Lecture 11. Probability Theory: an Overveiw

Size: px
Start display at page:

Download "Lecture 11. Probability Theory: an Overveiw"

Transcription

1 Math Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

2 The starting point in developing the probability theory is the notion of a sample space = the set of possible outcomes. The sample space Ω is the set of possible outcomes of an experiment Points ω Ω are called realizations Events are subsets of Ω Next, to every event A Ω, we assign a real number P(A), called the probability of A. We call function P : {subsets of Ω} R a probability distribution. Function P is not arbitrary, it satisfies several natural properties (called axioms of probability): 1 0 P(A) 1 (Events range from never happening to always happening) 2 P(Ω) = 1 (Something must happen) 3 P( ) = 0 (Nothing never happens) 4 P(A) + P(Ā) = 1 (A must either happen or not-happen) 5 P(A + B) = P(A) + P(B) P(AB) Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

3 Statistical Independence Two events A and B are independent if P(AB) = P(A)P(B) Independence can arise in two distinct ways: 1 We explicitly assume that two events are independent. 2 We derive independence of A and B by verifying that P(AB) = P(A)P(B). Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

4 Conditional Probability If P(A) > 0, then the conditional probability of B given A is P(B A) = P(AB) P(A) Useful Interpretation: Think of P(B A) as the fraction of times B occurs among those in which A occurs Properties of Conditional Probabilities: 1 For any fixed A such that P(A) > 0, P( A) is a probability, i.e. it satisfies the rules of probability. 2 In general P(B A) P(A B) = P(B) Thus, another interpretation of independence is that knowing A does not change the probability of B. 3 If A and B are independent then P(B A) = P(AB) P(A) = P(A)P(B) P(A) Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

5 Law of Total Probability and Bayes Theorem Law of Total Probability Let A 1,..., A n be a partition of Ω, i.e. n i=1 A i = Ω (A 1,..., A n are jointly exhaustive events) A i Aj = for i j (A 1,..., A n are mutually exclusive events) P(A i ) > 0 Then for any event B P(B) = n P(B A i )P(A i ) i=1 Bayes Theorem Conditional probabilities can be inverted. That is, P(A B) = P(B A)P(A) P(B) Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

6 Random Variables We need the random variables to link sample spaces and events to data. A random variable is a mapping X : Ω R that assigns a real number X (ω) to each outcome ω Ω. This mapping induces probability on R from Ω as follows: Given a random variable X and a set A R, define and let X 1 (A) = {ω Ω : X (ω) A} P(X A) = P(X 1 (A)) = P({ω Ω : X (ω) A}) The cumulative distribution function (CDF) F X : R [0, 1] is defined by F X (x) = P(X x) CDF contains all the information about the random variable Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

7 Properties of CDFs Theorem A function F : R [0, 1] is a CDF for some random variable if and only if it satisfies the following three conditions: 1 F is non-decreasing: x 1 < x 2 F (x 1 ) F (x 2 ) 2 F is normalized: lim F (x) = 0 and lim F (x) = 1 x x + 3 F is right-continuous: lim F (y) = F (x) y x+0 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

8 Discrete Random Variables X is discrete if it takes countable many values {x 1, x 2,...}. We define the probability mass function (PMF) for X by f X (x) = P(X = x) Relationships between CDF and PMF: The CDF of X is related to the PMF f X by F X (x) = P(X x) = f X (x i ) x i x The PMF f X is related to the CDF F X by f X (x) = F X (x) F X (x ) = F X (x) lim F (y) y x 0 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

9 Continuous Random Variables A random variable is continuous if there exists a function f X such that f X (x) 0 for all x + f X (x)dx = 1, and For every a b P(a < X b) = b a f X (x)dx The function f X (x) is called the probability density function (PDF) Relationship between the CDF F X (x) and PDF f X (x): F X (x) = x f X (t)dt f X (x) = F X (x) Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

10 Transformation of Random Variables Suppose that X is a random variable with PDF f X and CDF F X. Let Y = r(x ) be a function of X. Q: How to compute the PDFand CDF of Y? 1 For each y, find the set A y = {x : r(x) y} 2 Find the CDF F Y (y) F Y (y) = P(Y y) = P(r(X ) y) = P(X A y ) = f X (x)dx A y 3 The PDF is then f Y (y) = F Y (y) Important Fact: When r is strictly monotonic, then r has an inverse s = r 1 and f Y (y) = f X (s(y)) ds(y) dy Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

