DIFFERENTIATION RULES

Size: px
Start display at page:

Download "DIFFERENTIATION RULES"

Transcription

1 3 DIFFERENTIATION RULES

2 DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular, the natural logarithmic function.

3 DERIVATIVES OF LOGARITHMIC FUNCTIONS An eample of a logarithmic function is: y = log a An eample of a natural logarithmic function is: y = ln

4 DERIVATIVES OF LOG FUNCTIONS It can be proved that logarithmic functions are differentiable. This is certainly plausible from their graphs.

5 DERIVATIVES OF LOG FUNCTIONS Formula 1 Proof d 1 (log ) a d ln a Let y = log a. Then, a y =. Differentiating this equation implicitly with respect to, using Formula 5 in Section 3.4, we get: So, dy 1 1 d y a ln a ln a a y dy (ln a) 1 d

6 DERIVATIVES OF LOG FUNCTIONS Formula 2 If we put a = e in Formula 1, then the factor on the right side becomes ln e = 1 and we get the formula for the derivative of the natural logarithmic function log e = ln. d d (ln ) 1

7 DERIVATIVES OF LOG FUNCTIONS By comparing Formulas 1 and 2, we see one of the main reasons why natural logarithms (logarithms with base e) are used in calculus: The differentiation formula is simplest when a = e because ln e = 1.

8 DERIVATIVES OF LOG FUNCTIONS Eample 1 Differentiate y = ln( 3 + 1). To use the Chain Rule, we let u = Then y = ln u. So, dy dy du 2 1 du (3 ) 3 3 d du d u d 1 1

9 DERIVATIVES OF LOG FUNCTIONS Formula 3 In general, if we combine Formula 2 with the Chain Rule, as in Eample 1, we get: d 1 du d g '( ) (ln u) or ln g( ) d u d d g( )

10 DERIVATIVES OF LOG FUNCTIONS Eample 2 Find d ln(sin ). d Using Formula 3, we have: d d 1 d ln(sin ) (sin ) sin d 1 cos cot sin

11 DERIVATIVES OF LOG FUNCTIONS Eample 3 Differentiate f ( ) ln. This time, the logarithm is the inner function. So, the Chain Rule gives: f '( ) 1 12 d 2 (ln ) (ln ) d ln 2 ln

12 DERIVATIVES OF LOG FUNCTIONS Eample 4 Differentiate f() = log 10 (2 + sin ). Using Formula 1 with a = 10, we have: f '( ) d log 10 (2 d sin ) 1 d (2 sin )ln10 d cos (2 sin )ln10 (2 sin )

13 DERIVATIVES OF LOG FUNCTIONS E. g. 5 Solution 1 Find d 1 ln. d 2 d d ln d d ( 1) 1 2 ( 1 2 2) ( 2 1) 5 ( 1)( 2) 2( 1)( 2)

14 DERIVATIVES OF LOG FUNCTIONS E. g. 5 Solution 2 If we first simplify the given function using the laws of logarithms, then the differentiation becomes easier: d 1 d 1 ln ln( 1) 2 ln( 2) d 2 d This answer can be left as written However, if we used a common denominator, it would give the same answer as in Solution 1.

15 DERIVATIVES OF LOG FUNCTIONS Eample 6 Find f () if f() = ln. Since f( ) ln if 0 ln( ) if 0 it follows that f( ) 1 if ( 1) if 0 Thus, f () = 1/ for all 0.

16 DERIVATIVES OF LOG FUNCTIONS Equation 4 The result of Eample 6 is worth remembering: d d ln 1

17 LOGARITHMIC DIFFERENTIATION The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The method used in the following eample is called logarithmic differentiation.

18 LOGARITHMIC DIFFERENTIATION Eample 7 Differentiate y 3/ 4 2 (3 2) 5 1 We take logarithms of both sides of the equation and use the Laws of Logarithms to simplify: ln y 4ln 2ln( 1) 5ln(3 2)

19 LOGARITHMIC DIFFERENTIATION Eample 7 Differentiating implicitly with respect to gives: 1 dy y d Solving for dy / d, we get: dy 3 15 y d

20 LOGARITHMIC DIFFERENTIATION Eample 7 Since we have an eplicit epression for y, we can substitute and write: 3/ 4 2 dy d (3 2)

21 STEPS IN LOGARITHMIC DIFFERENTIATION 1. Take natural logarithms of both sides of an equation y = f() and use the Laws of Logarithms to simplify. 2. Differentiate implicitly with respect to. 3. Solve the resulting equation for y.

