Random Walks Conditioned to Stay Positive

Size: px
Start display at page:

Download "Random Walks Conditioned to Stay Positive"

Transcription

1 1 Random Walks Conditioned to Stay Positive Bob Keener Let S n be a random walk formed by summing i.i.d. integer valued random variables X i, i 1: S n = X X n. If the drift EX i is negative, then S n as n. If A n is the event that S k 0 for k = 1,..., n, then P (A n ) 0 as n. In this talk we will consider conditional distributions for the random walk given A n. The main result will show that finite dimensional distributions for the random walk given A n converge to those for a time homogeneous Markov chain on {0, 1,...}.

2 2 Exponential Families Let h denote the mass function for an integer valued random variable X under P 0. Assume that E 0 X = xh(x) = 0, and define e ψ(ω) = E 0 e ωx = x e ωx h(x). (1) Then f ω (x) = h(x) exp[ωx ψ(ω)], is a probability mass function whenever ω Ω = {ω : ψ(ω) < }.. Let X, X 1,... be i.i.d. under P ω with marginal mass function f ω. Differentiating (1), ψ (ω)e ψ(ω) = x xe ωx h(x), and so E ω X = ψ (ω). Similarly, Var ω (X) = ψ (ω). Note that since ψ > 0, ψ is increasing, and since ψ (0) = E 0 X = 0, ψ (ω) < 0 when ω < 0.

3 3 Classical Large Deviation Theory Exponential Tilting: Let S n = X X n and X n = S n /n. Since X 1,..., X n have joint mass function n ( h(xi ) exp[ωx i ψ(ω)] ) [ n ] = h(x i ) exp[ωs n nψ(ω)], and i=1 In particular, i=1 E ω f(x 1,..., X n ) = E 0 f(x 1,..., X n ) exp[ωs n nψ(ω)]. P ω (S n 0) = e nψ(ω) E 0 [e ωs n ; S n 0]. For notation, E[Y ; A] def = E[Y 1 A ]. Using this, it is easy to argue that if ω < 0, 1 n log P ω(s n 0) ψ(ω), or P ω (S n 0) = e nψ(ω) e o(n). Also, for any ɛ > 0, P ω (X n > ɛ X n 0) 0, as n. [For regularity, need 0 Ω o.]

4 4 Refinements Local Central Limit Theorem: If the distribution for X is lattice with span 1, then as n, P 0 [S n = k] 1/ 2πnψ (0). Using this, for ω < 0, P ω (S n 0) = e nψ(ω) E 0 [e ωs n ; S n 0] e nψ(ω) = k=0 e ωk 2πnψ (0) e nψ(ω) (1 e ω ) 2πnψ (0), and P (S n = k S n 0) (1 e ω )e ωk, the mass function for a geometric distribution with success probability e ω.

5 5 Goal, Sufficiency, and Notation Let τ = inf{n : S n < 0} and note that τ > n if and only if S j 0, j = 1,..., n. Goal: Study the behavior of the random walk given τ > n for large n. Sufficiency: Under P ω, the conditional distribution for X 1,..., X n given S n does not depend on ω. New Measures: Under P ω (a), the summands X 1, X 2,... are still i.i.d. with common mass function f ω, but S n = a + X X n. Finally, P n (a,b) denotes conditional probability under P ω (a) this measure, S k goes from a to b in n steps. given S n = b. Under

6 6 Positive Drift If ω > 0, then E ω X > 0. In this case, P ω (a) (τ = ) > 0, and conditioning on τ = is simple. For x 0, P (a) ω (S 1 = x τ = ) = P (a) ω (S 1 = x, τ = ) P (a) ω (τ = ) = P (a) ω (S 1 = x) P ω (x) (τ = ) P ω (a) (τ = ). Given τ =, the process S n, n 0, is a random walk, and the conditional transition kernel is an h-transform of the original transition kernel for S n.

