Random Process Lecture 1. Fundamentals of Probability

Size: px
Start display at page:

Download "Random Process Lecture 1. Fundamentals of Probability"

Transcription

1 Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, /43

2 Outline 2/43 1 Syllabus 2 Measure Theory 3 Probability Spaces 4 Convergence 5 Conditioning

3 Syllabus Homework: 4 problems each week; hand in your homework after one week. 40% Midterm and Final Exames: 60% 3/43

4 Goal of This Course Understand the underlying math for probability and random processes measure theory Understand the basic concepts of probabilities such as distribution, expectation and convergence. Understand various types of random processes Know the applications in engineering 4/43

5 Outline Lecture 1. Measure Theory and Probability Lecture 2. Martingales Lecture 3. Markov Processes Lecture 4. Poisson Processes Lecture 5. Brownian Motion Lecture 6. Levy Processes Lecture 7. Stationary Process and Power Spectrum 5/43

6 Textbook E. Cinlar, Probability and Stochastics, Springer, /43

7 Outline 7/43 1 Syllabus 2 Measure Theory 3 Probability Spaces 4 Convergence 5 Conditioning

8 Sigma Algebra A nonempty collection E of subsets of set E is called an algebra provided that it is closed under finite unions and complements. It is called a σ-algebra if it is closed under complements and countable unions: A E E/A E. and A1, A2,... E n An E. Why σ-algebra? 8/43

9 9/43 Measurable Spaces and Functions A measurable space is a pair (E, E) where E is a set and E is a σ-algebra on E. Product of measurable spaces (E, E) and (F, F): (E F, E F). A mapping f : E F is said to be measurable relative to E and F if f 1 (B) E for any B F.

10 Indicators and Simple Functions Let A E, its indicator 1A is defined as 1, if x A, 1A (x) =. 0, otherise. A function f is called simple if f = n X i=1 10/43 ai 1Ai

11 Measures A measure µ on (E, E) is a mapping from E to nonnegative real numbers such that µ(φ) = 0, and µ( n An ) = X µ(an ), n for every disjoint sequence {An }. A measure space is a triplet (E, E, µ). Almost everywhere: If a proposition holds for all but a negligible set of x in E, then we say that it holds for almost every x, or almost everywhere. 11/43

12 Example of Measures Dirac measures. Counting measures. Discrete measures. Lebesgue measures. 12/43

13 Integration When f is simple and positive. Then we define its integration as µf = n X ai µ(ai ). i=1 For positive measurable function f, we can use a series of simple functions to approach it fn f Then we define µf = lim µfn. For generic measurable function f, we define µf = µ(f + ) µ(f ). If µf exists and is a real number, we say that f is measurable. 13/43

14 Examples of Integrations Discrete measures. Discrete spaces. Lebesgue integrals. Integral of Dirichlet function. 14/43

15 Intuition of Lebesgue Integrals: Counting Moneys Lebesgue integral and Riemann integral imply different approaches of counting money. 15/43

16 Convergence Theorems Monotone Convergence Theorem: Let fn be increasing in E+, then µ(lim fn ) = lim µfn. Dominated Convergence Theorem: Suppose {fn } is dominated by some integrable function g. If lim fn exists, then it is integrable and µ(lim fn ) = lim µfn. Fatou s Lemma: if {fn } E+, then µ(lim inf fn ) lim inf µfn. 16/43

17 Differentiation Let µ and ν be measures on a measurable space. Then, ν is said to be absolutely continuous with respect to µ, if for every set A E µ(a) = 0 ν(a) = 0. Radon-Nikodym Theorem: Suppose µ is σ-finite, and ν is absolutely continuous w.r.t. µ. THen there exists a positive measurable function p such that Z Z ν(dx)f (x) = µ(dx)p(x)f (x). We can denote p by dν/dµ and call it Radon-Nikodym derivative. 17/43

18 Kernel For measurable spaces (E, E) and (F, F), K, a mapping from E F to R+, is called a kernel if the mapping x K (x, B) is E-measurable for every set B in F. the mapping B K (x, B) is a measure on (F, F) for every x in E. 18/43