22 LOGARITHMIC DIFFERENTIATION If f() < 0 for some values of, then ln f() is not defined. However, we can write y = f() and use Equation 4. We illustrate this procedure by proving the general version of the Power Rule as promised in Section 3.1.

23 THE POWER RULE PROOF If n is any real number and f() = n, then f '( ) n n 1 Let y = n and use logarithmic differentiation: Thus, Hence, y' n ln y ln nln 0 y y ' n y n 1 n n n n

24 LOGARITHMIC DIFFERENTIATION You should distinguish carefully between: The Power Rule [( n ) = n n-1 ], where the base is variable and the eponent is constant The rule for differentiating eponential functions [(a ) =a ln a], where the base is constant and the eponent is variable

25 LOGARITHMIC DIFFERENTIATION In general, there are four cases for eponents and bases: d 1. ( a b ) 0 a and b are constants d d b b 1 f b f f 2. ( ) ( ) '( ) d d a a a g d g ( ) g ( ) 3. (ln ) '( ) g( ) 4. Tofind ( d / d[ f ( )],logarithmic differentiation can be used, as in the net eample.

26 LOGARITHMIC DIFFERENTIATION E. g. 8 Solution 1 Differentiate. y Using logarithmic differentiation, we have: ln y ln ln y ' 1 1 (ln ) y 2 1 ln 2 ln y ' y 2 2

27 LOGARITHMIC DIFFERENTIATION E. g. 8 Solution 2 ln Another method is to write. ( e ) d d d d ln ( ) ( e ) ln e d d 2 ln 2 ( ln )

28 THE NUMBER e AS A LIMIT We have shown that, if f() = ln, then f () = 1/. Thus, f (1) = 1. Now, we use this fact to epress the number e as a limit.

29 THE NUMBER e AS A LIMIT From the definition of a derivative as a limit, we have: f f (1 h) f (1) f (1 ) f (1) '(1) lim lim h 0 h 0 ln(1 ) ln1 1 lim lim ln(1 ) lim ln(1 ) 0

30 THE NUMBER e AS A LIMIT As f (1) = 1, we have limln(1 ) 1 0 Formula 5 1 Then, by Theorem 8 in Section 2.5 and the continuity of the eponential function, we have: 1/ lim ln(1 ) 1 0 e e e e lim lim(1 ) 1 ln(1 ) e lim(1 0 1 )

31 THE NUMBER e AS A LIMIT Formula 5 is illustrated by the graph of the function y = (1 + ) 1/ here and a table of values for small values of.

32 THE NUMBER e AS A LIMIT This illustrates the fact that, correct to seven decimal places, e

33 THE NUMBER e AS A LIMIT Formula 6 If we put n = 1/ in Formula 5, then n as 0 +. So, an alternative epression for e is: e lim 1 n 1 n n

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x)

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x) Math 20-0-RE - Calculus I Eponential & Logarithmic Functions Page of 9 Eponential Function The general form of the eponential function equation is = f) = a where a is a real number called the base of the

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Derivatives of Inverse Functions

Derivatives of Inverse Functions Derivatives of Inverse Functions Implicit differentiation enables us to determine the derivatives of inverse functions. determine the derivatives of arcsin, arccos, arctan, and ln. In this lecture, we

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms mc-ty-difftakelogs-2009-1 In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques

More information

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques explained here it is

More information

MATH 108 REVIEW TOPIC 6 Radicals

MATH 108 REVIEW TOPIC 6 Radicals Math 08 T6-Radicals Page MATH 08 REVIEW TOPIC 6 Radicals I. Computations with Radicals II. III. IV. Radicals Containing Variables Rationalizing Radicals and Rational Eponents V. Logarithms Answers to Eercises

