiszár-Kullback-Pinsker inequality by

More information

Using systematic sampling for approximating Feynman-Kac solutions by Monte Carlo methods

Using systematic sampling for approximating Feynman-Kac solutions by Monte Carlo methods Using systematic sampling for approximating Feynman-Kac solutions by Monte Carlo methods Ivan Gentil and Bruno Rémillard Abstract While convergence properties of many sampling selection methods can be

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

Distance-Divergence Inequalities

Distance-Divergence Inequalities Distance-Divergence Inequalities Katalin Marton Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences Motivation To find a simple proof of the Blowing-up Lemma, proved by Ahlswede,

More information

Pairwise Comparison Dynamics for Games with Continuous Strategy Space

Pairwise Comparison Dynamics for Games with Continuous Strategy Space Pairwise Comparison Dynamics for Games with Continuous Strategy Space Man-Wah Cheung https://sites.google.com/site/jennymwcheung University of Wisconsin Madison Department of Economics Nov 5, 2013 Evolutionary

More information

Practical unbiased Monte Carlo for Uncertainty Quantification

Practical unbiased Monte Carlo for Uncertainty Quantification Practical unbiased Monte Carlo for Uncertainty Quantification Sergios Agapiou Department of Statistics, University of Warwick MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University

More information

A Stochastic Online Sensor Scheduler for Remote State Estimation with Time-out Condition

A Stochastic Online Sensor Scheduler for Remote State Estimation with Time-out Condition A Stochastic Online Sensor Scheduler for Remote State Estimation with Time-out Condition Junfeng Wu, Karl Henrik Johansson and Ling Shi E-mail: jfwu@ust.hk Stockholm, 9th, January 2014 1 / 19 Outline Outline

More information

Lectures 22-23: Conditional Expectations

Lectures 22-23: Conditional Expectations Lectures 22-23: Conditional Expectations 1.) Definitions Let X be an integrable random variable defined on a probability space (Ω, F 0, P ) and let F be a sub-σ-algebra of F 0. Then the conditional expectation

More information

ON CONVERGENCE OF RECURSIVE MONTE CARLO FILTERS IN NON-COMPACT STATE SPACES

ON CONVERGENCE OF RECURSIVE MONTE CARLO FILTERS IN NON-COMPACT STATE SPACES Statistica Sinica 23 (2013), 429-450 doi:http://dx.doi.org/10.5705/ss.2011.187 ON CONVERGENCE OF RECURSIVE MONTE CARLO FILTERS IN NON-COMPACT STATE SPACES Jing Lei and Peter Bickel Carnegie Mellon University

More information

Nonlinear Filtering: Interacting Particle Resolution

Nonlinear Filtering: Interacting Particle Resolution onlinear Filtering: Interacting Particle Resolution P. Del Moral Laboratoire de Statistiques et Probabilités, CRS UMR C55830, Bat 1R1, Université Paul Sabatier, 118 Route de arbonne, 31062 Toulouse Cedex,

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Particle Filters: Convergence Results and High Dimensions

Particle Filters: Convergence Results and High Dimensions Particle Filters: Convergence Results and High Dimensions Mark Coates mark.coates@mcgill.ca McGill University Department of Electrical and Computer Engineering Montreal, Quebec, Canada Bellairs 2012 Outline

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

Approximations of displacement interpolations by entropic interpolations

Approximations of displacement interpolations by entropic interpolations Approximations of displacement interpolations by entropic interpolations Christian Léonard Université Paris Ouest Mokaplan 10 décembre 2015 Interpolations in P(X ) X : Riemannian manifold (state space)

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Logarithmic Sobolev inequalities in discrete product spaces: proof by a transportation cost distance

Logarithmic Sobolev inequalities in discrete product spaces: proof by a transportation cost distance Logarithmic Sobolev inequalities in discrete product spaces: proof by a transportation cost distance Katalin Marton Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences Relative entropy

More information

Stability of optimization problems with stochastic dominance constraints

Stability of optimization problems with stochastic dominance constraints Stability of optimization problems with stochastic dominance constraints D. Dentcheva and W. Römisch Stevens Institute of Technology, Hoboken Humboldt-University Berlin www.math.hu-berlin.de/~romisch SIAM

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Random Walks Conditioned to Stay Positive

Random Walks Conditioned to Stay Positive 1 Random Walks Conditioned to Stay Positive Bob Keener Let S n be a random walk formed by summing i.i.d. integer valued random variables X i, i 1: S n = X 1 + + X n. If the drift EX i is negative, then

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Perfect simulation algorithm of a trajectory under a Feynman-Kac law Perfect simulation algorithm of a trajectory under a Feynman-Kac law Data Assimilation, 24th-28th September 212, Oxford-Man Institute C. Andrieu, N. Chopin, A. Doucet, S. Rubenthaler University of Bristol,