7 7 Simple Random Walk If X i = ±1 with p = P ω (X i = 1), q = 1 p = P ω (X i = 1), and ω = 1 2 log(p/q), then S n, n 0, is a simple random walk. Theorem: For a simple random walk, as n, P (a,b) n (τ > n) 2(a + 1)(b + 1). n Proof. By the reflection principle, P (a) 0 (τ < n, S n = b) = P (a) 0 (S n = b 2). Dividing by P 0 (S n = b) (a binomial probability), P (a,b) n (τ < n) = Result follows from Stirling s formula. ( n+b a 2 ( n a b 2 2 ) (! n b+a )! ).! 2 ) (! n+a+b+2 2

8 8 Result for Simple Random Walks Let Y n, n 0, be a Markov chain on {0, 1,...} with Y 0 = 0 and transition matrix /4 0 3/ /6 0 4/ /8 0 5/ Theorem: For a simple random walk with p < 1/2, P ω (S 1 = y 1,..., S j = y j τ > n) P (Y 1 = y 1,..., Y j = y j ) as n.

9 9 Proof: Let B = {S 1 = y 1,..., S j = y j = y} with y 1 = 1, y i 0, and y i+1 y i = 1. Then Use this in P (0,b) n (B, τ > n) = P 0(B, τ > n, S n = b) P 0 (S n = b) = (1/2)j P (y,b) n j (τ > n j)p 0(S n j = b y) P 0 (S n = b) 2(y + 1)(b + 1) 2 j. n P ω (B τ > n) = b P (0,b) n (B, τ > n)p ω (S n = b) b P (0,b) n (τ > n)p ω (S n = b).

10 10 General Results For the general case, let Y n, n 0, be a stationary Markov chain with Y 0 = 0 and P (Y n+1 = z Y n = y) = P 0 (X = z y) E(z) 0 (z S τ ) E (y) 0 (y S τ ). Remark: the transition kernel for Y is an h-transform of the kernel for the random walk under P 0. Theorem: For ω < 0, as n. P ω (S 1 = y 1,..., S k = y k τ > n) P (Y 1 = y 1,..., Y k = y k ) Theorem: Let τ + (b) = inf{n : S n > b}. For ω < 0, P ω (S n = b τ > n) ebω E 0 S τ + (b). k=0 ekω E 0 S τ + (k)

11 11 Approximate Reflection: P (a,b) n (τ > n), b of order n. Proposition: If 0 b = O( n), P (a,b) n (τ > n) = 2b nψ (0) E(a) 0 (a S τ ) + o ( 1/ n ). Proof: Let g k denote the P 0 mass function for S k, and define L k (x) = P n (a,b) (S k = x) P n (a, b) (S k = x) = g n k(b x)g n ( b a) g n k ( b x)g n (b a). Then L k (S k ) is dp n (a,b) /dp n (a, b) restricted to σ(s k ) or σ(x 1,..., X k ), and P n (a,b) (τ n) = E (a, b) n L τ (S τ ) = E (a, b) n [ 1 2b nψ (0) (a S τ ) + o ( 1/ n ) Finish by arguing that E n (a, b) S τ E (a) 0 S τ. ].

12 12 Approximate Reflection: P n (a,b) (τ > n), b of order one. Corollary: As n, P (a,b) n (τ > n) = 2 nψ (0) E(a) 0 (a S τ )E (b) 0 (b S τ ) + o(1/n). Proof: Take m = n/2. Then P (a,b) n (τ > n) = c=0 P (a,b) n (S m = c)p m (a,c) (τ > m)p n m(τ (b,c) > n m). Result follows using the prior result since S m under P n (a,b) normal. is approximately

13 13 References Keener (1992). Limit theorems for random walks conditioned to stay positive. Ann. Probab. Iglehart (1974). Functional central limit theorems for random walks conditioned to stay positive. Ann. Probab. Durrett (1980). Conditioned limit theorems for random walks with negative drift. Z. Wahrsch. verw. Gebiete Bertoin and Doney (1992). On conditioning a random walk to stay nonnegative. Ann. Probab.