19 Outline 19/43 1 Syllabus 2 Measure Theory 3 Probability Spaces 4 Convergence 5 Conditioning

20 Probability Space Let (Ω, H, P) be a probability. Ω is called the sample space, its elements are called the outcomes. H is called the event space. An event is said to be almost sure if its probability is 1. 20/43

21 Random Variables Let (E, E) be a measurable space. A mapping X : Ω E is called a random variable if X 1 A is measurable in H. Distribution: µ(a) = P(X 1 A), for A E. Independence: P(X A, Y B) = P(X A)P(Y B). 21/43

22 Stochastic Processes Let (E), E be a measurable space. Let T be an arbitrary set, countable or uncountable. For any t in T, let Xt be a random variable taking values in (E, E). Then, the collection {Xt, t T } is called a stochastic process with state space (E, E). One can consider the random process Xt as a random variable taking values in the product space (E T, E T ). The distribution of random process is determined by probability of finite samples: P(Xt1 A1,..., Xtn An ). 22/43

23 Expectations The expectation of a random variable X is given by Z EX = P(dw)X (w). Ω If X takes values in a measurable space (E, E) and µ is the distribution of X, then we have E[f (X )] = µf. 23/43

24 Lp -Space Define the p-norm of random variable X : kx kp = (E X p )1/p. Let Lp denote the collection of all real-valued random variables X with kx kp <. Holder s inequality: if 1/p + 1/q = 1/r, then kxy kr kx kp ky kq. Mikowski s Inequality: for p 1 kx + Y kp kx kp + ky kp. 24/43

25 Uniform Integrability A collection K of real valued random variables is said to be uniformly integrable if lim = sup E[ X 1( X > b)]. b X K Necessary and sufficient condition for uniform integrability: for any > 0 we can find a δ > 0 such that for every event H P(H) δ sup E X 1H X K 25/43

26 Information and Determinability We call the set {X 1 A, A E} the σ-algebra generated by X. For a collection of random variables {Xt t T }, we define the σ-algebra generated by {Xt } as σ{xt : t T } = t T σxt. A mapping V belongs to σx if and only if V = f (X ) for some deterministic function f in E. We can equate the information available from the realization of {Xt } to the σ-algebra generated by {Xt }. 26/43

27 Filtrations Let T be a subset of R. For each t T, let Ft be a sub-σ-algebra of H. The family F = {Ft : t T } is called a filtration given that Fs Ft for s < t. A typical filtration: Ft = σ{xs : s t, t T }. 27/43

28 Independence Let F1,..., Fn be sub-σ-algebra of H. Then, {F1,..., Fn } is called an independency if E[V1...Vn ] = E[V1 ]...E[Vn ], for all positive random variables V1,..., Vn in F1,..., Fn respectively. F1,..., Fn,... of H are independent if and only if F1,...,n and Fn+1 are independent. Independent random variables: {Xt, t T } is independent if σ{xt, t T } is an independency. 28/43

29 0-1 Laws Let Gn be a sequence of sub-σ-algebra of H. Define Fn = m>n Gm and the tail-σ-algebra F = n Fn. Kolmogorov 0-1 Law: Let G1,..., Gn,... be independent. Then P(H) is either 0 or 1 for every event H in the tail F. Consider a permutation p and X = (X1, X2,...). Then, X p = (Xp(1),..., Xp(2),...). A random variable V in F is said to be permutation invariant if V p = V. Hewit 0-1 Law: Suppose that X1,..., Xn,... are i.i.d. Then every permutation invariant event has probability 0 or 1. 29/43

30 Outline 30/43 1 Syllabus 2 Measure Theory 3 Probability Spaces 4 Convergence 5 Conditioning

31 Homework Problems Deadline: Feb. 2, 2016 Problem 1: Let F be a σ-algebra of subsets of Ω. Suppose B F. Show that G = {A B : A F} is a σ-algebra of subsets of B. Problem 2: Consider a random variable mapping from (Ω, H, P) to (E, E). Prove that the set generated by X, {X 1 (A) A E} is a σ-algebra. Problem 3: Use both the Riemann integral and Lebesgue integral to R1 evaluate 0 1dx. Problem 4: Show that Kolmogorov 0-1 Law implies the law of large numbers. 31/43

32 Almost Sure Convergence A sequence {Xn } is said to be almost surely convergent if the numerical sequence {Xn (w)} is convergent for almost every w. Borel-Cantelli s Lemma: Let Hn be a sequence of events. Then X X P(Hn ) < 1Hn < almostsurely. If 32/43 P n P( Xn X > ) <, then Xn X almost surely.

