Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Size: px
Start display at page:

Download "Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1"

Transcription

1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2 /2 /2 /2 log 2 ( u x (log / x ) 2 dx x (log / x ) 2 dx x(log x) dx 2 u du 2 ) log 2 (u log x, du x dx) 2 log lim p p log 2 < So f is integrable. (b) Establish the inequality f (x) c x log / x for some c > and all x /2, to conclude that the maximal function f is not locally integrable.

2 2 Solution: Compute for x (, /2] f (x) sup f(y) dy (I an interval) I x I I x f(y) dy (choose I [, x]) x x log x u 2 du x ( log x ) x log /x (u log y, as above) Since x is even, a similar computation holds for x [, ). 2 It is also straightforward to check f (), as the computation above shows f () for all x (, /2]. x log /x This shows f (x), for all x /2. x log / x To show f is not locally integrable, compute /2 f (x) dx 2 2 log 2 x log /x dx x log x dx u du ( log u ) log 2 log log 2 + lim p log p. (u log x, du x dx) Thus f is not locally integrable. (2) Consider the function F (x) x 2 sin(/x 2 ), x, with F (). Show that F (x) exists for every x, but F is not integrable on [, ].

3 Solution: For x, it is clear that F (x) exists. For x, compute F () F (h) F () lim h h h 2 sin(/h 2 ) lim h h lim h sin(/h 2 ). h The last equality is by the squeeze theorem, as h h sin(/h 2 ) h. To show F is not integrable, compute for x F (x) x sin(/x 2 ) (2/x) cos(/x 2 ). Now 2x sin(/x 2 ) is clearly integrable over [, ]. Therefore, F is integrable if and only if the second term is. Compute (2/x) cos(/x 2 ) dx 4 4 (/x) cos(/x 2 ) dx cos u [ /(2u) du] (/u) cos u du for the substitution u /x 2. Now estimate cos u /2 if u I k [kπ π/3, kπ + π/3] for k a positive integer. For u I k, /u /(kπ + π/3). Therefore, (/u) cos u du k kπ + π/3 2. This sum is infinite by using the limit comparison test to the series k. So F is not integrable on [, ]. k (32) Let f : R R. Prove that if f satisfies the Lipschitz condition f(x) f(y) M x y for some M and all x, y R, if and only if f satisfies the following two properties (i) f is absolutely continuous. (ii) f (x) M for a.e. x. Hint to show that if f is Lipschitz with constant M, then f (x) M for almost every x: First prove that f is absolutely continuous, and conclude that f is differentiable almost 3

4 everywhere. Then apply the definition of the derivative and the Lipschitz inequality to show that f (x) M at each x where f is differentiable. Solution: First assume f satisfies the Lipschitz condition. To prove f is absolutely continuous, let ɛ > and δ ɛ/m. Then if {I n (a n, b n )} N n are a disjoint set of intervals in R with N (b n a n ) < δ, n then compute using the Lipschitz condition N N N f(b n ) f(a n ) M(b n a n ) M (b n a n ) < Mδ ɛ. n n Thus f is absolutely continuous. To prove (ii) assuming f is Lipschitz, note since f is absolutely continuous, it is differentiable almost everywhere. If x is a point where f (x) exists, compute n f f(x) f(y) (x) lim. y x x y The Lipschitz condition then implies for y x, the difference quotient f(x) f(y) [ M, M]. x y Therefore, the limit f (x) [ M, M] as well. This shows f (x) M for a.e. x. Now assume (i) and (ii). Since f is absolutely continuous, f exists almost everywhere and for a < b f(b) f(a) b a f (x) dx Condition (ii) then implies b b f(b) f(a) f (x) dx f (x) dx M(b a). a This is the Lipschitz condition for a < b. The remaining cases a b and a > b follow easily. () For f : R R which is continuous with continuous derivative, define f C f C + f C. Let C (R) be the set of all such functions f so that f C <. Show that C (R) is a Banach space: a 4

5 5 (a) Show that C is a norm. Solution: Let α R and f C (R). Then αf C αf C + (αf) C α f C + αf C α f C + α f C α f C. Now let f, g C (R). Then compute by the Triangle Inequality for C f + g C f + g C + (f + g) C f C + g C + f C + g C f C + g C Finally, assume f C. Then f C + f C, and so f and f are both identically. Clearly f in C (R). Thus C is a norm. (b) Let {f n } be a Cauchy sequence in C (R). Show that both {f n } and {f n} are Cauchy sequences in C (R). Solution: For all ɛ, there is an N so that if n, m N, then f n f m C + (f n f m ) C f n f m C < ɛ. This shows f n f m C and f n f m C are both < ɛ, and so {f n } and {f n} are Cauchy sequences in C (R). (c) Conclude that there are uniform limits f, g C (R) of f n and f n respectively. Solution: Since C (R) is complete, then by part (b), f n and f n are convergent to limits f, g respectively in C (R). This is the topology of uniform convergence. (d) For all x R, show that x f n(y) dy x g(y) dy as n. Solution: Since g C (R), g(y) M g C for all y R. We know f n g uniformly, and so there is an N so that if n N, then f n g C sup y R f n(y) g(y) <. For these n N, then sup y R f n(y) sup y R f n(y) g(y) + sup g(y) + M. y R So on each interval [, x] (or [x, ] for x < ), and n N, the functions f n are uniformly bounded by M +, which has integral (M + ) x <. Also f n g everywhere,