A Note on the Central Limit Theorem for a Class of Linear Systems 1

A Note on the Central Limit Theorem for a Class of Linear Systems 1 A Note on the Central Limit Theorem for a Class of Linear Systems 1 Contents Yukio Nagahata Department of Mathematics, Graduate School of Engineering Science Osaka University, Toyonaka 560-8531, Japan.

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Math 6810 (Probability) Fall Lecture notes

Math 6810 (Probability) Fall Lecture notes Math 6810 (Probability) Fall 2012 Lecture notes Pieter Allaart University of North Texas September 23, 2012 2 Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd edition),

More information

The Modified Keifer-Weiss Problem, Revisited

The Modified Keifer-Weiss Problem, Revisited The Modified Keifer-Weiss Problem, Revisited Bob Keener Department of Statistics University of Michigan IWSM, 2013 Bob Keener (University of Michigan) Keifer-Weiss Problem IWSM 2013 1 / 15 Outline 1 Symmetric

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam Solution December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain

More information

SOME CONVERSE LIMIT THEOREMS FOR EXCHANGEABLE BOOTSTRAPS

SOME CONVERSE LIMIT THEOREMS FOR EXCHANGEABLE BOOTSTRAPS SOME CONVERSE LIMIT THEOREMS OR EXCHANGEABLE BOOTSTRAPS Jon A. Wellner University of Washington The bootstrap Glivenko-Cantelli and bootstrap Donsker theorems of Giné and Zinn (990) contain both necessary

More information

Shifting processes with cyclically exchangeable increments at random

Shifting processes with cyclically exchangeable increments at random Shifting processes with cyclically exchangeable increments at random Gerónimo URIBE BRAVO (Collaboration with Loïc CHAUMONT) Instituto de Matemáticas UNAM Universidad Nacional Autónoma de México www.matem.unam.mx/geronimo

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information

Chp 4. Expectation and Variance

Chp 4. Expectation and Variance Chp 4. Expectation and Variance 1 Expectation In this chapter, we will introduce two objectives to directly reflect the properties of a random variable or vector, which are the Expectation and Variance.

More information

Faithful couplings of Markov chains: now equals forever

Faithful couplings of Markov chains: now equals forever Faithful couplings of Markov chains: now equals forever by Jeffrey S. Rosenthal* Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 1A1 Phone: (416) 978-4594; Internet: jeff@utstat.toronto.edu

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Positive and null recurrent-branching Process

Positive and null recurrent-branching Process December 15, 2011 In last discussion we studied the transience and recurrence of Markov chains There are 2 other closely related issues about Markov chains that we address Is there an invariant distribution?

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Modern Discrete Probability Branching processes

Modern Discrete Probability Branching processes Modern Discrete Probability IV - Branching processes Review Sébastien Roch UW Madison Mathematics November 15, 2014 1 Basic definitions 2 3 4 Galton-Watson branching processes I Definition A Galton-Watson

More information

Sums of exponentials of random walks

Sums of exponentials of random walks Sums of exponentials of random walks Robert de Jong Ohio State University August 27, 2009 Abstract This paper shows that the sum of the exponential of an oscillating random walk converges in distribution,

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

Infinitely iterated Brownian motion

Infinitely iterated Brownian motion Mathematics department Uppsala University (Joint work with Nicolas Curien) This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm, as part of the Symposium in honour of Olav Kallenberg

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

A Martingale Central Limit Theorem

A Martingale Central Limit Theorem A Martingale Central Limit Theorem Sunder Sethuraman We present a proof of a martingale central limit theorem (Theorem 2) due to McLeish (974). Then, an application to Markov chains is given. Lemma. For

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

A generalization of Strassen s functional LIL

A generalization of Strassen s functional LIL A generalization of Strassen s functional LIL Uwe Einmahl Departement Wiskunde Vrije Universiteit Brussel Pleinlaan 2 B-1050 Brussel, Belgium E-mail: ueinmahl@vub.ac.be Abstract Let X 1, X 2,... be a sequence

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ),

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ), MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 4: Steady-State Theory Contents 4.1 The Concept of Stochastic Equilibrium.......................... 1 4.2

More information

3 Conditional Expectation

3 Conditional Expectation 3 Conditional Expectation 3.1 The Discrete case Recall that for any two events E and F, the conditional probability of E given F is defined, whenever P (F ) > 0, by P (E F ) P (E)P (F ). P (F ) Example.

