Lectures 22-23: Conditional Expectations

Size: px
Start display at page:

Download "Lectures 22-23: Conditional Expectations"

Transcription

1 Lectures 22-23: Conditional Expectations 1.) Definitions Let X be an integrable random variable defined on a probability space (Ω, F 0, P ) and let F be a sub-σ-algebra of F 0. Then the conditional expectation of X given F is defined to be any random variable Y that satisfies the following two conditions: 1. Y is measurable with respect to F; 2. For all F, Y dp = XdP. ny Y satisfying these conditions is said to be a version of E[X F]. Our first task is to show the existence, uniqueness and integrability of conditional expectations, which we do in reverse order. Integrability: Let = {Y > 0} F. Then Y dp = XdP X dp < ; Y dp = XdP X dp <. c c c Thus, E Y E X < and so Y is integrable. Uniqueness: If Y is also a version of E[X F], then Y dp = Y dp for every F. In particular, taking = {Y Y ɛ} F for some ɛ > 0, we have 0 = (Y Y )dp ɛp() and so P() = 0. Since this holds for every ɛ > 0, it follows that Y Y a.s. Reversing the roles of Y and Y in this argument then shows that Y = Y a.s. Existence: We begin by recalling: Radon-Nikodym Theorem: Let µ and ν be σ-finite measures on (Ω, F). Recall that ν µ if ν() = 0 whenever µ() = 0. In this case, there is a function f L 1 (Ω, F) such that ν() = f dµ for all F. We usually write f = dν/dµ and say that f is the Radon-Nikodym derivative of ν with respect to µ. 1

2 We can use this theorem to prove that conditional expectations exist. First suppose that X 0. Let µ = P and define ν() = X dp for F. Then ν is a finite measure (with ν(ω) = EX < ) and ν µ, so that the Radon-Nikodym theorem gives dν X dp = ν() = dµ dp for any F. This shows that dν/dµ is a version of E[X F]. For the general case, write X = X + X and let Y 1 = E[X + F] and Y 2 = E[X F]. Then Y 1 Y 2 is integrable and X dp = X + dp X dp = Y 1 dp Y 2 dp = (Y 1 Y 2 )dp for any F. This shows that Y 1 Y 2 is a version of E[X F]. 2.) Examples Example 1: If X is F-measurable, then E[X F] = X a.s. Example 2: Suppose that X is independent of F: P ( {X B}, ) = P(X B) P() for all B R and F. We claim that E[X F] = EX. Since constants are measurable with respect to any σ-algebra, condition (1) is satisfied. lso, if F, then X dp = E[X1 ] = EX E1 = EX dp and so condition (2) is also satisfied. Example 3: Let E 1, E 2, be a (countable) partition of Ω into disjoint sets, each with probability P(E i ) > 0, and let F = σ(e 1, E 2, ). Then E[X F](ω) = E[X; E i] P(E i ), ω E i. Indeed, E[X F] is F-measurable, since it is constant on each set E i and these sets generate F. To verify condition (2), it suffices to consider sets = E i, for which we have E[X; E i ] E i P(E i ) dp = E[X; E i] = XdP. E i 2

3 The conditional expectation of X given Y is defined to be E[X Y ] = E[X σ(y )], where σ(y ) is the σ-algebra generated by Y. Example 4: Suppose that X and Y have joint density f(x, y), P((X, Y ) B) = f(x, y)dxdy for B R 2, B and that f(x, y)dx > 0 for every y. If g is a measurable function such that E g(x) <, then E[g(X) Y ] = h(y ) where h(y) = g(x)f(x, y)dx f(x, y)dx. Example 5: Suppose that X and Y are independent with marginal distributions µ and ν. Let φ be a measurable function such that E φ(x, Y ) < and define g(x) = Eφ(x, Y ) = φ(x, y)ν(dy). Then E[φ(X, Y ) X] = g(x). Indeed, we know that g(x) m(σ(x)). If σ(x), then = {X C} for some Borel set C, so φ(x, Y )dp = E[φ(X, Y )1 C (X)] = φ(x, y)1 C (x)ν(dy)µ(dx) = 1 C (x)g(x)µ(dx) = g(x)dp, which verifies condition (2). 3.) Properties of Conditional Expectations (a) Linearity: E[aX + Y F] = ae[x F] + E[Y F]. Proof: We need to check that the RHS is a version of the left. Condition (1) is clearly satisfied since each of the terms in the sum is F-measurable. To check condition (2), let F and observe that ( ) ae[x F] + E[Y F] dp = a = a 3 E[X F]dP + E[Y F]dP XdP + Y dp = (ax + Y )dp.

