Explicit Solutions of the Heat Equation

Size: px
Start display at page:

Download "Explicit Solutions of the Heat Equation"

Transcription

1 LECTURE 6 Eplicit Solutions of the Heat Equation Recall the -dimensional homogeneous) Heat Equation: ) u t a 2 u. In this lecture our goal is to construct an eplicit solution to the Heat Equation ) on the real line, satisfying a given initial temperture distribution 2) u, ) f ) < < +, t +. We ll begin, however, by describing some special functional properties of solutions of ).. Four Ways of Generating Me Solutions Lemma 6.. Suppose u, t) is a solution of the homogeneous heat equation ). Then f any fied constant y, ϕ y, t) : u y, t) is also a solution of ). Proof. Indeed, suppose u, t) is a solution of ) and set ũ, t) u X ), t), where X ) y Then ũ u, t), t) t t ũ u X X X y u X u X y, t) Y y and similarly 2 ũ 2 u XX y, t) ũ t, t) k2 ũ, t) u t y, t) u XX y, t) because 6) holds at all points, y). Lemma 6.2. Suppose u, t) is a solution of ). Then any partial derivative of u, t) is also a solution. Proof. Let u, t) be a solution and set v, t) u t, t). Then v t k 2 v u tt k 2 u t ut k 2 ) u t t ). Similarly, if w, t) u, t), then w t k 2 w ut k 2 ) u ) 24

2 . FOUR WAYS OF GENERATING MORE SOLUTIONS 25 Lemma 6.3. Suppose u, t) is a solution of ) and suppose g ) is any differentiable function such that the integral converges. Then is also a solution of ). φ,t : u, t) g ) d u y, t) g y) dy Proof. We have v, t) k2 v, t) t 2 u t y, t) g y) dy k 2 u y, t) g y) dy ut y, t) k 2 u y, t) ) g y) dy g y) dy Lemma 6.4. Suppose u, t) is a solution of ) and let a be a real number. Then the dilated function v a, t) : u a, a 2 t ) f any a > is also a solution of ). Proof. We have t v, t) a2 u t a, a 2 t ) v, t) au a, a 2 t ) 2 2 v, t) a au a, a 2 t )) a2 u a, a 2 t ) v t, t) k 2 v, t) a 2 u t a, a 2 t ) k 2 a 2 u a, a 2 t ) a 2 u t a, a 2 t ) k 2 u a, a 2 t )) a 2 Upshot. Once we have a solution of ) we have at least four different ways of generating me solutions. In fact, our basic strategy f solving the Cauchy problem u t k 2 u 7a) u, ) f ) 7b) will be to find a basic solution of the heat equation 7a) and then use it and Theem 8.2 to construct a solution that satisfies the initital condition. u, ) f)

3 2. A BASIC SOLUTION OF THE HEAT EQUATION A basic solution of the heat equation Lemma 9.4 says that if u, t) is a solution then so is u a, a 2 t ) f any positive constant a. This property suggests looking first f a solution that doesn t change at all when a, t a 2 t. F eample, suppose u, t) g q), where q : t Then we d automatically have u, t) u a, a 2 t ). However, with an prescient eye towards a nmalization that will prove convenient later on, let s look instead f a solution of the fm 8) u, t) g p), where p Such a solution will the same property u, t) u a, a 2 t ), and yet, in the end, yield a tidier fmula. Thus, we suppose that ) u, t) g satisfies 6), and we ll try to find a choice of g that makes this assumption wk. We have u t dg p dp t 4k t) 3/2 g p) 2t g p) 2t pg t) u dg dp dp g p) u dg dp dp 4k 2 t g p), the requirement u t k 2 u on u, t) will lead to the following condition on g p) 2t pg p) k 2 4k 2 t g p) 2t 9) g + 2pg. pg p) ) 2 g p) Let G p) g p). Then G + 2pG dg dp 2pG dg G dp 2p Thus, the equation f G is separable. And its solution is given implicitly by G dg 2pdp + C ln G p 2 + C We now fmally integrate both sides of to get G e p2 +C c e p2 g p) G p) c e p2 ) g p) c e p2 + c 2