33 Convergence in Probability The sequence of random variables {Xn } converges to X in probability if for every > 0 we have lim P Xn X > = 0. n If Xn converges almost surely, then it converges in probability. If Xn converges in probability, then it has a subsequence converging almost surely. 33/43

34 Convergence in Lp The sequence of random variables {Xn } converges to X in Lp if every Xn and X are in Lp and lim E Xn X p = 0. n The following are equivalent: {Xn } converges in L1 It converges in probability and is uniformly integrable. It is Cauchy for convergence in L1. 34/43

35 Weak Convergence Let {Xn } has distributions {µn }. {µn } is said to converge weakly to µ if lim µn f = µf, for any f in Cb. The sequence {Xn } is said to converge to X if µn converges to µ. A sequence µn is said to be tight if for every > 0 there is a compact set K such that µn (K ) > 1 for all n. Theorem: If {µn } is tight then every subsequence of it has a further subsequence that is weakly convergent. 35/43

36 Law of Large Numbers For {Xi }, define Sn = X Xn and X n = n1 Sn. Theorem: If {Xn } is pairwise i.i.d, then X n convergences in L2, in probability and almost surely. Theorem: If {Xi } is pairwise independent and have the same distribution as a generic variable X. Then, if EX exists, X converges to EX almost surely. 36/43

37 Central Limit Theorem Let {Xi } be i.i.d. Let Sn = Pn i=1 Xi and Zn = S n ne[xi ]. Then, Zn nvar [Xi ] converge to a standard Gaussian random variable in distribution. The law of large numbers and the central limit theorem are the most important theorems in probably theory. There are many variants of these two fundamental theorems (e.g., what if the samples are not i.i.d?). 37/43

38 Outline 38/43 1 Syllabus 2 Measure Theory 3 Probability Spaces 4 Convergence 5 Conditioning

39 Conditional Expectations Let F be a sub-σ-algebra of H. The conditional expectation of X given F denoted by EF X is defined in two steps: For X in H+, the conditional expectation is defined as any random variable X that satisfies (1) X belongs to F+ and EVX = EVX for every V in F+. FOr arbitrary X in H, we define EF (X ) = EF (X + ) EF (X ). 39/43

40 40/43 Special Properties Let F and G be sub-σ-algebra of H. Let W and X be random variables (in H) such that EX and EWX exist. Then we have Conditional determinism: W G EF WX = WEF X. Repeated conditioning: F EF EG X = EG EF X = EF X

41 Conditional Expectations Given Random Variable Recall σy is the σ-algebra generated by random variable Y. Then, we define E[X Y ] = EσY X. 41/43

42 Conditional Distributions Let F be a sub-σ-algebra of H. For each H in H, PF H = EF 1H is called the conditional probability of H given F. Let Q(H) be a version of PF H for H in H. Then, Q is said to be a regular version of the conditional probability if Q is a transition probability kernel from (Ω, F) into (Ω, H). 42/43

43 Conditional Independence Let {Fi } be sub-σ-algebras of H. Then they are said to be conditional independent given F if EF V1...Vn = EF V1...EF Vn. 43/43

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Probability Theory. Richard F. Bass

Probability Theory. Richard F. Bass Probability Theory Richard F. Bass ii c Copyright 2014 Richard F. Bass Contents 1 Basic notions 1 1.1 A few definitions from measure theory............. 1 1.2 Definitions............................. 2

More information

MATH 418: Lectures on Conditional Expectation

MATH 418: Lectures on Conditional Expectation MATH 418: Lectures on Conditional Expectation Instructor: r. Ed Perkins, Notes taken by Adrian She Conditional expectation is one of the most useful tools of probability. The Radon-Nikodym theorem enables