4 (b) Monotonicity: If X Y, then E[X F] E[Y F] a.s. Proof: Let = {E[X F] E[Y F] ɛ} for ɛ > 0. Then ( ) ɛp() E[X F] E[Y F] dp = ( X Y ) dp 0, and so P() = 0. Since this holds for every ɛ > 0, the result follows. (c) Conditional Monotone Convergence Theorem: If X n 0 and X n X with EX <, then E[X n F] E[X F]. Proof: Let Y n = X X n 0. Since Y n is decreasing, it follows from the monotonicity property of conditional expectations that Z n E[Y n F] is also decreasing. Furthermore, since each Z n 0 a.s., it follows that there is a variable Z such that Z n Z. If F, then Z n dp = Y n dp. Then, since Y 1 Y n 0 and Z 1 Z n Z, the dominated convergence theorem implies that Z dp = lim Z n dp = lim Y n dp = 0. Since this holds for every F, it follows that Z = 0 a.s. and so E[Y n F] 0 a.s. (d) Conditional Jensen s Inequality: If φ is convex and E X + E φ(x) <, then φ ( E[X F] ) E [ φ(x) F ]. Proof: We may assume wlog that φ is non-linear. In this case, if we let then S { (a, b) : a, b Q, ax + b φ(x) for all x }, φ(x) = sup{ax + b : (a, b) S}. If φ(x) ax + b, then monotonicity and linearity imply that E[φ(X) F] ae[x F] + b a.s., and taking the sup over (a, b) S gives Jensen s inequality. (e) E[E[X F]] = EX. Proof: This follows by taking = Ω in condition (2). 4

5 (f) Conditional expectation is a contraction in L p, p 1. Proof: Since φ(x) = x p is convex if p 1, the conditional Jensen s inequality implies that E[X F] p E [ X p F ]. Taking expectations and using (e) gives E[X F] p p = E[ E[X F] p ] E[E[ X p F]] = X p p. Theorem (4.1.2): The Tower Property. Suppose that F 1 F 2. (i) E [ E[X F 1 ] F 2 ] = E[X F1 ]. (ii) E [ E[X F 2 ] F 1 ] = E[X F1 ]. Proof: (i) follows from the observation that E[X F 1 ] is F 2 -measurable. To prove (ii), notice that E[X F 1 ] is F 1 -measurable. lso, if F 1 F 2, then E[X F 1 ]dp = XdP = E[X F 2 ]dp. Theorem (4.1.3): If X m(f) and E Y + E XY <, then E[XY F] = XE[Y F]. Proof: Since XE[Y F] is F-measurable, we only need to check condition (2) which we can do using the standard machine. First, suppose that X = 1 B for some set B F. If F, then 1 B E[Y F]dP = E[Y F]dP = Y dp = 1 B Y dp B and so (2) holds for indicator functions. This result then extends to X that are simple functions by linearity of expectations. If X, Y 0, then we can choose a sequence of simple functions 0 X n X and use the monotone convergence theorem to conclude that XE[Y F]dP = lim X n E[Y F]dP = lim X n Y dp = XY dp. To prove the result in general, we then split X and Y into their positive and negative parts. Theorem (4.1.4): Suppose that EX 2 <. Then E[X F] is the orthogonal projection of X L 2 (F 0 ) onto L 2 (F): E [ { } (X E[X F]) 2 ] = inf E[(X Y ) 2 ] : Y L 2 (F). Proof: If Z L 2 (F), then E XZ < and B ZE[X F] = E[ZX F]. 5