4 2. A BASIC SOLUTION OF THE HEAT EQUATION 27 as the general solution to 9). In conclusion, the function ) Q, t) c will be a solution of the Heat Equation. e p2 dp + c 2 At this point, we ll employ another bit of fesight and make an especially convenient choice f the constants c and c 2 ; namely, c π, c 2 2 Then Now Thus, lim Q, t) π t + lim L sgn)l π lim L e p2 dp 2) lim t + Q, t) 2k τ e p2 dp + 2 sgn)l e p2 dp + π 2 π 2 e p2 dp e p2 dp + 2 { if > if < { if > if < We ll now use Theem 8.2 to manipulate this basic solution further. The integral in ) is a nasty one; it has no closed epression in terms of elementary functions although it is a very imptant integral). Fact 8.3 says we can get another solution by differentiating ). So if we set S, t) Q, t) π S, t) will also be a solution of the heat equation. S, t) 4πk2 t e e 4k 2 t Lastly, we ll use Theem 8.2 ii), to produce yet another solution 3) u, t) I ll now show that That is, the solution 3) will satisfy S y, t) φ y) dy the general Cauchy problem f the heat equation. 4πk2 t lim u, t) φ ) t + u t k 2 u u, ) φ ) e y)2 / 4k 2t φ y) dy

5 2. A BASIC SOLUTION OF THE HEAT EQUATION 28 We have u, t) S y, t) φ y) dy Q y, t) φ y) dy Q y, t) φ y) dy y Q y) φ y) + + Q y, t) φ y) dy where we have used integration by parts. Assuming lim y ± φ y) otherwise the integral in 3) is unlikely to converge). we have At t we have from 2) Therefe, u, t) Q y, t) φ y) dy { if > lim Q, t) lim t + t + if < u, ) Q y, t) φ y) dy φ y) dy + φ y) dy φ y) φ ) φ y) dy

2.5 Absolute Value Equations and Inequalities

2.5 Absolute Value Equations and Inequalities 5 Absolute Value Equations Inequalities We begin this section by recalling the following definition Definition: Absolute Value The absolute value of a number is the distance that the number is from zero

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

Math 112 Section 10 Lecture notes, 1/7/04

Math 112 Section 10 Lecture notes, 1/7/04 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

We consider systems of differential equations of the form. x 1 = ax 1 + bx 2,

We consider systems of differential equations of the form. x 1 = ax 1 + bx 2, Chapter 5 Systems We consider systems of differential equations of the fm (5) a + b, c + d, where a, b, c, and d are real numbers At first glance the system may seem to be first-der; however, it is coupled,

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

MATH 220 solution to homework 1

MATH 220 solution to homework 1 MATH solution to homework Problem. Define z(s = u( + s, y + s, then z (s = u u ( + s, y + s + y ( + s, y + s = e y, z( y = u( y, = f( y, u(, y = z( = z( y + y If we prescribe the data u(, = f(, then z

More information

Section 2.2 Solutions to Separable Equations

Section 2.2 Solutions to Separable Equations Section. Solutions to Separable Equations Key Terms: Separable DE Eponential Equation General Solution Half-life Newton s Law of Cooling Implicit Solution (The epression has independent and dependent variables

More information

Economics 205 Exercises

Economics 205 Exercises Economics 05 Eercises Prof. Watson, Fall 006 (Includes eaminations through Fall 003) Part 1: Basic Analysis 1. Using ε and δ, write in formal terms the meaning of lim a f() = c, where f : R R.. Write the

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Lecture 11: Fourier Cosine Series