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias Notes on Measure, Probability and Stochastic Processes João Lopes Dias Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal E-mail address: jldias@iseg.ulisboa.pt

More information

STAT 7032 Probability Spring Wlodek Bryc

STAT 7032 Probability Spring Wlodek Bryc STAT 7032 Probability Spring 2018 Wlodek Bryc Created: Friday, Jan 2, 2014 Revised for Spring 2018 Printed: January 9, 2018 File: Grad-Prob-2018.TEX Department of Mathematical Sciences, University of Cincinnati,

More information

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor)

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Matija Vidmar February 7, 2018 1 Dynkin and π-systems Some basic

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

MTH 404: Measure and Integration

MTH 404: Measure and Integration MTH 404: Measure and Integration Semester 2, 2012-2013 Dr. Prahlad Vaidyanathan Contents I. Introduction....................................... 3 1. Motivation................................... 3 2. The

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Elementary Probability. Exam Number 38119

Elementary Probability. Exam Number 38119 Elementary Probability Exam Number 38119 2 1. Introduction Consider any experiment whose result is unknown, for example throwing a coin, the daily number of customers in a supermarket or the duration of

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

PROBABILITY THEORY II

PROBABILITY THEORY II Ruprecht-Karls-Universität Heidelberg Institut für Angewandte Mathematik Prof. Dr. Jan JOHANNES Outline of the lecture course PROBABILITY THEORY II Summer semester 2016 Preliminary version: April 21, 2016

More information

2 Lebesgue integration

2 Lebesgue integration 2 Lebesgue integration 1. Let (, A, µ) be a measure space. We will always assume that µ is complete, otherwise we first take its completion. The example to have in mind is the Lebesgue measure on R n,

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

RS Chapter 1 Random Variables 6/5/2017. Chapter 1. Probability Theory: Introduction

RS Chapter 1 Random Variables 6/5/2017. Chapter 1. Probability Theory: Introduction Chapter 1 Probability Theory: Introduction Basic Probability General In a probability space (Ω, Σ, P), the set Ω is the set of all possible outcomes of a probability experiment. Mathematically, Ω is just

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria Weak Leiden University Amsterdam, 13 November 2013 Outline 1 2 3 4 5 6 7 Definition Definition Let µ, µ 1, µ 2,... be probability measures on (R, B). It is said that µ n converges weakly to µ, and we then

More information

Stochastic Processes. Winter Term Paolo Di Tella Technische Universität Dresden Institut für Stochastik

Stochastic Processes. Winter Term Paolo Di Tella Technische Universität Dresden Institut für Stochastik Stochastic Processes Winter Term 2016-2017 Paolo Di Tella Technische Universität Dresden Institut für Stochastik Contents 1 Preliminaries 5 1.1 Uniform integrability.............................. 5 1.2

More information

Construction of a general measure structure

Construction of a general measure structure Chapter 4 Construction of a general measure structure We turn to the development of general measure theory. The ingredients are a set describing the universe of points, a class of measurable subsets along

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

1 Independent increments

1 Independent increments Tel Aviv University, 2008 Brownian motion 1 1 Independent increments 1a Three convolution semigroups........... 1 1b Independent increments.............. 2 1c Continuous time................... 3 1d Bad

More information

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure.

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure. 0 0 0 -: Lecture How is this course different from your earlier probability courses? There are some problems that simply can t be handled with finite-dimensional sample spaces and random variables that

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability 2002-2003 Week 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary

More information

ABSTRACT EXPECTATION

ABSTRACT EXPECTATION ABSTRACT EXPECTATION Abstract. In undergraduate courses, expectation is sometimes defined twice, once for discrete random variables and again for continuous random variables. Here, we will give a definition

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Basic Measure and Integration Theory. Michael L. Carroll

Basic Measure and Integration Theory. Michael L. Carroll Basic Measure and Integration Theory Michael L. Carroll Sep 22, 2002 Measure Theory: Introduction What is measure theory? Why bother to learn measure theory? 1 What is measure theory? Measure theory is

More information

Advanced Computer Networks Lecture 2. Markov Processes

Advanced Computer Networks Lecture 2. Markov Processes Advanced Computer Networks Lecture 2. Markov Processes Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/28 Outline 2/28 1 Definition