6 This shows that E[Z(X E[X F])] = E[ZX] E[Z E[X F]] = E[ZX] E[E[ZX F]] = 0 whenever Z L 2 (F). If Y = E[X F] + Z L 2 (F), then E[(X Y ) 2 ] = E[(X E[X F] Z) 2 ] = E[(X E[X F]) 2 ] 2E[Z(X E[X F])] + EZ 2 = E[(X E[X F]) 2 ] + EZ 2, which is minimized when Z = 0, i.e., when Y = E[X F]. 6

MATH 418: Lectures on Conditional Expectation

MATH 418: Lectures on Conditional Expectation MATH 418: Lectures on Conditional Expectation Instructor: r. Ed Perkins, Notes taken by Adrian She Conditional expectation is one of the most useful tools of probability. The Radon-Nikodym theorem enables

More information

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013 Conditional expectations, filtration and martingales Content. 1. Conditional expectations 2. Martingales, sub-martingales

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Notes 13 : Conditioning

Notes 13 : Conditioning Notes 13 : Conditioning Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Sections 0, 4.8, 9, 10], [Dur10, Section 5.1, 5.2], [KT75, Section 6.1]. 1 Conditioning 1.1 Review

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

Lecture 4: Conditional expectation and independence

Lecture 4: Conditional expectation and independence Lecture 4: Conditional expectation and independence In elementry probability, conditional probability P(B A) is defined as P(B A) P(A B)/P(A) for events A and B with P(A) > 0. For two random variables,

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 7 Conditional probability and expectation Decomposition of measures Mikael Skoglund, Probability and random processes 1/13 Conditional Probability A probability

More information

Advanced Probability

Advanced Probability Advanced Probability Perla Sousi October 10, 2011 Contents 1 Conditional expectation 1 1.1 Discrete case.................................. 3 1.2 Existence and uniqueness............................ 3 1

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

1 Probability space and random variables

1 Probability space and random variables 1 Probability space and random variables As graduate level, we inevitably need to study probability based on measure theory. It obscures some intuitions in probability, but it also supplements our intuition,

More information

Lecture 21: Expectation of CRVs, Fatou s Lemma and DCT Integration of Continuous Random Variables

Lecture 21: Expectation of CRVs, Fatou s Lemma and DCT Integration of Continuous Random Variables EE50: Probability Foundations for Electrical Engineers July-November 205 Lecture 2: Expectation of CRVs, Fatou s Lemma and DCT Lecturer: Krishna Jagannathan Scribe: Jainam Doshi In the present lecture,

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes This section introduces Lebesgue-Stieltjes integrals, and defines two important stochastic processes: a martingale process and a counting

More information

Lecture 2: Random Variables and Expectation

Lecture 2: Random Variables and Expectation Econ 514: Probability and Statistics Lecture 2: Random Variables and Expectation Definition of function: Given sets X and Y, a function f with domain X and image Y is a rule that assigns to every x X one

More information

We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events.

We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events. 1 Probability 1.1 Probability spaces We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events. Definition 1.1.

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

Math 635: An Introduction to Brownian Motion and Stochastic Calculus

Math 635: An Introduction to Brownian Motion and Stochastic Calculus First Prev Next Go To Go Back Full Screen Close Quit 1 Math 635: An Introduction to Brownian Motion and Stochastic Calculus 1. Introduction and review 2. Notions of convergence and results from measure

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

Measure-theoretic probability

Measure-theoretic probability Measure-theoretic probability Koltay L. VEGTMAM144B November 28, 2012 (VEGTMAM144B) Measure-theoretic probability November 28, 2012 1 / 27 The probability space De nition The (Ω, A, P) measure space is

