Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Size: px
Start display at page:

Download "Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write"

Transcription

1 Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists if the difference EX = EX + EX is well-defined, which it will be if either EX + < or EX <. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write E[X; A] X dp X1 A dp. Notice that EX inherits all of the properties of the Lebesgue integral. In particular, Thm. (1.3.1): uppose that X, Y 0 or E X, E Y <. Then 1. E[X + Y ] = EX + EY. 2. E[aX + b] = ae[x] + b for any a, b R. 3. If P{X Y } = 1, then EX EY. A 2.) Inequalities: Jensen s inequality. uppose that φ : R R is convex, i.e., φ(λx + (1 λ)y) λφ(x) + (1 λ)φ(y) for all λ (0, 1) and all x, y R. Then φ (EX) E[φ(X)]. Examples: EX E X, (EX) 2 EX 2. Hölder s inequality: If p, q [1, ] with 1/p + 1/q = 1, then E XY X p Y q, where X r (E X r ) 1/r and X inf{m : P( X > M) = 0}. 1

2 X is called the essential supremum of X and satisfies the inequality X sup{ X(ω) : ω Ω}. Also, notice that the case p = q = 1/2 is the Cauchy-chwarz inequality: E XY (E[X 2 ] E[Y 2 ]). Chebyshev s inequality: uppose that φ : R R is non-negative, let A A and set i A = inf{φ(y) : y A}. Then i A P(X A) E[φ(X); A] E[φ(X)]. Proof: The result follows by taking expectations of the inequality i A 1 A (X) φ(x)1 A (X) φ(x). If φ(x) = x 2 and A = {x : x a}, then we obtain Markov s inequality: a 2 P{ X a} E[X 2 ]. 3.) Integration of limits: We are interested in conditions that guarantee that if X n X, then EX n EX. The following example shows that this does not hold in general. Example: Take Ω = (0, 1), F = the Borel sets and P = Lebesgue measure on (0, 1). X n = n1 (0,1/n), then X n X 0, but EX n = 1 > 0 = EX. If We begin by recalling three classical results from analysis. Fatou s Lemma: If X n 0, then [ ] E lim inf X n lim inf E[X n]. Monotone Convergence Theorem: If 0 X n X, then EX n EX. Proof: ince X n X for all n, we know that lim sup EX n EX. However, since X = lim inf X n, Fatou s Lemma implies that EX lim inf EX n. Combining these two results shows that EX = lim EX n. 2

3 Dominated Convergence Theorem: If X n X a.s. and X n Y for all n, where EY <, then EX n EX. The special case where Y is constant is called the bounded convergence theorem. The following theorem can handle some cases that are not covered by either the monotone or the dominated convergence theorems. Theorem (1.3.8): uppose that X n X a.s. Let g, h be continuous functions such that 1. g 0 and g(x) as x ; 2. h(x) /g(x) 0 as x ; 3. E[g(X n )] K < for all n. Then E[h(X n )] E[h(X)]. Proof: By subtracting a constant from h, we can assume wlog that h(0) = 0. Choose M so that P( X = M) = 0 and g(x) > 0 whenever x M. Given a random variable Y, let Ȳ = Y 1 ( Y M). Then X n X a.s. Indeed, on the set X < M, we have that X n < M for all n sufficiently large and so X n = X n X = X, while on the set X > M, we have that X n > M for all n sufficiently large and so X n = 0 X = 0. ince h( X n ) is bounded and h is continuous, the bounded convergence theorem implies that To control the truncation error, let E[h( X n )] E[h( X)]. ɛ M sup{ h(x) /g(x) : x M}. and observe that for any random variable Y we have ( ) E[h(Ȳ )] E[h(Y )] E h(ȳ ) h(y ) = E[ h(y ) ; Y > M] ɛ M E[g(Y )]. Taking Y = X n in ( ) and using condition (3) in the theorem, we have Eh( X n ) Eh(X n ) Kɛ M. To estimate the remaining truncation error, notice that because g 0 and g is continuous, Fatou s lemma implies that E[g(X)] lim inf E[g(X n)] K. Then, taking Y = X in ( ) gives Eh( X) Eh(X) Kɛ M. 3