More information

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018 Calculus (AP, Honors, Academic) Summer Assignment 08 The summer assignments for Calculus will reinforce some necessary Algebra and Precalculus skills. In order to be successful in Calculus, you must have

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim Math 0-0-RE - Calculus I Trigonometry Limits & Derivatives Page of 8 Trigonometric Limits It has been shown in class that: lim 0 sin lim 0 sin lim 0 cos cos 0 lim 0 cos lim 0 + cos + To evaluate trigonometric

More information

Unit 4: Rules of Differentiation

Unit 4: Rules of Differentiation Unit : Rules of Differentiation DAY TOPIC ASSIGNMENT Power Rule p. Power Rule Again p. Even More Power Rule p. 5 QUIZ 5 Rates of Change p. 6-7 6 Rates of Change p. 8-9 7 QUIZ 8 Product Rule p. 0-9 Quotient

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

2017 AP Calculus AB Summer Assignment

2017 AP Calculus AB Summer Assignment 07 AP Calculus AB Summer Assignment Mrs. Peck ( kapeck@spotsylvania.k.va.us) This assignment is designed to help prepare you to start Calculus on day and be successful. I recommend that you take off the

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim

±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim MATH 36 L'H ˆ o pital s Rule Si of the indeterminate forms of its may be algebraically determined using L H ˆ o pital's Rule. This rule is only stated for the / and ± /± indeterminate forms, but four other

More information

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation? BA01 ENGINEERING MATHEMATICS 01 CHAPTER DIFFERENTIATION.1 FIRST ORDER DIFFERENTIATION What is Differentiation? Differentiation is all about finding rates of change of one quantity compared to another.

More information

Unit 5: Exponential and Logarithmic Functions

Unit 5: Exponential and Logarithmic Functions 71 Rational eponents Unit 5: Eponential and Logarithmic Functions If b is a real number and n and m are positive and have no common factors, then n m m b = b ( b ) m n n Laws of eponents a) b) c) d) e)

More information

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity Math 0 - Calculus f. Business and Management - Worksheet 1 Solutions for Worksheet 1 - Limits as approaches infinity Simple Limits Eercise 1: Compute the following its: 1a : + 4 1b : 5 + 8 1c : 5 + 8 Solution

More information

R3.6 Solving Linear Inequalities. 3) Solve: 2(x 4) - 3 > 3x ) Solve: 3(x 2) > 7-4x. R8.7 Rational Exponents

R3.6 Solving Linear Inequalities. 3) Solve: 2(x 4) - 3 > 3x ) Solve: 3(x 2) > 7-4x. R8.7 Rational Exponents Level D Review Packet - MMT This packet briefly reviews the topics covered on the Level D Math Skills Assessment. If you need additional study resources and/or assistance with any of the topics below,

More information

M151B Practice Problems for Exam 1

M151B Practice Problems for Exam 1 M151B Practice Problems for Eam 1 Calculators will not be allowed on the eam. Unjustified answers will not receive credit. 1. Compute each of the following its: 1a. 1b. 1c. 1d. 1e. 1 3 4. 3. sin 7 0. +

More information

Calculus 2 - Examination

Calculus 2 - Examination Calculus - Eamination Concepts that you need to know: Two methods for showing that a function is : a) Showing the function is monotonic. b) Assuming that f( ) = f( ) and showing =. Horizontal Line Test:

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

Summer Mathematics Prep

Summer Mathematics Prep Summer Mathematics Prep Entering Calculus Chesterfield County Public Schools Department of Mathematics SOLUTIONS Domain and Range Domain: All Real Numbers Range: {y: y } Domain: { : } Range:{ y : y 0}

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

A.P. Calculus Summer Packet

A.P. Calculus Summer Packet A.P. Calculus Summer Packet Going into AP calculus, there are certain skills that have been taught to you over the previous years that we assume you have. If you do not have these skills, you will find

More information

5. Find the slope intercept equation of the line parallel to y = 3x + 1 through the point (4, 5).

5. Find the slope intercept equation of the line parallel to y = 3x + 1 through the point (4, 5). Rewrite using rational eponents. 2 1. 2. 5 5. 8 4 4. 4 5. Find the slope intercept equation of the line parallel to y = + 1 through the point (4, 5). 6. Use the limit definition to find the derivative