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

A Backward Particle Interpretation of Feynman-Kac Formulae

A Backward Particle Interpretation of Feynman-Kac Formulae A Backward Particle Interpretation of Feynman-Kac Formulae Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh To cite this version: Pierre Del Moral, Arnaud Doucet, Sumeetpal Singh. A Backward Particle Interpretation

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

Monte Carlo Solution of Integral Equations

Monte Carlo Solution of Integral Equations 1 Monte Carlo Solution of Integral Equations of the second kind Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ March 7th, 2011 MIRaW Monte

More information

An algebraic approach to stochastic duality. Cristian Giardinà

An algebraic approach to stochastic duality. Cristian Giardinà An algebraic approach to stochastic duality Cristian Giardinà RAQIS18, Annecy 14 September 2018 Collaboration with Gioia Carinci (Delft) Chiara Franceschini (Modena) Claudio Giberti (Modena) Jorge Kurchan

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157 Lecture 6: Gaussian Channels Copyright G. Caire (Sample Lectures) 157 Differential entropy (1) Definition 18. The (joint) differential entropy of a continuous random vector X n p X n(x) over R is: Z h(x

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Asymptotic stability of an evolutionary nonlinear Boltzmann-type equation

Asymptotic stability of an evolutionary nonlinear Boltzmann-type equation Acta Polytechnica Hungarica Vol. 14, No. 5, 217 Asymptotic stability of an evolutionary nonlinear Boltzmann-type equation Roksana Brodnicka, Henryk Gacki Institute of Mathematics, University of Silesia

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France)

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France) Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators ( Wroclaw 006) P.Maheux (Orléans. France) joint work with A.Bendikov. European Network (HARP) (to appear in T.A.M.S)

More information

Intertwinings for Markov processes

Intertwinings for Markov processes Intertwinings for Markov processes Aldéric Joulin - University of Toulouse Joint work with : Michel Bonnefont - Univ. Bordeaux Workshop 2 Piecewise Deterministic Markov Processes ennes - May 15-17, 2013

More information

Hints/Solutions for Homework 3

Hints/Solutions for Homework 3 Hints/Solutions for Homework 3 MATH 865 Fall 25 Q Let g : and h : be bounded and non-decreasing functions Prove that, for any rv X, [Hint: consider an independent copy Y of X] ov(g(x), h(x)) Solution:

More information

A Note on the Central Limit Theorem for a Class of Linear Systems 1

A Note on the Central Limit Theorem for a Class of Linear Systems 1 A Note on the Central Limit Theorem for a Class of Linear Systems 1 Contents Yukio Nagahata Department of Mathematics, Graduate School of Engineering Science Osaka University, Toyonaka 560-8531, Japan.

More information

Lecture 4 Lebesgue spaces and inequalities

Lecture 4 Lebesgue spaces and inequalities Lecture 4: Lebesgue spaces and inequalities 1 of 10 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 4 Lebesgue spaces and inequalities Lebesgue spaces We have seen how

More information

Markov-Kakutani Theorem and Haar Measure

Markov-Kakutani Theorem and Haar Measure Markov-Kakutani Theorem and Haar Measure Analysis III 1 Markov-Kakutani Definition 1 E is a TVS (topological vector space) if (a) E is a vector space (over R or C). (b) E is a Hausdorff topological space.

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

KLS-TYPE ISOPERIMETRIC BOUNDS FOR LOG-CONCAVE PROBABILITY MEASURES. December, 2014

KLS-TYPE ISOPERIMETRIC BOUNDS FOR LOG-CONCAVE PROBABILITY MEASURES. December, 2014 KLS-TYPE ISOPERIMETRIC BOUNDS FOR LOG-CONCAVE PROBABILITY MEASURES Sergey G. Bobkov and Dario Cordero-Erausquin December, 04 Abstract The paper considers geometric lower bounds on the isoperimetric constant

More information

Application of Information Theory, Lecture 7. Relative Entropy. Handout Mode. Iftach Haitner. Tel Aviv University.

Application of Information Theory, Lecture 7. Relative Entropy. Handout Mode. Iftach Haitner. Tel Aviv University. Application of Information Theory, Lecture 7 Relative Entropy Handout Mode Iftach Haitner Tel Aviv University. December 1, 2015 Iftach Haitner (TAU) Application of Information Theory, Lecture 7 December

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

An introduction to stochastic particle integration methods: with applications to risk and insurance

An introduction to stochastic particle integration methods: with applications to risk and insurance An introduction to stochastic particle integration methods: with applications to risk and insurance P. Del Moral, G. W. Peters, C. Vergé Abstract This article presents a guided introduction to a general

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains A regeneration proof of the central limit theorem for uniformly ergodic Markov chains By AJAY JASRA Department of Mathematics, Imperial College London, SW7 2AZ, London, UK and CHAO YANG Department of Mathematics,

More information