4 Finally, by the triangle inequality, we have Eh(X n ) Eh(X) E[h(X n )] E[h( X n )] + E[h( X n )] E[h( X)] + E[h( X)] E[h(X)]. Letting n, we obtain lim sup E[h(Xn )] E[h(X)] 2KɛM which can be made arbitrarily close to 0 since ɛ M 0 as M. Corollary: uppose that X n X a.s. and that there exists a K < and a p > 1 such that E[X p n] K for all n 1. Then EX n EX. 4.) Computing Expected Values Change of Variables Formula: Let X be a random variable with distribution µ on (, ). If f is a measurable function from (, ) to (R, R) such that f 0 or E f(x) <, then E[f(X)] = f(y) µ(dy). Proof: We use the approach that Williams calls the standard machine. Case 1: Indicator Functions. If B and f = 1 B, then E[1 B (X)] = P(X B) = µ(b) = 1 B (y) µ(dy). Case 2: imple Functions. Let f(x) = n i=1 c i1 Bi (x), where c i R and B i. Then Case 1 combined with the linearity of both expectations and integration shows that E[f(X)] = = n c i E[1 Bi (X)] i=1 n c i i=1 1 Bi (y) µ(dy) = f(y) µ(dy). Case 3: Nonnegative Functions. If f 0 and we let f n (x) = ( 2 n f(x) /2 n ) n, then f n is a simple function and f n f as n. Combining Case 2 with the monotone convergence theorem gives E[f(X)] = lim E[f(X n)] = lim f n (y)µ(dy) = f(y)µ(dy). 4

5 Case 4: Integrable Functions. Write f(x) = f + (x) f (x) and note that the integrability of f implies that E[f + (X)] and E[f (X)] are finite. Using Case 3 gives Ef(X) = E[f + (X)] E[f (X)] = f + (y) µ(dy) f (y) µ(dy) = f(y) µ(dy). 5

Lectures 22-23: Conditional Expectations

Lectures 22-23: Conditional Expectations Lectures 22-23: Conditional Expectations 1.) Definitions Let X be an integrable random variable defined on a probability space (Ω, F 0, P ) and let F be a sub-σ-algebra of F 0. Then the conditional expectation

More information

Graduate Probability Theory

Graduate Probability Theory Graduate Probability Theory Yiqiao YIN Statistics Department Columbia University Notes in L A TEX December 12, 2017 Abstract This is the lecture note from Probability Theory class offered in Mathematics

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

1 Probability space and random variables

1 Probability space and random variables 1 Probability space and random variables As graduate level, we inevitably need to study probability based on measure theory. It obscures some intuitions in probability, but it also supplements our intuition,

More information

0.1 Uniform integrability

0.1 Uniform integrability Copyright c 2009 by Karl Sigman 0.1 Uniform integrability Given a sequence of rvs {X n } for which it is known apriori that X n X, n, wp1. for some r.v. X, it is of great importance in many applications

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

ABSTRACT EXPECTATION

ABSTRACT EXPECTATION ABSTRACT EXPECTATION Abstract. In undergraduate courses, expectation is sometimes defined twice, once for discrete random variables and again for continuous random variables. Here, we will give a definition

More information

Lecture 21: Expectation of CRVs, Fatou s Lemma and DCT Integration of Continuous Random Variables

Lecture 21: Expectation of CRVs, Fatou s Lemma and DCT Integration of Continuous Random Variables EE50: Probability Foundations for Electrical Engineers July-November 205 Lecture 2: Expectation of CRVs, Fatou s Lemma and DCT Lecturer: Krishna Jagannathan Scribe: Jainam Doshi In the present lecture,

More information

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES CLASSICAL PROBABILITY 2008 2. MODES OF CONVERGENCE AND INEQUALITIES JOHN MORIARTY In many interesting and important situations, the object of interest is influenced by many random factors. If we can construct

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

Lecture 2: Random Variables and Expectation

Lecture 2: Random Variables and Expectation Econ 514: Probability and Statistics Lecture 2: Random Variables and Expectation Definition of function: Given sets X and Y, a function f with domain X and image Y is a rule that assigns to every x X one