Lecture 11: Fourier Cosine Series Introductory lecture notes on Partial Differential Equations - c Anthony Peirce Not to be copied, used, or revised without eplicit written permission from the copyright owner ecture : Fourier Cosine Series

More information

1 Introduction; Integration by Parts

1 Introduction; Integration by Parts 1 Introduction; Integration by Parts September 11-1 Traditionally Calculus I covers Differential Calculus and Calculus II covers Integral Calculus. You have already seen the Riemann integral and certain

More information

M151B Practice Problems for Exam 1

M151B Practice Problems for Exam 1 M151B Practice Problems for Eam 1 Calculators will not be allowed on the eam. Unjustified answers will not receive credit. 1. Compute each of the following its: 1a. 1b. 1c. 1d. 1e. 1 3 4. 3. sin 7 0. +

More information

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction ANALYTIC SEMIGROUPS AND APPLICATIONS KELLER VANDEBOGERT. Introduction Consider a Banach space X and let f : D X and u : G X, where D and G are real intervals. A is a bounded or unbounded linear operator

More information

Limits and the derivative function. Limits and the derivative function

Limits and the derivative function. Limits and the derivative function The Velocity Problem A particle is moving in a straight line. t is the time that has passed from the start of motion (which corresponds to t = 0) s(t) is the distance from the particle to the initial position

More information

Week 1 Lecture: Concepts of Quantum Field Theory (QFT)

Week 1 Lecture: Concepts of Quantum Field Theory (QFT) Wee 1 Lecture: Concepts of Quantum Field Theory QFT Andrew Forrester April 4, 008 Relative Wave-Functional Probabilities This Wee s Questions What are the eact solutions for the Klein-Gordon field? What

More information

US01CMTH02 UNIT-3. exists, then it is called the partial derivative of f with respect to y at (a, b) and is denoted by f. f(a, b + b) f(a, b) lim

US01CMTH02 UNIT-3. exists, then it is called the partial derivative of f with respect to y at (a, b) and is denoted by f. f(a, b + b) f(a, b) lim Study material of BSc(Semester - I US01CMTH02 (Partial Derivatives Prepared by Nilesh Y Patel Head,Mathematics Department,VPand RPTPScience College 1 Partial derivatives US01CMTH02 UNIT-3 The concept of

More information

Practice Midterm Solutions

Practice Midterm Solutions Practice Midterm Solutions Math 4B: Ordinary Differential Equations Winter 20 University of California, Santa Barbara TA: Victoria Kala DO NOT LOOK AT THESE SOLUTIONS UNTIL YOU HAVE ATTEMPTED EVERY PROBLEM

More information

Definition: Absolute Value The absolute value of a number is the distance that the number is from zero. The absolute value of x is written x.

Definition: Absolute Value The absolute value of a number is the distance that the number is from zero. The absolute value of x is written x. R. Absolute Values We begin this section by recalling the following definition. Definition: Absolute Value The absolute value of a number is the distance that the number is from zero. The absolute value

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

Week 4 Lectures, Math 6451, Tanveer

Week 4 Lectures, Math 6451, Tanveer 1 Diffusion in n ecall that for scalar x, Week 4 Lectures, Math 6451, Tanveer S(x,t) = 1 exp [ x2 4πκt is a special solution to 1-D heat equation with properties S(x,t)dx = 1 for t >, and yet lim t +S(x,t)

More information

Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Expansions Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

More information

Lecture 5: Rules of Differentiation. First Order Derivatives

Lecture 5: Rules of Differentiation. First Order Derivatives Lecture 5: Rules of Differentiation First order derivatives Higher order derivatives Partial differentiation Higher order partials Differentials Derivatives of implicit functions Generalized implicit function

More information

Ordinary Differential Equations of First Order

Ordinary Differential Equations of First Order CHAPTER 1 Ordinar Differential Equations of First Order 1.1 INTRODUCTION Differential equations pla an indispensable role in science technolog because man phsical laws relations can be described mathematicall