More information

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India Measure and Integration: Concepts, Examples and Exercises INDER K. RANA Indian Institute of Technology Bombay India Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076,

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

The main results about probability measures are the following two facts:

The main results about probability measures are the following two facts: Chapter 2 Probability measures The main results about probability measures are the following two facts: Theorem 2.1 (extension). If P is a (continuous) probability measure on a field F 0 then it has a

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Stochastic Processes II/ Wahrscheinlichkeitstheorie III. Lecture Notes

Stochastic Processes II/ Wahrscheinlichkeitstheorie III. Lecture Notes BMS Basic Course Stochastic Processes II/ Wahrscheinlichkeitstheorie III Michael Scheutzow Lecture Notes Technische Universität Berlin Sommersemester 218 preliminary version October 12th 218 Contents

More information

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1 Chapter 2 Probability measures 1. Existence Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension to the generated σ-field Proof of Theorem 2.1. Let F 0 be

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 7 Conditional probability and expectation Decomposition of measures Mikael Skoglund, Probability and random processes 1/13 Conditional Probability A probability

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION 1 INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION Eduard EMELYANOV Ankara TURKEY 2007 2 FOREWORD This book grew out of a one-semester course for graduate students that the author have taught at

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

Part II: Markov Processes. Prakash Panangaden McGill University

Part II: Markov Processes. Prakash Panangaden McGill University Part II: Markov Processes Prakash Panangaden McGill University 1 How do we define random processes on continuous state spaces? How do we define conditional probabilities on continuous state spaces? How

More information

Notes 1 : Measure-theoretic foundations I

Notes 1 : Measure-theoretic foundations I Notes 1 : Measure-theoretic foundations I Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1, 9.6], [Dur10,

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Weeks 3-4 Haijun Li An Introduction to Stochastic Calculus Weeks 3-4 1 / 22 Outline

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability Chapter 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary family

More information

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first Math 632/6321: Theory of Functions of a Real Variable Sample Preinary Exam Questions 1. Let (, M, µ) be a measure space. (a) Prove that if µ() < and if 1 p < q

More information

(2) E M = E C = X\E M

(2) E M = E C = X\E M 10 RICHARD B. MELROSE 2. Measures and σ-algebras An outer measure such as µ is a rather crude object since, even if the A i are disjoint, there is generally strict inequality in (1.14). It turns out to

More information

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures.

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Measures In General Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Definition: σ-algebra Let X be a set. A

More information

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras Math 4121 Spring 2012 Weaver Measure Theory 1. σ-algebras A measure is a function which gauges the size of subsets of a given set. In general we do not ask that a measure evaluate the size of every subset,

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

Analysis of Probabilistic Systems

Analysis of Probabilistic Systems Analysis of Probabilistic Systems Bootcamp Lecture 2: Measure and Integration Prakash Panangaden 1 1 School of Computer Science McGill University Fall 2016, Simons Institute Panangaden (McGill) Analysis

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

The Caratheodory Construction of Measures

The Caratheodory Construction of Measures Chapter 5 The Caratheodory Construction of Measures Recall how our construction of Lebesgue measure in Chapter 2 proceeded from an initial notion of the size of a very restricted class of subsets of R,

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

1. Aufgabenblatt zur Vorlesung Probability Theory

1. Aufgabenblatt zur Vorlesung Probability Theory 24.10.17 1. Aufgabenblatt zur Vorlesung By (Ω, A, P ) we always enote the unerlying probability space, unless state otherwise. 1. Let r > 0, an efine f(x) = 1 [0, [ (x) exp( r x), x R. a) Show that p f

More information

STOR 635 Notes (S13)

STOR 635 Notes (S13) STOR 635 Notes (S13) Jimmy Jin UNC-Chapel Hill Last updated: 1/14/14 Contents 1 Measure theory and probability basics 2 1.1 Algebras and measure.......................... 2 1.2 Integration................................

More information

1.1. MEASURES AND INTEGRALS

1.1. MEASURES AND INTEGRALS CHAPTER 1: MEASURE THEORY In this chapter we define the notion of measure µ on a space, construct integrals on this space, and establish their basic properties under limits. The measure µ(e) will be defined

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M.