More information

Expectation, inequalities and laws of large numbers

Expectation, inequalities and laws of large numbers Chapter 3 Expectation, inequalities and laws of large numbers 3. Expectation and Variance Indicator random variable Let us suppose that the event A partitions the sample space S, i.e. A A S. The indicator

More information

Hints/Solutions for Homework 3

Hints/Solutions for Homework 3 Hints/Solutions for Homework 3 MATH 865 Fall 25 Q Let g : and h : be bounded and non-decreasing functions Prove that, for any rv X, [Hint: consider an independent copy Y of X] ov(g(x), h(x)) Solution:

More information

Some Results on the Ergodicity of Adaptive MCMC Algorithms

Some Results on the Ergodicity of Adaptive MCMC Algorithms Some Results on the Ergodicity of Adaptive MCMC Algorithms Omar Khalil Supervisor: Jeffrey Rosenthal September 2, 2011 1 Contents 1 Andrieu-Moulines 4 2 Roberts-Rosenthal 7 3 Atchadé and Fort 8 4 Relationship

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 00 Solutions to Problem Set (MU 60 A family of subsets F of {,,, n} is called an antichain if there is no pair of sets A and B in F satisfying

More information

MARKOV CHAINS AND HIDDEN MARKOV MODELS

MARKOV CHAINS AND HIDDEN MARKOV MODELS MARKOV CHAINS AND HIDDEN MARKOV MODELS MERYL SEAH Abstract. This is an expository paper outlining the basics of Markov chains. We start the paper by explaining what a finite Markov chain is. Then we describe

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

When is a Markov chain regenerative?

When is a Markov chain regenerative? When is a Markov chain regenerative? Krishna B. Athreya and Vivekananda Roy Iowa tate University Ames, Iowa, 50011, UA Abstract A sequence of random variables {X n } n 0 is called regenerative if it can

More information

Brownian Bridge and Self-Avoiding Random Walk.

Brownian Bridge and Self-Avoiding Random Walk. Brownian Bridge and Self-Avoiding Random Walk. arxiv:math/02050v [math.pr] 9 May 2002 Yevgeniy Kovchegov Email: yevgeniy@math.stanford.edu Fax: -650-725-4066 November 2, 208 Abstract We derive the Brownian

More information

Path transformations of first passage bridges

Path transformations of first passage bridges Path transformations of first passage idges Jean Bertoin 1),Loïc Chaumont 2) and Jim Pitman 3) Technical Report No. 643 Department of Statistics University of California 367 Evans Hall # 3860 Berkeley,

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Monday, September 26, 2011 Lecture 10: Exponential families and Sufficient statistics Exponential Families Exponential families are important parametric families

More information

Rare-Event Simulation

Rare-Event Simulation Rare-Event Simulation Background: Read Chapter 6 of text. 1 Why is Rare-Event Simulation Challenging? Consider the problem of computing α = P(A) when P(A) is small (i.e. rare ). The crude Monte Carlo estimator

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 3: Regenerative Processes Contents 3.1 Regeneration: The Basic Idea............................... 1 3.2

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

A central limit theorem for randomly indexed m-dependent random variables

A central limit theorem for randomly indexed m-dependent random variables Filomat 26:4 (2012), 71 717 DOI 10.2298/FIL120471S ublished by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A central limit theorem for randomly

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2004

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2004 EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 004 Statistical Theory and Methods I Time Allowed: Three Hours Candidates should