6 and the Dominated Convergence Theorem (or the Bounded Convergence Theorem) applies to show x f n(y) dy x g(y) dy. (e) Show that f g everywhere and that f n f in C (R). Solution: The fundamental theorem of calculus applies to the result of part (d) to show that f n (x) f n () G(x) G(), where G is an antiderivative of g. But since f n f in C, we also know f n (x) f n () f(x) f(). So f(x) G(x) + C, where C f() G() is a constant. Since G is an antiderivative of g, we see f (x) G (x) g(x). Therefore f n f C f n f C + f n f C as n, and C (R) is a Banach space. () For continuous f : R R, define f C, f C + sup x y f(x) f(y). x y Define C, (R) to be the set of continuous f so that f C, <. (a) For f C, (R), show that f C, f C + f L. Hint: use 32(ii). Solution: Problem 32 says that () f(x) f(y) M x y if and only if f is absolutely continuous and f (x) M for almost all x. So the quantity f(x) f(y) sup x y x y is bounded by M, and in fact is the infimum of all M satisfying (). Similarly, the L norm f L is the infimum of upper bounds for f (x). Problem 32 then says we are taking the infima over the same set, and so f(x) f(y) sup x y x y f L for f C, (R). This shows f C, f C + f L. (b) Repeat and modify the steps in problem () to show that C, (R) is a Banach space. Solution: Let {f n } be a Cauchy sequence in C, (R). Then part (a) and a simple computation as in (b) shows 6

7 that {f n } is a Cauchy sequence in C (R), and {f n} is a Cauchy sequence in L (R). Since C (R) and L (R) are both Banach spaces, there are limits f n f in C (R) and f n g in L (R). We would like to show f n f in C, (R), which involves two parts. First, we need to verify that f g almost everywhere, as by part (a), this will verify that f n f C,. Second, we need to verify that f C, (R). To show f g almost everywhere, we note that by Problem 32, each f n is absolutely continuous, and so f n (x) f n () x f n(y) dy. Now let n. Since f n f in C, f n (x) f(x) and f n () f(). Similarly, since f n g in L, we may use the Bounded Convergence Theorem as in (d) above to show that lim n This shows x f n(y) dy f(x) f() x x g(y) dy. g(y) dy. Since g L (R), it is locally integrable, and thus f is absolutely continuous and we may apply the Fundamental Theorem of Calculus to conclude that f (x) g(x) for almost every x. Finally, to verify that f C, (R), we know since f C (R) that f C <. The remaining term is taken care of by Problem 32: We know that f is both absolutely continuous and that its derivative f g is uniformly bounded almost everywhere (since g L ). So Problem 32 shows that f is Lipschitz, and so f C, (R). (c) Show that the identity map is an isometry from C (R) to C, (R). Hint: Use the corresponding fact about L and C. Solution: For f C (R), by part (a) and the fact that the L norm is the same as the C norm for continuous functions, f C, f C + f L f C + f C f C. 7

8 (d) Find, with proof, a function in C, (R) C (R). Solution: Consider for example for x <, f(x) x for x, for x >. Then f C, and it is easy to check that for x y, f(x) f(y) x y is < if at least one of x, y / [, ]. If x, y [, ], then this quantity is. This shows f C, +, and so f C, (R). On the other hand, f is not differentiable at x,, and so f / C (R). 8

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Analysis/Calculus Review Day 2

Analysis/Calculus Review Day 2 Analysis/Calculus Review Day 2 AJ Friend ajfriend@stanford.edu Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 20, 2011 Continuity

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

SMSTC (2017/18) Geometry and Topology 2.

SMSTC (2017/18) Geometry and Topology 2. SMSTC (2017/18) Geometry and Topology 2 Lecture 1: Differentiable Functions and Manifolds in R n Lecturer: Diletta Martinelli (Notes by Bernd Schroers) a wwwsmstcacuk 11 General remarks In this lecture

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems September, 27 Solve exactly 6 out of the 8 problems. Prove by denition (in ɛ δ language) that f(x) = + x 2 is uniformly continuous in (, ). Is f(x) uniformly continuous in (, )? Prove your conclusion.