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M. Lecture 10 1 Ergodic decomposition of invariant measures Let T : (Ω, F) (Ω, F) be measurable, and let M denote the space of T -invariant probability measures on (Ω, F). Then M is a convex set, although

More information

Part III Advanced Probability

Part III Advanced Probability Part III Advanced Probability Based on lectures by M. Lis Notes taken by Dexter Chua Michaelmas 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Probability Theory II. Spring 2014 Peter Orbanz

Probability Theory II. Spring 2014 Peter Orbanz Probability Theory II Spring 2014 Peter Orbanz Contents Chapter 1. Martingales, continued 1 1.1. Martingales indexed by partially ordered sets 1 1.2. Notions of convergence for martingales 3 1.3. Uniform

More information

1. Probability Measure and Integration Theory in a Nutshell

1. Probability Measure and Integration Theory in a Nutshell 1. Probability Measure and Integration Theory in a Nutshell 1.1. Measurable Space and Measurable Functions Definition 1.1. A measurable space is a tuple (Ω, F) where Ω is a set and F a σ-algebra on Ω,

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Measure Theoretic Probability. P.J.C. Spreij

Measure Theoretic Probability. P.J.C. Spreij Measure Theoretic Probability P.J.C. Spreij this version: September 11, 2008 Contents 1 σ-algebras and measures 1 1.1 σ-algebras............................... 1 1.2 Measures...............................

More information

The Kolmogorov continuity theorem, Hölder continuity, and the Kolmogorov-Chentsov theorem

The Kolmogorov continuity theorem, Hölder continuity, and the Kolmogorov-Chentsov theorem The Kolmogorov continuity theorem, Hölder continuity, and the Kolmogorov-Chentsov theorem Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June 11, 2015 1 Modifications

More information

Measure Theoretic Probability. P.J.C. Spreij

Measure Theoretic Probability. P.J.C. Spreij Measure Theoretic Probability P.J.C. Spreij this version: September 16, 2009 Contents 1 σ-algebras and measures 1 1.1 σ-algebras............................... 1 1.2 Measures...............................

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

Advanced Probability

Advanced Probability Advanced Probability Perla Sousi October 10, 2011 Contents 1 Conditional expectation 1 1.1 Discrete case.................................. 3 1.2 Existence and uniqueness............................ 3 1

More information

Independent random variables

Independent random variables CHAPTER 2 Independent random variables 2.1. Product measures Definition 2.1. Let µ i be measures on (Ω i,f i ), 1 i n. Let F F 1... F n be the sigma algebra of subsets of Ω : Ω 1... Ω n generated by all

More information

JUSTIN HARTMANN. F n Σ.

JUSTIN HARTMANN. F n Σ. BROWNIAN MOTION JUSTIN HARTMANN Abstract. This paper begins to explore a rigorous introduction to probability theory using ideas from algebra, measure theory, and other areas. We start with a basic explanation

More information

Notes on Measure Theory. Let A 2 M. A function µ : A [0, ] is finitely additive if, A j ) =

Notes on Measure Theory. Let A 2 M. A function µ : A [0, ] is finitely additive if, A j ) = Notes on Measure Theory Definitions and Facts from Topic 1500 For any set M, 2 M := {subsets of M} is called the power set of M. The power set is the set of all sets. Let A 2 M. A function µ : A [0, ]

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Admin and Lecture 1: Recap of Measure Theory

Admin and Lecture 1: Recap of Measure Theory Admin and Lecture 1: Recap of Measure Theory David Aldous January 16, 2018 I don t use bcourses: Read web page (search Aldous 205B) Web page rather unorganized some topics done by Nike in 205A will post

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

1.4 Outer measures 10 CHAPTER 1. MEASURE

1.4 Outer measures 10 CHAPTER 1. MEASURE 10 CHAPTER 1. MEASURE 1.3.6. ( Almost everywhere and null sets If (X, A, µ is a measure space, then a set in A is called a null set (or µ-null if its measure is 0. Clearly a countable union of null sets

More information