More information

COMPLETION OF A METRIC SPACE

COMPLETION OF A METRIC SPACE COMPLETION OF A METRIC SPACE HOW ANY INCOMPLETE METRIC SPACE CAN BE COMPLETED REBECCA AND TRACE Given any incomplete metric space (X,d), ( X, d X) a completion, with (X,d) ( X, d X) where X complete, and

More information

Application of the Fractional Complex Transform to Fractional Differential Equations

Application of the Fractional Complex Transform to Fractional Differential Equations From the SelectedWks of Ji-Huan He 2011 Application of the Fractional Comple Transfm to Fractional Differential Equations Zheng-Biao Li Ji-Huan He Available at: https://wks.bepress.com/ji_huan_he/52/ Z.B.

More information

9.4 Power Series II: Geometric Series

9.4 Power Series II: Geometric Series 9.4 Power Series II: Geometric Series A particularly important skill to develop for the AP eam, other than checking that you re in RADIAN mode, is to represent certain types of rational functions as a

More information

13 Lecture 13 L Hospital s Rule and Taylor s Theorem

13 Lecture 13 L Hospital s Rule and Taylor s Theorem 3 Lecture 3 L Hospital s Rule and Taylor s Theorem 3 L Hospital s Rule Theorem 3 L Hospital s Rule) Let a R or a = and functions f,g : a,b) R satisfy the following properties ) f,g are differentiable on

More information

e (x y)2 /4kt φ(y) dy, for t > 0. (4)

e (x y)2 /4kt φ(y) dy, for t > 0. (4) Math 24A October 26, 2 Viktor Grigoryan Heat equation: interpretation of the solution Last time we considered the IVP for the heat equation on the whole line { ut ku xx = ( < x

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

3.3 Limits and Infinity

3.3 Limits and Infinity Calculus Maimus. Limits Infinity Infinity is not a concrete number, but an abstract idea. It s not a destination, but a really long, never-ending journey. It s one of those mind-warping ideas that is difficult

More information

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1.

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1. Quadratic Equation A quadratic equation is any equation that is equialent to the equation in fmat a c + + = 0 (1.1) where a,, and c are coefficients and a 0. The ariale name is ut the same fmat applies

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

5.2 Infinite Series Brian E. Veitch

5.2 Infinite Series Brian E. Veitch 5. Infinite Series Since many quantities show up that cannot be computed exactly, we need some way of representing it (or approximating it). One way is to sum an infinite series. Recall that a n is the

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

Chapter 3 Single Random Variables and Probability Distributions (Part 1) Chapter 3 Single Random Variables and Probability Distributions (Part 1) Contents What is a Random Variable? Probability Distribution Functions Cumulative Distribution Function Probability Density Function

More information

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property.

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property. Rev 8-8-3 Name Date TI-8 GC 3 Using GC to Graph Parabolae that are Not Functions of Objectives: Recall the square root propert Practice solving a quadratic equation f Graph the two parts of a hizontal

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

LECTURE 10. Integrating Factors. M y = N. ψ x ψ y. = N(x,y).

LECTURE 10. Integrating Factors. M y = N. ψ x ψ y. = N(x,y). LECTURE 10 Integrating Facts Recall that a differential equation of the fm (101) M(x,y)+N(x,y)y =0 issaidtobeexactif (102) = andthatinsuchacase,wecouldalwaysfindanimplicitsolutionofthefm (103) ψ(x,y)=c

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

CHAPTER 2 First Order Equations

CHAPTER 2 First Order Equations CHAPTER 2 First Order Equations IN THIS CHAPTER we study first order equations for which there are general methods of solution. SECTION 2.1 deals with linear equations, the simplest kind of first order

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

4.4 Uniform Convergence of Sequences of Functions and the Derivative

4.4 Uniform Convergence of Sequences of Functions and the Derivative 4.4 Uniform Convergence of Sequences of Functions and the Derivative Say we have a sequence f n (x) of functions defined on some interval, [a, b]. Let s say they converge in some sense to a function f