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Conditional expectation

Conditional expectation Chapter II Conditional expectation II.1 Introduction Let X be a square integrable real-valued random variable. The constant c which minimizes E[(X c) 2 ] is the expectation of X. Indeed, we have, with

More information

Advanced Probability

Advanced Probability Advanced Probability Perla Sousi October 10, 2011 Contents 1 Conditional expectation 1 1.1 Discrete case.................................. 3 1.2 Existence and uniqueness............................ 3 1

More information

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration? Lebesgue Integration: A non-rigorous introduction What is wrong with Riemann integration? xample. Let f(x) = { 0 for x Q 1 for x / Q. The upper integral is 1, while the lower integral is 0. Yet, the function

More information

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X.

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X. Chapter 6 Completeness Lecture 18 Recall from Definition 2.22 that a Cauchy sequence in (X, d) is a sequence whose terms get closer and closer together, without any limit being specified. In the Euclidean

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

MATH 418: Lectures on Conditional Expectation

MATH 418: Lectures on Conditional Expectation MATH 418: Lectures on Conditional Expectation Instructor: r. Ed Perkins, Notes taken by Adrian She Conditional expectation is one of the most useful tools of probability. The Radon-Nikodym theorem enables

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Appendix B: Inequalities Involving Random Variables and Their Expectations

Appendix B: Inequalities Involving Random Variables and Their Expectations Chapter Fourteen Appendix B: Inequalities Involving Random Variables and Their Expectations In this appendix we present specific properties of the expectation (additional to just the integral of measurable

More information

Math 735: Stochastic Analysis

Math 735: Stochastic Analysis First Prev Next Go To Go Back Full Screen Close Quit 1 Math 735: Stochastic Analysis 1. Introduction and review 2. Notions of convergence 3. Continuous time stochastic processes 4. Information and conditional

More information

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1.

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1. Real Variables, Fall 2014 Problem set 3 Solution suggestions xercise 1. Let f be a nonnegative measurable function. Show that f = sup ϕ, where ϕ is taken over all simple functions with ϕ f. For each n

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Lecture 4: Conditional expectation and independence

Lecture 4: Conditional expectation and independence Lecture 4: Conditional expectation and independence In elementry probability, conditional probability P(B A) is defined as P(B A) P(A B)/P(A) for events A and B with P(A) > 0. For two random variables,

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

Summary of Real Analysis by Royden

Summary of Real Analysis by Royden Summary of Real Analysis by Royden Dan Hathaway May 2010 This document is a summary of the theorems and definitions and theorems from Part 1 of the book Real Analysis by Royden. In some areas, such as

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

CHAPTER 3: LARGE SAMPLE THEORY

CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 1 CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 2 Introduction CHAPTER 3 LARGE SAMPLE THEORY 3 Why large sample theory studying small sample property is usually

More information

7 Convergence in R d and in Metric Spaces

7 Convergence in R d and in Metric Spaces STA 711: Probability & Measure Theory Robert L. Wolpert 7 Convergence in R d and in Metric Spaces A sequence of elements a n of R d converges to a limit a if and only if, for each ǫ > 0, the sequence a

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

f(x)dx = lim f n (x)dx.

f(x)dx = lim f n (x)dx. Chapter 3 Lebesgue Integration 3.1 Introduction The concept of integration as a technique that both acts as an inverse to the operation of differentiation and also computes areas under curves goes back

More information

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3 Math 551 Measure Theory and Functional Analysis I Homework Assignment 3 Prof. Wickerhauser Due Monday, October 12th, 215 Please do Exercises 3*, 4, 5, 6, 8*, 11*, 17, 2, 21, 22, 27*. Exercises marked with

More information

STOR 635 Notes (S13)

STOR 635 Notes (S13) STOR 635 Notes (S13) Jimmy Jin UNC-Chapel Hill Last updated: 1/14/14 Contents 1 Measure theory and probability basics 2 1.1 Algebras and measure.......................... 2 1.2 Integration................................