11 Joint Distributions Discrete Case Given a pair of discrete random variables X and Y, their joint PMF is defined by Continuous Case f X,Y (x, y) = P(X = x, Y = y) A function f X,Y (x, y) is called the joint PDF of continuous random variables X and Y if + + fx,y (x, y) 0, f X,Y (x, y)dxdy = 1 For any set A R R P((X, Y ) A) = f X,Y (x, y)dxdy The joint CDF of X and Y is defined as F X,Y (x, y) = P(X x, Y y) A Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

12 Marginal Distributions Discrete Case If X and Y have joint PMF f X,Y, then the marginal PMF of X is f X (x) = P(X = x) = y P(X = x, Y = y) = y f X,Y (x, y) Similarly, the marginal PMF of Y is f Y (y) = P(Y = y) = x P(X = x, Y = y) = x f X,Y (x, y) Continuous Case If X and Y have joint PDF f X,Y, then the marginal PDFs of X and Y are f X (x) = f X,Y (x, y)dy and f Y (y) = f X,Y (x, y)dx Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

13 Independent Random Variables Two random variables X and Y are independent if, for every A and B Criterion of independence: Theorem P(X A, Y B) = P(X A)P(Y B) Let X and Y have joint PDF/PMF f X,Y. Then X and Y are independent if and only if f X,Y (x, y) = f X (x)f Y (y) Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

14 Conditional Distributions Discrete Case The conditional PMF: f X Y (x y) = P(X = x Y = y) = Continuous Case The conditional PDF is P(X = x, Y = y) P(Y = y) f X Y (x y) = f X,Y (x, y) f Y (y) = f X,Y (x, y) f Y (y) Then, P(X A Y = y) = f X Y (x y)dx A Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

15 Expectation and its Properties The expectation (or mean) of a random variable X is the average value of X. The expected value, or mean, or first moment of X is { µ X E[X ] = x xf X (x), xfx (x)dx, assuming that the sum (or integral) is well-defined. if X is discrete if X is continuous Let Y = r(x ), then E[Y ] = E[r(X )] = r(x)f X (x)dx If X 1,..., X n are random variables and a 1,..., a n are constants, then [ n ] n E a i X i = a i E[X i ] i=1 i=1 Let X 1,..., X n be independent random variables. Then, [ n ] n E X i = E[X i ] i=1 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24 i=1

16 Variance and its Properties The variance measures the spread of a distribution. Let X be a random variance with mean µ X. The variance of X, denoted V[X ] or σx 2, is defined by { σx 2 V[X ] = E[(X µ X ) 2 ] = x (x µ X ) 2 f X (x), (x µx ) 2 f X (x)dx, if X is discrete if X is continuous The standard deviation is σ X = V[X ] Important Properties of V[X ]: V[X ] = E[X 2 ] µ 2 X If a and b are constants, then V[aX + b] = a 2 V[X ] If X 1,..., X n are independent and a 1,..., a n are constants, then [ n ] n V a i X i = ai 2 V[X i ] i=1 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24 i=1

17 Covariance and Correlation If X and Y are random variables, then the covariance and correlation between X and Y measure how strong the linear relationship is between X and Y. Let X and Y be random variables with means µ X and µ Y and standard deviations σ X and σ Y. Define the covariance between X and Y by Cov(X, Y ) = E[(X µ X )(Y µ Y )] and the correlation by ρ(x, Y ) = Cov(X, Y ) σ X σ Y Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

18 Properties of Covariance and Correlation The covariance satisfies (useful in computations): Cov(X, Y ) = E[XY ] E[X ]E[Y ] The correlation satisfies: 1 ρ(x, Y ) 1 If Y = ax + b for some constants a and b, then { 1, if a > 0 ρ(x, Y ) = 1, if a < 0 If X and Y are independent, then Cov(X, Y ) = ρ(x, Y ) = 0. The converse is not true. For random variables X 1,..., X n [ n ] n V a i X i = ai 2 V[X i ] + 2 a i a j Cov(X i, X j ) i=1 i<j i=1 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

19 Conditional Expectation and Conditional Variance The conditional expectation of X given Y = y is { E[X Y = y] = x xf X Y (x y), discrete case; xfx Y (x y)dx, continuous case. E[X ] is a number E[X Y = y] is a function of y E[X Y ] is the random variable whose value is E[X Y = y] when Y = y The Rule of Iterated Expectations EE[Y X ] = E[Y ] and EE[X Y ] = E[X ] The conditional variance of X given Y = y is V[X Y = y] = E[(X E[X Y = y]) 2 Y = y] V[X ] is a number V[X Y = y] is a function of y V[X Y ] is the random variable whose value is V[X Y = y] when Y = y For random variables X and Y V[X ] = EV[X Y ] + VE[X Y ] Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