More information

RENEWAL THEORY STEVEN P. LALLEY UNIVERSITY OF CHICAGO. X i

RENEWAL THEORY STEVEN P. LALLEY UNIVERSITY OF CHICAGO. X i RENEWAL THEORY STEVEN P. LALLEY UNIVERSITY OF CHICAGO 1. RENEWAL PROCESSES A renewal process is the increasing sequence of random nonnegative numbers S 0,S 1,S 2,... gotten by adding i.i.d. positive random

More information

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main Path Decomposition of Markov Processes Götz Kersting University of Frankfurt/Main joint work with Kaya Memisoglu, Jim Pitman 1 A Brownian path with positive drift 50 40 30 20 10 0 0 200 400 600 800 1000-10

More information

q P (T b < T a Z 0 = z, X 1 = 1) = p P (T b < T a Z 0 = z + 1) + q P (T b < T a Z 0 = z 1)

q P (T b < T a Z 0 = z, X 1 = 1) = p P (T b < T a Z 0 = z + 1) + q P (T b < T a Z 0 = z 1) Random Walks Suppose X 0 is fixed at some value, and X 1, X 2,..., are iid Bernoulli trials with P (X i = 1) = p and P (X i = 1) = q = 1 p. Let Z n = X 1 + + X n (the n th partial sum of the X i ). The

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain with the

More information

180B Lecture Notes, W2011

180B Lecture Notes, W2011 Bruce K. Driver 180B Lecture Notes, W2011 January 11, 2011 File:180Lec.tex Contents Part 180B Notes 0 Course Notation List......................................................................................................................

More information

Fundamentals of Statistics

Fundamentals of Statistics Chapter 2 Fundamentals of Statistics This chapter discusses some fundamental concepts of mathematical statistics. These concepts are essential for the material in later chapters. 2.1 Populations, Samples,

More information

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix:

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix: Joint Distributions Joint Distributions A bivariate normal distribution generalizes the concept of normal distribution to bivariate random variables It requires a matrix formulation of quadratic forms,

More information

STA 711: Probability & Measure Theory Robert L. Wolpert

STA 711: Probability & Measure Theory Robert L. Wolpert STA 711: Probability & Measure Theory Robert L. Wolpert 6 Independence 6.1 Independent Events A collection of events {A i } F in a probability space (Ω,F,P) is called independent if P[ i I A i ] = P[A

More information

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively); STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

On Characteristic Properties of the Uniform Distribution

On Characteristic Properties of the Uniform Distribution Sankhyā : The Indian Journal of Statistics 25, Volume 67, Part 4, pp 715-721 c 25, Indian Statistical Institute On Characteristic Properties of the Uniform Distribution G. Arslan Başkent University, Turkey

More information

SPA07 University of Illinois at Urbana-Champaign August 6 10, 2007

SPA07 University of Illinois at Urbana-Champaign August 6 10, 2007 Integral Formulas for the Asymmetric Simple Exclusion Process a Craig A. Tracy & Harold Widom SPA07 University of Illinois at Urbana-Champaign August 6 10, 2007 a arxiv:0704.2633, supported in part by

More information

Lecture 4: Conditional expectation and independence

Lecture 4: Conditional expectation and independence Lecture 4: Conditional expectation and independence In elementry probability, conditional probability P(B A) is defined as P(B A) P(A B)/P(A) for events A and B with P(A) > 0. For two random variables,

More information

Lectures for APM 541: Stochastic Modeling in Biology. Jay Taylor

Lectures for APM 541: Stochastic Modeling in Biology. Jay Taylor Lectures for APM 541: Stochastic Modeling in Biology Jay Taylor November 3, 2011 Contents 1 Distributions, Expectations, and Random Variables 4 1.1 Probability Spaces...................................

More information

Question: My computer only knows how to generate a uniform random variable. How do I generate others? f X (x)dx. f X (s)ds.