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1 Chapter 2 Probability measures 1. Existence Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension to the generated σ-field Proof of Theorem 2.1. Let F 0 be

More information

1. Probability Measure and Integration Theory in a Nutshell

1. Probability Measure and Integration Theory in a Nutshell 1. Probability Measure and Integration Theory in a Nutshell 1.1. Measurable Space and Measurable Functions Definition 1.1. A measurable space is a tuple (Ω, F) where Ω is a set and F a σ-algebra on Ω,

More information

Lecture 5: Expectation

Lecture 5: Expectation Lecture 5: Expectation 1. Expectations for random variables 1.1 Expectations for simple random variables 1.2 Expectations for bounded random variables 1.3 Expectations for general random variables 1.4

More information

Lectures on Integration. William G. Faris

Lectures on Integration. William G. Faris Lectures on Integration William G. Faris March 4, 2001 2 Contents 1 The integral: properties 5 1.1 Measurable functions......................... 5 1.2 Integration.............................. 7 1.3 Convergence

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Math 635: An Introduction to Brownian Motion and Stochastic Calculus

Math 635: An Introduction to Brownian Motion and Stochastic Calculus First Prev Next Go To Go Back Full Screen Close Quit 1 Math 635: An Introduction to Brownian Motion and Stochastic Calculus 1. Introduction and review 2. Notions of convergence and results from measure

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B)

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B) MATH 217A HOMEWOK EIN PEASE 1. (Chap. 1, Problem 2. (a Let (, Σ, P be a probability space and {A i, 1 i n} Σ, n 2. Prove that P A i n P (A i P (A i A j + P (A i A j A k... + ( 1 n 1 P A i n P (A i P (A

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Probability: Handout

Probability: Handout Probability: Handout Klaus Pötzelberger Vienna University of Economics and Business Institute for Statistics and Mathematics E-mail: Klaus.Poetzelberger@wu.ac.at Contents 1 Axioms of Probability 3 1.1

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability 2002-2003 Week 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 4 General integration theory Mikael Skoglund, Probability and random processes 1/15 Measurable xtended Real-valued Functions R = the extended real numbers; a subset

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

4. Conditional risk measures and their robust representation

4. Conditional risk measures and their robust representation 4. Conditional risk measures and their robust representation We consider a discrete-time information structure given by a filtration (F t ) t=0,...,t on our probability space (Ω, F, P ). The time horizon

More information

Math212a1413 The Lebesgue integral.

Math212a1413 The Lebesgue integral. Math212a1413 The Lebesgue integral. October 28, 2014 Simple functions. In what follows, (X, F, m) is a space with a σ-field of sets, and m a measure on F. The purpose of today s lecture is to develop the

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Midterm Examination. STA 205: Probability and Measure Theory. Wednesday, 2009 Mar 18, 2:50-4:05 pm

Midterm Examination. STA 205: Probability and Measure Theory. Wednesday, 2009 Mar 18, 2:50-4:05 pm Midterm Examination STA 205: Probability and Measure Theory Wednesday, 2009 Mar 18, 2:50-4:05 pm This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Section Integration of Nonnegative Measurable Functions

Section Integration of Nonnegative Measurable Functions 18.2. Integration of Nonnegative Measurable Functions 1 Section 18.2. Integration of Nonnegative Measurable Functions Note. We now define integrals of measurable functions on measure spaces. Though similar

More information

EE514A Information Theory I Fall 2013

EE514A Information Theory I Fall 2013 EE514A Information Theory I Fall 2013 K. Mohan, Prof. J. Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2013 http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/

More information

Problem set 4, Real Analysis I, Spring, 2015.