More information

Survival Analysis: Counting Process and Martingale. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Counting Process and Martingale. Lu Tian and Richard Olshen Stanford University Survival Analysis: Counting Process and Martingale Lu Tian and Richard Olshen Stanford University 1 Lebesgue-Stieltjes Integrals G( ) is a right-continuous step function having jumps at x 1, x 2,.. b f(x)dg(x)

More information

ABSTRACT EXPECTATION

ABSTRACT EXPECTATION ABSTRACT EXPECTATION Abstract. In undergraduate courses, expectation is sometimes defined twice, once for discrete random variables and again for continuous random variables. Here, we will give a definition

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

Conditional expectation

Conditional expectation Chapter II Conditional expectation II.1 Introduction Let X be a square integrable real-valued random variable. The constant c which minimizes E[(X c) 2 ] is the expectation of X. Indeed, we have, with

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Solutions Homework 6

Solutions Homework 6 1 Solutions Homework 6 October 26, 2015 Solution to Exercise 1.5.9: Part (a) is easy: we know E[X Y ] = k if X = k, a.s. The function φ(y) k is Borel measurable from the range space of Y to, and E[X Y

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Advanced Probability

Advanced Probability Advanced Probability University of Cambridge, Part III of the Mathematical Tripos Michaelmas Term 2006 Grégory Miermont 1 1 CNRS & Laboratoire de Mathématique, Equipe Probabilités, Statistique et Modélisation,

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

1. Probability Measure and Integration Theory in a Nutshell

1. Probability Measure and Integration Theory in a Nutshell 1. Probability Measure and Integration Theory in a Nutshell 1.1. Measurable Space and Measurable Functions Definition 1.1. A measurable space is a tuple (Ω, F) where Ω is a set and F a σ-algebra on Ω,

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

Lecture 5: Expectation

Lecture 5: Expectation Lecture 5: Expectation 1. Expectations for random variables 1.1 Expectations for simple random variables 1.2 Expectations for bounded random variables 1.3 Expectations for general random variables 1.4

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

Problem Set. Problem Set #1. Math 5322, Fall March 4, 2002 ANSWERS

Problem Set. Problem Set #1. Math 5322, Fall March 4, 2002 ANSWERS Problem Set Problem Set #1 Math 5322, Fall 2001 March 4, 2002 ANSWRS i All of the problems are from Chapter 3 of the text. Problem 1. [Problem 2, page 88] If ν is a signed measure, is ν-null iff ν () 0.

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

Hints/Solutions for Homework 3

Hints/Solutions for Homework 3 Hints/Solutions for Homework 3 MATH 865 Fall 25 Q Let g : and h : be bounded and non-decreasing functions Prove that, for any rv X, [Hint: consider an independent copy Y of X] ov(g(x), h(x)) Solution:

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

Measure theory and stochastic processes TA Session Problems No. 3

Measure theory and stochastic processes TA Session Problems No. 3 Measure theory and stochastic processes T Session Problems No 3 gnieszka Borowska 700 Note: this is only a draft of the solutions discussed on Wednesday and might contain some typos or more or less imprecise

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

Chp 4. Expectation and Variance

Chp 4. Expectation and Variance Chp 4. Expectation and Variance 1 Expectation In this chapter, we will introduce two objectives to directly reflect the properties of a random variable or vector, which are the Expectation and Variance.

More information

Chapter 1: Probability Theory Lecture 1: Measure space, measurable function, and integration

Chapter 1: Probability Theory Lecture 1: Measure space, measurable function, and integration Chapter 1: Probability Theory Lecture 1: Measure space, measurable function, and integration Random experiment: uncertainty in outcomes Ω: sample space: a set containing all possible outcomes Definition

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B)

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B) MATH 217A HOMEWOK EIN PEASE 1. (Chap. 1, Problem 2. (a Let (, Σ, P be a probability space and {A i, 1 i n} Σ, n 2. Prove that P A i n P (A i P (A i A j + P (A i A j A k... + ( 1 n 1 P A i n P (A i P (A