More information

MATH39001 Generating functions. 1 Ordinary power series generating functions

MATH39001 Generating functions. 1 Ordinary power series generating functions MATH3900 Generating functions The reference for this part of the course is generatingfunctionology by Herbert Wilf. The 2nd edition is downloadable free from http://www.math.upenn. edu/~wilf/downldgf.html,

More information

#A82 INTEGERS 16 (2016) ON A CUBIC MOMENT FOR SUMS OF HECKE EIGENVALUES

#A82 INTEGERS 16 (2016) ON A CUBIC MOMENT FOR SUMS OF HECKE EIGENVALUES #A IEGERS 6 (06) O A CUBIC MOME FOR SUMS OF HECKE EIGEVALUES Khadija Mbarki Department of Mathematics, University of Monastir, Faculty of Sciences, Monastir, unisia mbarkikhadija@yahoo.fr Received: /6/5,

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

MA2223 Tutorial solutions Part 1. Metric spaces

MA2223 Tutorial solutions Part 1. Metric spaces MA2223 Tutorial solutions Part 1. Metric spaces T1 1. Show that the function d(,y) = y defines a metric on R. The given function is symmetric and non-negative with d(,y) = 0 if and only if = y. It remains

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. f n (0)x n Recall from

More information

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0.

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0. CHAPTER 4. INTEGRATION 68 Previously, we chose an antierivative which is correct for the given integran /. However, recall 6 if 0. That is F 0 () f() oesn t hol for apple apple. We have to be sure the

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

4.1 The Expectation of a Random Variable

4.1 The Expectation of a Random Variable STAT 42 Lecture Notes 93 4. The Expectation of a Random Variable This chapter begins the discussion of properties of random variables. The focus of this chapter is on expectations of random variables.

More information

Some asymptotic properties of solutions for Burgers equation in L p (R)

Some asymptotic properties of solutions for Burgers equation in L p (R) ARMA manuscript No. (will be inserted by the editor) Some asymptotic properties of solutions for Burgers equation in L p (R) PAULO R. ZINGANO Abstract We discuss time asymptotic properties of solutions

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Math 31A Discussion Session Week 1 Notes January 5 and 7, 2016

Math 31A Discussion Session Week 1 Notes January 5 and 7, 2016 Math 31A Discussion Session Week 1 Notes January 5 and 7, 2016 This week we re discussing two important topics: its and continuity. We won t give a completely rigorous definition of either, but we ll develop

More information

Lecture 13: Implicit and Logarithmic Differentiation

Lecture 13: Implicit and Logarithmic Differentiation 8 6 Lecture 13: Implicit and Logarithmic Differentiation log(e^)= 4 log(a b) = log(a^b) = 2 b log(a) + log(b) b log(a) Drag To 0 1 log(a/b) = a log(e) = 1 Y=log(X) log(1) = 0 log(a) - log(b) 2 4 6 8 10

More information

Characterizations on Heavy-tailed Distributions by Means of Hazard Rate

Characterizations on Heavy-tailed Distributions by Means of Hazard Rate Acta Mathematicae Applicatae Sinica, English Series Vol. 19, No. 1 (23) 135 142 Characterizations on Heavy-tailed Distributions by Means of Hazard Rate Chun Su 1, Qi-he Tang 2 1 Department of Statistics

More information

Mathematics 206 Solutions for HWK 22b Section 8.4 p399

Mathematics 206 Solutions for HWK 22b Section 8.4 p399 Mathematics Solutions f HWK b Section 8. p99 Problem, 8. p99. Let T : P P be the linear transfmation defined by T(p(x)) = xp(x). (a) Find the matrix f T with respect to the standard bases B = {u, u, u

More information

Limits: How to approach them?