More information

Analysis II - few selective results

Analysis II - few selective results Analysis II - few selective results Michael Ruzhansky December 15, 2008 1 Analysis on the real line 1.1 Chapter: Functions continuous on a closed interval 1.1.1 Intermediate Value Theorem (IVT) Theorem

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance Lecture 5 - Hausdorff and Gromov-Hausdorff Distance August 1, 2011 1 Definition and Basic Properties Given a metric space X, the set of closed sets of X supports a metric, the Hausdorff metric. If A is

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM A metric space (M, d) is a set M with a metric d(x, y), x, y M that has the properties d(x, y) = d(y, x), x, y M d(x, y) d(x, z) + d(z, y), x,

More information

Austin Mohr Math 704 Homework 6

Austin Mohr Math 704 Homework 6 Austin Mohr Math 704 Homework 6 Problem 1 Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as x. a. There exists a positive continuous function f on R so that f is integrable

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

ANALYSIS WORKSHEET II: METRIC SPACES

ANALYSIS WORKSHEET II: METRIC SPACES ANALYSIS WORKSHEET II: METRIC SPACES Definition 1. A metric space (X, d) is a space X of objects (called points), together with a distance function or metric d : X X [0, ), which associates to each pair

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin Principle of Mathematical Induction 1. Prove that 1 + 2 + + n = 1 n(n + 1) for all n N. 2 2. Prove that 1 2 + 2 2 + + n 2 = 1 n(n + 1)(2n + 1)

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics and Engineering Lecture notes for PDEs Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 The integration theory

More information

SOLUTIONS TO SOME PROBLEMS

SOLUTIONS TO SOME PROBLEMS 23 FUNCTIONAL ANALYSIS Spring 23 SOLUTIONS TO SOME PROBLEMS Warning:These solutions may contain errors!! PREPARED BY SULEYMAN ULUSOY PROBLEM 1. Prove that a necessary and sufficient condition that the

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Exam 2 extra practice problems

Exam 2 extra practice problems Exam 2 extra practice problems (1) If (X, d) is connected and f : X R is a continuous function such that f(x) = 1 for all x X, show that f must be constant. Solution: Since f(x) = 1 for every x X, either

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1 Appendix To understand weak derivatives and distributional derivatives in the simplest context of functions of a single variable, we describe without proof some results from real analysis (see [7] and

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

Most Continuous Functions are Nowhere Differentiable

Most Continuous Functions are Nowhere Differentiable Most Continuous Functions are Nowhere Differentiable Spring 2004 The Space of Continuous Functions Let K = [0, 1] and let C(K) be the set of all continuous functions f : K R. Definition 1 For f C(K) we

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration? Lebesgue Integration: A non-rigorous introduction What is wrong with Riemann integration? xample. Let f(x) = { 0 for x Q 1 for x / Q. The upper integral is 1, while the lower integral is 0. Yet, the function

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

4.4 Uniform Convergence of Sequences of Functions and the Derivative

4.4 Uniform Convergence of Sequences of Functions and the Derivative 4.4 Uniform Convergence of Sequences of Functions and the Derivative Say we have a sequence f n (x) of functions defined on some interval, [a, b]. Let s say they converge in some sense to a function f

More information

Math 5210, Definitions and Theorems on Metric Spaces

Math 5210, Definitions and Theorems on Metric Spaces Math 5210, Definitions and Theorems on Metric Spaces Let (X, d) be a metric space. We will use the following definitions (see Rudin, chap 2, particularly 2.18) 1. Let p X and r R, r > 0, The ball of radius

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Contraction Mappings Consider the equation

Contraction Mappings Consider the equation Contraction Mappings Consider the equation x = cos x. If we plot the graphs of y = cos x and y = x, we see that they intersect at a unique point for x 0.7. This point is called a fixed point of the function

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim . Suppose ( n ) n is an increasing sequence in M. For each n N define F n : n \ n (with 0 : ). Clearly ν( n n ) ν( nf n ) ν(f n ) lim n If ( n ) n is a decreasing sequence in M and ν( )

More information

Convexity and unique minimum points

Convexity and unique minimum points Convexity and unique minimum points Josef Berger and Gregor Svindland February 17, 2018 Abstract We show constructively that every quasi-convex, uniformly continuous function f : C R with at most one minimum

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MATH 131A: REAL ANALYSIS (BIG IDEAS) MATH 131A: REAL ANALYSIS (BIG IDEAS) Theorem 1 (The Triangle Inequality). For all x, y R we have x + y x + y. Proposition 2 (The Archimedean property). For each x R there exists an n N such that n > x.