More information

Examples of Dual Spaces from Measure Theory

Examples of Dual Spaces from Measure Theory Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an

More information

Proof of Radon-Nikodym theorem

Proof of Radon-Nikodym theorem Measure theory class notes - 13 October 2010, class 20 1 Proof of Radon-Niodym theorem Theorem (Radon-Niodym). uppose Ω is a nonempty set and a σ-field on it. uppose µ and ν are σ-finite measures on (Ω,

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 8 Prof. Hanna Wallach wallach@cs.umass.edu February 16, 2012 Reminders Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Notes 18 : Optional Sampling Theorem

Notes 18 : Optional Sampling Theorem Notes 18 : Optional Sampling Theorem Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall: DEF 18.1 (Uniform Integrability) A collection

More information

ABSTRACT CONDITIONAL EXPECTATION IN L 2

ABSTRACT CONDITIONAL EXPECTATION IN L 2 ABSTRACT CONDITIONAL EXPECTATION IN L 2 Abstract. We prove that conditional expecations exist in the L 2 case. The L 2 treatment also gives us a geometric interpretation for conditional expectation. 1.

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 13: Expectation and Variance and joint distributions Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

MATH 650. THE RADON-NIKODYM THEOREM

MATH 650. THE RADON-NIKODYM THEOREM MATH 650. THE RADON-NIKODYM THEOREM This note presents two important theorems in Measure Theory, the Lebesgue Decomposition and Radon-Nikodym Theorem. They are not treated in the textbook. 1. Closed subspaces

More information

CHAPTER 6. Differentiation

CHAPTER 6. Differentiation CHPTER 6 Differentiation The generalization from elementary calculus of differentiation in measure theory is less obvious than that of integration, and the methods of treating it are somewhat involved.

More information

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure.

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure. 0 0 0 -: Lecture How is this course different from your earlier probability courses? There are some problems that simply can t be handled with finite-dimensional sample spaces and random variables that

More information

CHAPTER 1. Martingales

CHAPTER 1. Martingales CHAPTER 1 Martingales The basic limit theorems of probability, such as the elementary laws of large numbers and central limit theorems, establish that certain averages of independent variables converge

More information

Random experiments may consist of stages that are performed. Example: Roll a die two times. Consider the events E 1 = 1 or 2 on first roll

Random experiments may consist of stages that are performed. Example: Roll a die two times. Consider the events E 1 = 1 or 2 on first roll Econ 514: Probability and Statistics Lecture 4: Independence Stochastic independence Random experiments may consist of stages that are performed independently. Example: Roll a die two times. Consider the

More information

Analysis of Probabilistic Systems

Analysis of Probabilistic Systems Analysis of Probabilistic Systems Bootcamp Lecture 2: Measure and Integration Prakash Panangaden 1 1 School of Computer Science McGill University Fall 2016, Simons Institute Panangaden (McGill) Analysis

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Math 735: Stochastic Analysis

Math 735: Stochastic Analysis First Prev Next Go To Go Back Full Screen Close Quit 1 Math 735: Stochastic Analysis 1. Introduction and review 2. Notions of convergence 3. Continuous time stochastic processes 4. Information and conditional

More information

r=1 I r of intervals I r should be the sum of their lengths:

r=1 I r of intervals I r should be the sum of their lengths: m3f33chiii Chapter III: MEASURE-THEORETIC PROBABILITY 1. Measure The language of option pricing involves that of probability, which in turn involves that of measure theory. This originated with Henri LEBESGUE

More information

Wahrscheinlichkeitstheorie Prof. Schweizer Additions to the Script

Wahrscheinlichkeitstheorie Prof. Schweizer Additions to the Script Wahrscheinlichkeitstheorie Prof. Schweizer Additions to the Script Thomas Rast WS 06/07 Warning: We are sure there are lots of mistakes in these notes. Use at your own risk! Corrections and other feedback

More information

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation)

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) Last modified: March 7, 2009 Reference: PRP, Sections 3.6 and 3.7. 1. Tail-Sum Theorem