Limits: How to approach them? Limits: How to approach them? The purpose of this guide is to show you the many ways to solve it problems. These depend on many factors. The best way to do this is by working out a few eamples. In particular,

More information

Lecture 3: Constructing a Quantum Model

Lecture 3: Constructing a Quantum Model CS 880: Quantum Information Processing 9/9/010 Lecture 3: Constructing a Quantum Model Instructor: Dieter van Melkebeek Scribe: Brian Nixon This lecture focuses on quantum computation by contrasting it

More information

Special Mathematics Laplace Transform

Special Mathematics Laplace Transform Special Mathematics Laplace Transform March 28 ii Nature laughs at the difficulties of integration. Pierre-Simon Laplace 4 Laplace Transform Motivation Properties of the Laplace transform the Laplace transform

More information

u( x)= Pr X() t hits C before 0 X( 0)= x ( ) 2 AMS 216 Stochastic Differential Equations Lecture #2

u( x)= Pr X() t hits C before 0 X( 0)= x ( ) 2 AMS 216 Stochastic Differential Equations Lecture #2 AMS 6 Stochastic Differential Equations Lecture # Gambler s Ruin (continued) Question #: How long can you play? Question #: What is the chance that you break the bank? Note that unlike in the case of deterministic

More information

Systems. x 1 = ax 1 + bx 2, x 2 = cx 1 + dx 2,

Systems. x 1 = ax 1 + bx 2, x 2 = cx 1 + dx 2, Systems We consider systems of differential equations of the fm x ax + bx, x cx + dx, where a,b,c, and d are real numbers At first glance the system may seem to be first-der; however, it is coupled, and

More information

In economics, the amount of a good x demanded is a function of the price of that good. In other words,

In economics, the amount of a good x demanded is a function of the price of that good. In other words, I. UNIVARIATE CALCULUS Given two sets X and Y, a function is a rule that associates each member of X with eactly one member of Y. That is, some goes in, and some y comes out. These notations are used to

More information

Modern Control Systems

Modern Control Systems Modern Control Systems Matthew M. Peet Illinois Institute of Technology Lecture 18: Linear Causal Time-Invariant Operators Operators L 2 and ˆL 2 space Because L 2 (, ) and ˆL 2 are isomorphic, so are

More information

Abel Summation MOP 2007, Black Group

Abel Summation MOP 2007, Black Group Abel Summation MOP 007, Blac Group Zachary Abel June 5, 007 This lecture focuses on the Abel Summation formula, which is most often useful as a way to tae advantage of unusual given conditions such as

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 15 Special Relativity (Chapter 7) What We Did Last Time Defined Lorentz transformation Linear transformation of 4-vectors that conserve the length in Minkowski space Derived

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I had learned to do integrals by various methods shown in a book that my high school physics teacher Mr. Bader had given me. [It] showed how to differentiate

More information

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2)

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2) THE WAVE EQUATION () The free wave equation takes the form u := ( t x )u = 0, u : R t R d x R In the literature, the operator := t x is called the D Alembertian on R +d. Later we shall also consider the

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

CS 229: Lecture 7 Notes

CS 229: Lecture 7 Notes CS 9: Lecture 7 Notes Scribe: Hirsh Jain Lecturer: Angela Fan Overview Overview of today s lecture: Hypothesis Testing Total Variation Distance Pinsker s Inequality Application of Pinsker s Inequality

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

4.3 1st and 2nd derivative tests

4.3 1st and 2nd derivative tests CHAPTER 4. APPLICATIONS OF DERIVATIVES 08 4.3 st and nd derivative tests Definition. If f 0 () > 0 we say that f() is increasing. If f 0 () < 0 we say that f() is decreasing. f 0 () > 0 f 0 () < 0 Theorem

More information

MTH 3311 Test #1. order 3, linear. The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the