20 Inequalities Markov inequality: If X is a non-negative random variable, then for any a > 0 P(X a) E[X ] a Chebyshev inequality: If X is a random variable with mean µ and variance σ 2, then for any a > 0 P( X µ a) σ2 a 2 Hoeffding inequality: Let X 1,..., X n Bernoulli(p), then for any ε > 0 P( X n p a) 2e 2na2 Cauchy-Schwarz inequality: If X and Y have finite variances, then Jensen Inequality: E[ XY ] E[X 2 ]E[Y 2 ] If g is convex, then E[g(X )] g(e[x ]) If g is concave, then E[g(X )] g(e[x ]) Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

21 Convergence of Random Variables There are two main types of convergence: convergence in probability and convergence in distribution. Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the CDF of X n and let F denote the CDF of X. P X n converges to X in probability, written X n X, if for every ɛ > 0 lim P( X n X ɛ) = 0 n D X n converges to X in distribution, written X n X, if lim F n(x) = F (x) n for all x for which F is continuous. X n P D X implies that X n X Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

22 Law of Large Numbers and Central Limit Theorem The LLN says that the mean of a large sample is close to the mean of the distribution. The Law of Large Numbers Let X 1,..., X n be i.i.d. with mean µ and variance σ 2. Let X n = 1 n n i=1 X i. Then X n = 1 n n i=1 X i P µ as n The CLT says that X n has a distribution which is approximately Normal with mean µ and variance σ 2 /n. This is remarkable since nothing is assumed about the distribution of X i, except the existence of the mean and variance. The Central Limit Theorem Let X 1,..., X n be i.i.d. with mean µ and variance σ 2. Then Z n X n µ σ/ n D Z N (0, 1) as n Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

23 The Central Limit Theorem The central limit theorem tells us that Z n = X n µ σ/ n N (0, 1) However, in applications, we rarely know σ. We can estimate σ 2 from X 1,..., X n by sample variance Sn 2 = 1 n (X i X n ) 2 n 1 Question: If we replace σ with S n is the central limit theorem still true? Answer: Yes! Theorem i=1 Assume the same conditions as in the CLT. Then, X n µ S n / n D Z N (0, 1) as n Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

24 Multivariate Central Limit Theorem Let X 1,..., X n be i.i.d. random vectors with mean µ and covariance matrix Σ: X 1i µ 1 E[X 1i ] X 2i µ 2 X i = µ =.. = E[X 2i ]. X ki µ k E[X ki ] V[X 1i ] Cov(X 1i, X 2i )... Cov(X 1i, X ki ) Cov(X 2i, X 1i ) V[X 2i ]... Cov(X 2i, X ki ) Σ = Cov(X ki, X 1i )... Cov(X ki, X k 1i ) V[X ki ] Let X n = (X 1n,..., X kn ) T. Then n(x n µ) D N (0, Σ) as n Konstantin Zuev (USC) Math 408, Lecture 11 February 11, / 24

Lecture 1. ABC of Probability

Lecture 1. ABC of Probability Math 408 - Mathematical Statistics Lecture 1. ABC of Probability January 16, 2013 Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 1 / 9 Agenda Sample Spaces Realizations, Events Axioms of Probability

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

Lecture 2. Conditional Probability

Lecture 2. Conditional Probability Math 408 - Mathematical Statistics Lecture 2. Conditional Probability January 18, 2013 Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 1 / 9 Agenda Motivation and Definition Properties of Conditional

More information

Lecture 1. ABC of Probability

Lecture 1. ABC of Probability Math 408 - Mathematical Statistics Lecture 1. ABC of Probability January 16, 2013 Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 1 / 9 Agenda Sample Spaces Realizations, Events Axioms of Probability

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

Lecture Tricks with Random Variables: The Law of Large Numbers & The Central Limit Theorem

Lecture Tricks with Random Variables: The Law of Large Numbers & The Central Limit Theorem Math 408 - Mathematical Statistics Lecture 9-10. Tricks with Random Variables: The Law of Large Numbers & The Central Limit Theorem February 6-8, 2013 Konstantin Zuev (USC) Math 408, Lecture 9-10 February

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables.