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version

M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version Chapter 0: Some revision of M1P1: Limits and continuity This chapter is mostly the revision of Chapter

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

NOTES ON MULTIVARIABLE CALCULUS: DIFFERENTIAL CALCULUS

NOTES ON MULTIVARIABLE CALCULUS: DIFFERENTIAL CALCULUS NOTES ON MULTIVARIABLE CALCULUS: DIFFERENTIAL CALCULUS SAMEER CHAVAN Abstract. This is the first part of Notes on Multivariable Calculus based on the classical texts [6] and [5]. We present here the geometric

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Functions of Several Variables (Rudin)

Functions of Several Variables (Rudin) Functions of Several Variables (Rudin) Definition: Let X and Y be finite-dimensional real vector spaces. Then L(X, Y ) denotes the set of all linear transformations from X to Y and L(X) denotes the set

More information

MA2223 Tutorial solutions Part 1. Metric spaces

MA2223 Tutorial solutions Part 1. Metric spaces MA2223 Tutorial solutions Part 1. Metric spaces T1 1. Show that the function d(,y) = y defines a metric on R. The given function is symmetric and non-negative with d(,y) = 0 if and only if = y. It remains

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS 6.0 Introduction to Differential Equations Contemporary Calculus 1 6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS This chapter is an introduction to differential equations, a major field in applied and theoretical

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

The uniform metric on product spaces

The uniform metric on product spaces The uniform metric on product spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Metric topology If (X, d) is a metric space, a X, and r > 0, then

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

MAT 544 Problem Set 2 Solutions

MAT 544 Problem Set 2 Solutions MAT 544 Problem Set 2 Solutions Problems. Problem 1 A metric space is separable if it contains a dense subset which is finite or countably infinite. Prove that every totally bounded metric space X is separable.

More information

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018 NAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts Tuesday, January 16th, 2018 Instructions 1. This exam consists of eight (8) problems

More information

Analysis/Calculus Review Day 2

Analysis/Calculus Review Day 2 Analysis/Calculus Review Day 2 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 14, 2010 Limit Definition Let A R, f : A R and

More information

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X.

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X. TMA445 Linear Methods Fall 26 Norwegian University of Science and Technology Department of Mathematical Sciences Solutions to exercise set 9 Let X be a Hilbert space and T a bounded linear operator on

More information

PRACTICE PROBLEMS FOR MIDTERM I

PRACTICE PROBLEMS FOR MIDTERM I Problem. Find the limits or explain why they do not exist (i) lim x,y 0 x +y 6 x 6 +y ; (ii) lim x,y,z 0 x 6 +y 6 +z 6 x +y +z. (iii) lim x,y 0 sin(x +y ) x +y Problem. PRACTICE PROBLEMS FOR MIDTERM I

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Math 240 (Driver) Qual Exam (9/12/2017)

Math 240 (Driver) Qual Exam (9/12/2017) 1 Name: I.D. #: Math 240 (Driver) Qual Exam (9/12/2017) Instructions: Clearly explain and justify your answers. You may cite theorems from the text, notes, or class as long as they are not what the problem

More information

GRE Math Subject Test #5 Solutions.

GRE Math Subject Test #5 Solutions. GRE Math Subject Test #5 Solutions. 1. E (Calculus) Apply L Hôpital s Rule two times: cos(3x) 1 3 sin(3x) 9 cos(3x) lim x 0 = lim x 2 x 0 = lim 2x x 0 = 9. 2 2 2. C (Geometry) Note that a line segment

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013

A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013 A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013 Note. The purpose of these notes is to contrast the behavior of functions of a real variable and functions of

More information

REAL ANALYSIS I HOMEWORK 4

REAL ANALYSIS I HOMEWORK 4 REAL ANALYSIS I HOMEWORK 4 CİHAN BAHRAN The questions are from Stein and Shakarchi s text, Chapter 2.. Given a collection of sets E, E 2,..., E n, construct another collection E, E 2,..., E N, with N =

More information

consists of two disjoint copies of X n, each scaled down by 1,

consists of two disjoint copies of X n, each scaled down by 1, Homework 4 Solutions, Real Analysis I, Fall, 200. (4) Let be a topological space and M be a σ-algebra on which contains all Borel sets. Let m, µ be two positive measures on M. Assume there is a constant

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Exercises given in lecture on the day in parantheses.

Exercises given in lecture on the day in parantheses. A.Miller M22 Fall 23 Exercises given in lecture on the day in parantheses. The ɛ δ game. lim x a f(x) = L iff Hero has a winning strategy in the following game: Devil plays: ɛ > Hero plays: δ > Devil plays:

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Bounded uniformly continuous functions

Bounded uniformly continuous functions Bounded uniformly continuous functions Objectives. To study the basic properties of the C -algebra of the bounded uniformly continuous functions on some metric space. Requirements. Basic concepts of analysis:

More information