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

Part III Advanced Probability

Part III Advanced Probability Part III Advanced Probability Based on lectures by M. Lis Notes taken by Dexter Chua Michaelmas 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias Notes on Measure, Probability and Stochastic Processes João Lopes Dias Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal E-mail address: jldias@iseg.ulisboa.pt

More information

STOR 635 Notes (S13)

STOR 635 Notes (S13) STOR 635 Notes (S13) Jimmy Jin UNC-Chapel Hill Last updated: 1/14/14 Contents 1 Measure theory and probability basics 2 1.1 Algebras and measure.......................... 2 1.2 Integration................................

More information

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1 Appendix To understand weak derivatives and distributional derivatives in the simplest context of functions of a single variable, we describe without proof some results from real analysis (see [7] and

More information

Exercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure.

Exercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure. Real Variables, Fall 2014 Problem set 8 Solution suggestions xercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure. nswer: ssume that the Radon-Nikodym

More information

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 You can t see this text! Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Probability Review - Part 2 1 /

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

Solutions to Tutorial 11 (Week 12)

Solutions to Tutorial 11 (Week 12) THE UIVERSITY OF SYDEY SCHOOL OF MATHEMATICS AD STATISTICS Solutions to Tutorial 11 (Week 12) MATH3969: Measure Theory and Fourier Analysis (Advanced) Semester 2, 2017 Web Page: http://sydney.edu.au/science/maths/u/ug/sm/math3969/

More information

Probability Theory II. Spring 2016 Peter Orbanz

Probability Theory II. Spring 2016 Peter Orbanz Probability Theory II Spring 2016 Peter Orbanz Contents Chapter 1. Martingales 1 1.1. Martingales indexed by partially ordered sets 1 1.2. Martingales from adapted processes 4 1.3. Stopping times and

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

GEOMETRY AND PROBABILITY Math Fall Renato Feres

GEOMETRY AND PROBABILITY Math Fall Renato Feres GEOMETRY AND PROBABILITY Math 545 - Fall 2001 Renato Feres Contents Chapter 1. An Informal Introduction to Brownian Motion 5 1.1. Stochastic Differential Equations 5 1.2. The Microscopic View 6 1.3. Temperature

More information

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions Chapter 4 Signed Measures Up until now our measures have always assumed values that were greater than or equal to 0. In this chapter we will extend our definition to allow for both positive negative values.

More information

Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018

Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018 Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018 Topics: consistent estimators; sub-σ-fields and partial observations; Doob s theorem about sub-σ-field measurability;

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

Appendix B: Inequalities Involving Random Variables and Their Expectations

Appendix B: Inequalities Involving Random Variables and Their Expectations Chapter Fourteen Appendix B: Inequalities Involving Random Variables and Their Expectations In this appendix we present specific properties of the expectation (additional to just the integral of measurable

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Weeks 3-4 Haijun Li An Introduction to Stochastic Calculus Weeks 3-4 1 / 22 Outline

More information

6. Duals of L p spaces

6. Duals of L p spaces 6 Duals of L p spaces This section deals with the problem if identifying the duals of L p spaces, p [1, ) There are essentially two cases of this problem: (i) p = 1; (ii) 1 < p < The major difference between

More information

Lecture 12: Multiple Random Variables and Independence

Lecture 12: Multiple Random Variables and Independence EE5110: Probability Foundations for Electrical Engineers July-November 2015 Lecture 12: Multiple Random Variables and Independence Instructor: Dr. Krishna Jagannathan Scribes: Debayani Ghosh, Gopal Krishna

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006 Unless otherwise stated, for the remainder of the solutions, define F m = σy 0,..., Y m We will show EY m = EY 0 using induction. m = 0 is obviously true. For base case m = : EY = EEY Y 0 = EY 0. Now assume

More information

Expectation of Random Variables

Expectation of Random Variables 1 / 19 Expectation of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 13, 2015 2 / 19 Expectation of Discrete

More information