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables. Probability UBC Economics 326 January 23, 2018 1 2 3 Wooldridge (2013) appendix B Stock and Watson (2009) chapter 2 Linton (2017) chapters 1-5 Abbring (2001) sections 2.1-2.3 Diez, Barr, and Cetinkaya-Rundel

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Appendix A : Introduction to Probability and stochastic processes

Appendix A : Introduction to Probability and stochastic processes A-1 Mathematical methods in communication July 5th, 2009 Appendix A : Introduction to Probability and stochastic processes Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat The probability of

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 1 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

2 (Statistics) Random variables

2 (Statistics) Random variables 2 (Statistics) Random variables References: DeGroot and Schervish, chapters 3, 4 and 5; Stirzaker, chapters 4, 5 and 6 We will now study the main tools use for modeling experiments with unknown outcomes

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Lecture 1: Review on Probability and Statistics

Lecture 1: Review on Probability and Statistics STAT 516: Stochastic Modeling of Scientific Data Autumn 2018 Instructor: Yen-Chi Chen Lecture 1: Review on Probability and Statistics These notes are partially based on those of Mathias Drton. 1.1 Motivating

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 17: Continuous random variables: conditional PDF Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

Gov Multiple Random Variables

Gov Multiple Random Variables Gov 2000-4. Multiple Random Variables Matthew Blackwell September 29, 2015 Where are we? Where are we going? We described a formal way to talk about uncertain outcomes, probability. We ve talked about

More information

EE514A Information Theory I Fall 2013

EE514A Information Theory I Fall 2013 EE514A Information Theory I Fall 2013 K. Mohan, Prof. J. Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2013 http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3 Probability Paul Schrimpf January 23, 2018 Contents 1 Definitions 2 2 Properties 3 3 Random variables 4 3.1 Discrete........................................... 4 3.2 Continuous.........................................

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

4 Pairs of Random Variables

4 Pairs of Random Variables B.Sc./Cert./M.Sc. Qualif. - Statistical Theory 4 Pairs of Random Variables 4.1 Introduction In this section, we consider a pair of r.v. s X, Y on (Ω, F, P), i.e. X, Y : Ω R. More precisely, we define a

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University.

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University. Random Signals and Systems Chapter 3 Jitendra K Tugnait Professor Department of Electrical & Computer Engineering Auburn University Two Random Variables Previously, we only dealt with one random variable

More information

STT 441 Final Exam Fall 2013

STT 441 Final Exam Fall 2013 STT 441 Final Exam Fall 2013 (12:45-2:45pm, Thursday, Dec. 12, 2013) NAME: ID: 1. No textbooks or class notes are allowed in this exam. 2. Be sure to show all of your work to receive credit. Credits are

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Jane Bae Stanford University hjbae@stanford.edu September 16, 2014 Jane Bae (Stanford) Probability and Statistics September 16, 2014 1 / 35 Overview 1 Probability Concepts Probability

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 17-27 Review Scott Sheffield MIT 1 Outline Continuous random variables Problems motivated by coin tossing Random variable properties 2 Outline Continuous random variables Problems

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Probability Theory. Patrick Lam

Probability Theory. Patrick Lam Probability Theory Patrick Lam Outline Probability Random Variables Simulation Important Distributions Discrete Distributions Continuous Distributions Most Basic Definition of Probability: number of successes

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

Practice Problem - Skewness of Bernoulli Random Variable. Lecture 7: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example

Practice Problem - Skewness of Bernoulli Random Variable. Lecture 7: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example A little more E(X Practice Problem - Skewness of Bernoulli Random Variable Lecture 7: and the Law of Large Numbers Sta30/Mth30 Colin Rundel February 7, 014 Let X Bern(p We have shown that E(X = p Var(X

More information

Chapter 2. Probability

Chapter 2. Probability 2-1 Chapter 2 Probability 2-2 Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty. Examples: rolling a die tossing

More information

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2 Short Guides to Microeconometrics Fall 2018 Kurt Schmidheiny Unversität Basel Elements of Probability Theory 2 1 Random Variables and Distributions Contents Elements of Probability Theory matrix-free 1

More information

Bivariate Distributions

Bivariate Distributions STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 17 Néhémy Lim Bivariate Distributions 1 Distributions of Two Random Variables Definition 1.1. Let X and Y be two rrvs on probability space (Ω, A, P).