Question: My computer only knows how to generate a uniform random variable. How do I generate others? f X (x)dx. f X (s)ds. Simulation Question: My computer only knows how to generate a uniform random variable. How do I generate others?. Continuous Random Variables Recall that a random variable X is continuous if it has a probability

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

EXACT CONVERGENCE RATE AND LEADING TERM IN THE CENTRAL LIMIT THEOREM FOR U-STATISTICS

EXACT CONVERGENCE RATE AND LEADING TERM IN THE CENTRAL LIMIT THEOREM FOR U-STATISTICS Statistica Sinica 6006, 409-4 EXACT CONVERGENCE RATE AND LEADING TERM IN THE CENTRAL LIMIT THEOREM FOR U-STATISTICS Qiying Wang and Neville C Weber The University of Sydney Abstract: The leading term in

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 6 Probability and Random Processes University of California, Berkeley: Spring 08 Kannan Ramchandran February 4, 08 Midterm Last Name First Name SID You have 0 minutes to read the exam and 90 minutes

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Notes 18 : Optional Sampling Theorem

Notes 18 : Optional Sampling Theorem Notes 18 : Optional Sampling Theorem Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall: DEF 18.1 (Uniform Integrability) A collection

More information

arxiv: v1 [math.pr] 17 May 2009

arxiv: v1 [math.pr] 17 May 2009 A strong law of large nubers for artingale arrays Yves F. Atchadé arxiv:0905.2761v1 [ath.pr] 17 May 2009 March 2009 Abstract: We prove a artingale triangular array generalization of the Chow-Birnbau- Marshall

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Poisson Approximation for Two Scan Statistics with Rates of Convergence

Poisson Approximation for Two Scan Statistics with Rates of Convergence Poisson Approximation for Two Scan Statistics with Rates of Convergence Xiao Fang (Joint work with David Siegmund) National University of Singapore May 28, 2015 Outline The first scan statistic The second

More information

Importance Sampling Methodology for Multidimensional Heavy-tailed Random Walks

Importance Sampling Methodology for Multidimensional Heavy-tailed Random Walks Importance Sampling Methodology for Multidimensional Heavy-tailed Random Walks Jose Blanchet (joint work with Jingchen Liu) Columbia IEOR Department RESIM Blanchet (Columbia) IS for Heavy-tailed Walks

More information

Practical conditions on Markov chains for weak convergence of tail empirical processes

Practical conditions on Markov chains for weak convergence of tail empirical processes Practical conditions on Markov chains for weak convergence of tail empirical processes Olivier Wintenberger University of Copenhagen and Paris VI Joint work with Rafa l Kulik and Philippe Soulier Toronto,

More information

Convergence Rates for Renewal Sequences

Convergence Rates for Renewal Sequences Convergence Rates for Renewal Sequences M. C. Spruill School of Mathematics Georgia Institute of Technology Atlanta, Ga. USA January 2002 ABSTRACT The precise rate of geometric convergence of nonhomogeneous

More information

arxiv: v2 [math.pr] 4 Sep 2017

arxiv: v2 [math.pr] 4 Sep 2017 arxiv:1708.08576v2 [math.pr] 4 Sep 2017 On the Speed of an Excited Asymmetric Random Walk Mike Cinkoske, Joe Jackson, Claire Plunkett September 5, 2017 Abstract An excited random walk is a non-markovian

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

Coding on Countably Infinite Alphabets

Coding on Countably Infinite Alphabets Coding on Countably Infinite Alphabets Non-parametric Information Theory Licence de droits d usage Outline Lossless Coding on infinite alphabets Source Coding Universal Coding Infinite Alphabets Enveloppe

More information

Necessary and sufficient conditions for strong R-positivity

Necessary and sufficient conditions for strong R-positivity Necessary and sufficient conditions for strong R-positivity Wednesday, November 29th, 2017 The Perron-Frobenius theorem Let A = (A(x, y)) x,y S be a nonnegative matrix indexed by a countable set S. We

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Conditional moment representations for dependent random variables

Conditional moment representations for dependent random variables Conditional moment representations for dependent random variables W lodzimierz Bryc Department of Mathematics University of Cincinnati Cincinnati, OH 45 22-0025 bryc@ucbeh.san.uc.edu November 9, 995 Abstract