MTH 3311 Test #1. order 3, linear. The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the MTH 3311 Test #1 F 018 Pat Rossi Name Show CLEARLY how you arrive at your answers. 1. Classify the following according to order and linearity. If an equation is not linear, eplain why. (a) y + y y = 4

More information

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have LINEAR DIFFERENTIAL EQUATIONS A first-der linear differential equation is one that can be put into the fm 1 d Py Q where P and Q are continuous functions on a given interval. This type of equation occurs

More information

On the number of ways of writing t as a product of factorials

On the number of ways of writing t as a product of factorials On the number of ways of writing t as a product of factorials Daniel M. Kane December 3, 005 Abstract Let N 0 denote the set of non-negative integers. In this paper we prove that lim sup n, m N 0 : n!m!

More information

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner:

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner: M ath 0 1 E S 1 W inter 0 1 0 Last Updated: January, 01 0 Solving Second Order Linear ODEs Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections 4. 4. 7 and

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

2 Particle dynamics. The particle is called free body if it is no in interaction with any other body or field.

2 Particle dynamics. The particle is called free body if it is no in interaction with any other body or field. Mechanics and Thermodynamics GEIT5 Particle dynamics. Basic concepts The aim of dynamics is to find the cause of motion and knowing the cause to give description of motion. The cause is always some interaction.

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

SOLUTIONS FOR THE PRACTICE EXAM FOR THE SECOND MIDTERM EXAM

SOLUTIONS FOR THE PRACTICE EXAM FOR THE SECOND MIDTERM EXAM SOLUTIONS FOR THE PRACTICE EXAM FOR THE SECOND MIDTERM EXAM ANDREW J. BLUMBERG 1. Notes This practice exam has me problems than the real exam will. To make most effective use of this document, take the

More information

The z-transform Part 2

The z-transform Part 2 http://faculty.kfupm.edu.sa/ee/muqaibel/ The z-transform Part 2 Dr. Ali Hussein Muqaibel The material to be covered in this lecture is as follows: Properties of the z-transform Linearity Initial and final

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Math 0250, Midterm I, Fall 2004 Instructor: D. Swigon SOLUTIONS

Math 0250, Midterm I, Fall 2004 Instructor: D. Swigon SOLUTIONS 1 Math 5, Midterm I, Fall Instructor: D. Swigon SOLUTIONS Problem 1: ( points) Sole the following initial alue problem d d 1+, ( 1) 1 The equation is separable and can be written as d which, after integrating

More information

Parametric Equations, Function Composition and the Chain Rule: A Worksheet

Parametric Equations, Function Composition and the Chain Rule: A Worksheet Parametric Equations, Function Composition and the Chain Rule: A Worksheet Prof.Rebecca Goldin Oct. 8, 003 1 Parametric Equations We have seen that the graph of a function f(x) of one variable consists

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME)

WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME) WAITING FOR A BAT TO FLY BY (IN POLYNOMIAL TIME ITAI BENJAMINI, GADY KOZMA, LÁSZLÓ LOVÁSZ, DAN ROMIK, AND GÁBOR TARDOS Abstract. We observe returns of a simple random wal on a finite graph to a fixed node,

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

GS/ECON 5010 section B Answers to Assignment 1 September Q1. Are the preferences described below transitive? Strictly monotonic? Convex?

GS/ECON 5010 section B Answers to Assignment 1 September Q1. Are the preferences described below transitive? Strictly monotonic? Convex? GS/ECON 5010 section B Answers to Assignment 1 September 2011 Q1. Are the preferences described below transitive? Strictly monotonic? Convex? Explain briefly. The person consumes 2 goods, food and clothing.

More information

Solution to Problems for the 1-D Wave Equation

Solution to Problems for the 1-D Wave Equation Solution to Problems for the -D Wave Equation 8. Linear Partial Differential Equations Matthew J. Hancock Fall 5 Problem (i) Suppose that an infinite string has an initial displacement +, u (, ) = f ()

More information