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Midterm #1. Lecture 10: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example, cont. Joint Distributions - Example

Midterm #1. Lecture 10: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example, cont. Joint Distributions - Example Midterm #1 Midterm 1 Lecture 10: and the Law of Large Numbers Statistics 104 Colin Rundel February 0, 01 Exam will be passed back at the end of class Exam was hard, on the whole the class did well: Mean:

More information

CME 106: Review Probability theory

CME 106: Review Probability theory : Probability theory Sven Schmit April 3, 2015 1 Overview In the first half of the course, we covered topics from probability theory. The difference between statistics and probability theory is the following:

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality Math 408 - Mathematical Statistics Lecture 13-14. The Sample Mean and the Sample Variance Under Assumption of Normality February 20, 2013 Konstantin Zuev (USC) Math 408, Lecture 13-14 February 20, 2013

More information

Probability Notes. Compiled by Paul J. Hurtado. Last Compiled: September 6, 2017

Probability Notes. Compiled by Paul J. Hurtado. Last Compiled: September 6, 2017 Probability Notes Compiled by Paul J. Hurtado Last Compiled: September 6, 2017 About These Notes These are course notes from a Probability course taught using An Introduction to Mathematical Statistics

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

3. Review of Probability and Statistics

3. Review of Probability and Statistics 3. Review of Probability and Statistics ECE 830, Spring 2014 Probabilistic models will be used throughout the course to represent noise, errors, and uncertainty in signal processing problems. This lecture

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 MA 575 Linear Models: Cedric E Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 1 Revision: Probability Theory 11 Random Variables A real-valued random variable is

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Probability Theory Review Reading Assignments

Probability Theory Review Reading Assignments Probability Theory Review Reading Assignments R. Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd edition, 2001 (appendix A.4, hard-copy). "Everything I need to know about Probability"

More information

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation)

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) Last modified: March 7, 2009 Reference: PRP, Sections 3.6 and 3.7. 1. Tail-Sum Theorem

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

Elements of Probability Theory

Elements of Probability Theory Short Guides to Microeconometrics Fall 2016 Kurt Schmidheiny Unversität Basel Elements of Probability Theory Contents 1 Random Variables and Distributions 2 1.1 Univariate Random Variables and Distributions......

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Lecture 3 - Expectation, inequalities and laws of large numbers

Lecture 3 - Expectation, inequalities and laws of large numbers Lecture 3 - Expectation, inequalities and laws of large numbers Jan Bouda FI MU April 19, 2009 Jan Bouda (FI MU) Lecture 3 - Expectation, inequalities and laws of large numbersapril 19, 2009 1 / 67 Part

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Introduction to Probability Theory

Introduction to Probability Theory Introduction to Probability Theory Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) Probability 1 / 39 Foundations 1 Foundations 2 Random Variables 3 Expectation 4 Multivariate Random

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Probability inequalities 11

Probability inequalities 11 Paninski, Intro. Math. Stats., October 5, 2005 29 Probability inequalities 11 There is an adage in probability that says that behind every limit theorem lies a probability inequality (i.e., a bound on

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

1 Joint and marginal distributions

1 Joint and marginal distributions DECEMBER 7, 204 LECTURE 2 JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS, INDEPENDENCE So far we have considered one random variable at a time. However, in economics we are typically interested

More information

Bayesian statistics, simulation and software

Bayesian statistics, simulation and software Module 1: Course intro and probability brush-up Department of Mathematical Sciences Aalborg University 1/22 Bayesian Statistics, Simulations and Software Course outline Course consists of 12 half-days

More information

Lectures 22-23: Conditional Expectations

Lectures 22-23: Conditional Expectations Lectures 22-23: Conditional Expectations 1.) Definitions Let X be an integrable random variable defined on a probability space (Ω, F 0, P ) and let F be a sub-σ-algebra of F 0. Then the conditional expectation

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc.

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc. ECE32 Exam 2 Version A April 21, 214 1 Name: Solution Score: /1 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Expectation of Random Variables

Expectation of Random Variables 1 / 19 Expectation of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 13, 2015 2 / 19 Expectation of Discrete

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 2 Transformations and Expectations Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 14, 2015 Outline 1 Distributions of Functions

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

Lecture 4 : Random variable and expectation

Lecture 4 : Random variable and expectation Lecture 4 : Random variable and expectation Study Objectives: to learn the concept of 1. Random variable (rv), including discrete rv and continuous rv; and the distribution functions (pmf, pdf and cdf).

More information