More information

Logarithmic scaling of planar random walk s local times

Logarithmic scaling of planar random walk s local times Logarithmic scaling of planar random walk s local times Péter Nándori * and Zeyu Shen ** * Department of Mathematics, University of Maryland ** Courant Institute, New York University October 9, 2015 Abstract

More information

Strong approximation for additive functionals of geometrically ergodic Markov chains

Strong approximation for additive functionals of geometrically ergodic Markov chains Strong approximation for additive functionals of geometrically ergodic Markov chains Florence Merlevède Joint work with E. Rio Université Paris-Est-Marne-La-Vallée (UPEM) Cincinnati Symposium on Probability

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

MA6451 PROBABILITY AND RANDOM PROCESSES

MA6451 PROBABILITY AND RANDOM PROCESSES MA6451 PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES 1.1 Discrete and continuous random variables 1. Show that the function is a probability density function of a random variable X. (Apr/May

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Marshall-Olkin Bivariate Exponential Distribution: Generalisations and Applications

Marshall-Olkin Bivariate Exponential Distribution: Generalisations and Applications CHAPTER 6 Marshall-Olkin Bivariate Exponential Distribution: Generalisations and Applications 6.1 Introduction Exponential distributions have been introduced as a simple model for statistical analysis

More information

Stein s Method and the Zero Bias Transformation with Application to Simple Random Sampling

Stein s Method and the Zero Bias Transformation with Application to Simple Random Sampling Stein s Method and the Zero Bias Transformation with Application to Simple Random Sampling Larry Goldstein and Gesine Reinert November 8, 001 Abstract Let W be a random variable with mean zero and variance

More information

Potentials of stable processes

Potentials of stable processes Potentials of stable processes A. E. Kyprianou A. R. Watson 5th December 23 arxiv:32.222v [math.pr] 4 Dec 23 Abstract. For a stable process, we give an explicit formula for the potential measure of the

More information

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek Bhrushundi

More information

Lecture 19: Properties of Expectation

Lecture 19: Properties of Expectation Lecture 19: Properties of Expectation Dan Sloughter Furman University Mathematics 37 February 11, 4 19.1 The unconscious statistician, revisited The following is a generalization of the law of the unconscious

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring Lecture 8 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Applications: Bayesian inference: overview and examples Introduction

More information

Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms

Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms Yan Bai Feb 2009; Revised Nov 2009 Abstract In the paper, we mainly study ergodicity of adaptive MCMC algorithms. Assume that

More information

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018 Math 456: Mathematical Modeling Tuesday, April 9th, 2018 The Ergodic theorem Tuesday, April 9th, 2018 Today 1. Asymptotic frequency (or: How to use the stationary distribution to estimate the average amount

More information

Solution: (Course X071570: Stochastic Processes)

Solution: (Course X071570: Stochastic Processes) Solution I (Course X071570: Stochastic Processes) October 24, 2013 Exercise 1.1: Find all functions f from the integers to the real numbers satisfying f(n) = 1 2 f(n + 1) + 1 f(n 1) 1. 2 A secial solution

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Limit Theorems for Exchangeable Random Variables via Martingales

Limit Theorems for Exchangeable Random Variables via Martingales Limit Theorems for Exchangeable Random Variables via Martingales Neville Weber, University of Sydney. May 15, 2006 Probabilistic Symmetries and Their Applications A sequence of random variables {X 1, X

More information

Probability Theory Overview and Analysis of Randomized Algorithms

Probability Theory Overview and Analysis of Randomized Algorithms Probability Theory Overview and Analysis of Randomized Algorithms Analysis of Algorithms Prepared by John Reif, Ph.D. Probability Theory Topics a) Random Variables: Binomial and Geometric b) Useful Probabilistic

More information

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding.

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. NAME: ECE 302 Division MWF 0:30-:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. If you are not in Prof. Pollak s section, you may not take this

More information