Problem set 4, Real Analysis I, Spring, 2015. Problem set 4, Real Analysis I, Spring, 215. (18) Let f be a measurable finite-valued function on [, 1], and suppose f(x) f(y) is integrable on [, 1] [, 1]. Show that f is integrable on [, 1]. [Hint: Show

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013 Conditional expectations, filtration and martingales Content. 1. Conditional expectations 2. Martingales, sub-martingales

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

The main results about probability measures are the following two facts:

The main results about probability measures are the following two facts: Chapter 2 Probability measures The main results about probability measures are the following two facts: Theorem 2.1 (extension). If P is a (continuous) probability measure on a field F 0 then it has a

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Math 832 Fall University of Wisconsin at Madison. Instructor: David F. Anderson

Math 832 Fall University of Wisconsin at Madison. Instructor: David F. Anderson Math 832 Fall 2013 University of Wisconsin at Madison Instructor: David F. Anderson Pertinent information Instructor: David Anderson Office: Van Vleck 617 email: anderson@math.wisc.edu Office hours: Mondays

More information

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias Notes on Measure, Probability and Stochastic Processes João Lopes Dias Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal E-mail address: jldias@iseg.ulisboa.pt

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION

THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION JAINUL VAGHASIA Contents. Introduction. Notations 3. Background in Probability Theory 3.. Expectation and Variance 3.. Convergence

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

Lecture 4 Lebesgue spaces and inequalities

Lecture 4 Lebesgue spaces and inequalities Lecture 4: Lebesgue spaces and inequalities 1 of 10 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 4 Lebesgue spaces and inequalities Lebesgue spaces We have seen how

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

Hints/Solutions for Homework 3

Hints/Solutions for Homework 3 Hints/Solutions for Homework 3 MATH 865 Fall 25 Q Let g : and h : be bounded and non-decreasing functions Prove that, for any rv X, [Hint: consider an independent copy Y of X] ov(g(x), h(x)) Solution:

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm SOME QUESTIONS FOR MATH 766, SPRING 2016 SHUANGLIN SHAO Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm f C = sup f(x). 0 x 1 Prove that C([0, 1]) is a

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Lecture 4: Completion of a Metric Space

Lecture 4: Completion of a Metric Space 15 Lecture 4: Completion of a Metric Space Closure vs. Completeness. Recall the statement of Lemma??(b): A subspace M of a metric space X is closed if and only if every convergent sequence {x n } X satisfying

More information

The reference [Ho17] refers to the course lecture notes by Ilkka Holopainen.

The reference [Ho17] refers to the course lecture notes by Ilkka Holopainen. Department of Mathematics and Statistics Real Analysis I, Fall 207 Solutions to Exercise 6 (6 pages) riikka.schroderus at helsinki.fi Note. The course can be passed by an exam. The first possible exam

More information

Concentration Inequalities

Concentration Inequalities Chapter Concentration Inequalities I. Moment generating functions, the Chernoff method, and sub-gaussian and sub-exponential random variables a. Goal for this section: given a random variable X, how does

More information

Lecture 5 - Information theory

Lecture 5 - Information theory Lecture 5 - Information theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 1 / 42 Part I Uncertainty and entropy Jan Bouda (FI MU) Lecture 5 - Information

More information

Joint Distribution of Two or More Random Variables

Joint Distribution of Two or More Random Variables Joint Distribution of Two or More Random Variables Sometimes more than one measurement in the form of random variable is taken on each member of the sample space. In cases like this there will be a few

More information

Review of measure theory

Review of measure theory 209: Honors nalysis in R n Review of measure theory 1 Outer measure, measure, measurable sets Definition 1 Let X be a set. nonempty family R of subsets of X is a ring if, B R B R and, B R B R hold. bove,

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Prakash Balachandran Department of Mathematics Duke University April 2, 2008 1 Review of Discrete-Time

More information

Probability Theory. Richard F. Bass

Probability Theory. Richard F. Bass Probability Theory Richard F. Bass ii c Copyright 2014 Richard F. Bass Contents 1 Basic notions 1 1.1 A few definitions from measure theory............. 1 1.2 Definitions............................. 2

More information

Probability inequalities 11

Probability inequalities 11 Paninski, Intro. Math. Stats., October 5, 2005 29 Probability inequalities 11 There is an adage in probability that says that behind every limit theorem lies a probability inequality (i.e., a bound on

More information

Probability and Measure

Probability and Measure Probability and Measure Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Convergence of Random Variables 1. Convergence Concepts 1.1. Convergence of Real

More information