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics Mathematics 0 MTU 070 Elements of Calculus in Economics Calculus Calculus deals with rate of change of quantity with respect to another

More information

AP CALCULUS AB - SUMMER ASSIGNMENT 2018

AP CALCULUS AB - SUMMER ASSIGNMENT 2018 Name AP CALCULUS AB - SUMMER ASSIGNMENT 08 This packet is designed to help you review and build upon some of the important mathematical concepts and skills that you have learned in your previous mathematics

More information

y = (x2 +1) cos(x) 2x sin(x) d) y = ln(sin(x 2 )) y = 2x cos(x2 ) by the chain rule applied twice. Once to ln(u) and once to

y = (x2 +1) cos(x) 2x sin(x) d) y = ln(sin(x 2 )) y = 2x cos(x2 ) by the chain rule applied twice. Once to ln(u) and once to M408N Final Eam Solutions, December 13, 2011 1) (32 points, 2 pages) Compute dy/d in each of these situations. You do not need to simplify: a) y = 3 + 2 2 14 + 32 y = 3 2 + 4 14, by the n n 1 formula.

More information

Mini Lecture 9.1 Finding Roots

Mini Lecture 9.1 Finding Roots Mini Lecture 9. Finding Roots. Find square roots.. Evaluate models containing square roots.. Use a calculator to find decimal approimations for irrational square roots. 4. Find higher roots. Evaluat. a.

More information

Calculus Differentiation Norhafizah Md Sarif Faculty of Industrial Science & Technology

Calculus Differentiation Norhafizah Md Sarif Faculty of Industrial Science & Technology Calculus Differentiation By Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my Description Aims This chapter is aimed to : 1. introduce the concept of integration. evaluate

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

12.3 Properties of Logarithms

12.3 Properties of Logarithms 12.3 Properties of Logarithms The Product Rule Let b, and N be positive real numbers with b 1. N = + N The logarithm of a product is the sum of the logarithms of the factors. Eample 1: Use the product

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION Section.5 Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:47 AM.5: Implicit Differentiation 1 REVIEW Solve or d of 4 + 3 = 6 4 3 6 4 3 6 4 3 4 ' 3 3 7/30/018 1:47

More information

Chapter 3: Topics in Differentiation

Chapter 3: Topics in Differentiation Chapter 3: Topics in Differentiation Summary: Having investigated the derivatives of common functions in Chapter (i.e., polynomials, rational functions, trigonometric functions, and their combinations),

More information

3.7 Indeterminate Forms - l Hôpital s Rule

3.7 Indeterminate Forms - l Hôpital s Rule 3.7. INDETERMINATE FORMS - L HÔPITAL S RULE 4 3.7 Indeterminate Forms - l Hôpital s Rule 3.7. Introduction An indeterminate form is a form for which the answer is not predictable. From the chapter on lits,

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

Lecture 13: Implicit and Logarithmic Differentiation

Lecture 13: Implicit and Logarithmic Differentiation 8 6 Lecture 13: Implicit and Logarithmic Differentiation log(e^)= 4 log(a b) = log(a^b) = 2 b log(a) + log(b) b log(a) Drag To 0 1 log(a/b) = a log(e) = 1 Y=log(X) log(1) = 0 log(a) - log(b) 2 4 6 8 10

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

Core Mathematics 3 Differentiation

Core Mathematics 3 Differentiation http://kumarmaths.weebly.com/ Core Mathematics Differentiation C differentiation Page Differentiation C Specifications. By the end of this unit you should be able to : Use chain rule to find the derivative

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

AP CALCULUS BC SUMMER ASSIGNMENT

AP CALCULUS BC SUMMER ASSIGNMENT AP CALCULUS BC SUMMER ASSIGNMENT Work these problems on notebook paper. All work must be shown. Use your graphing calculator only on problems -55, 80-8, and 7. Find the - and y-intercepts and the domain

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

Lecture 5: Rules of Differentiation. First Order Derivatives

Lecture 5: Rules of Differentiation. First Order Derivatives Lecture 5: Rules of Differentiation First order derivatives Higher order derivatives Partial differentiation Higher order partials Differentials Derivatives of implicit functions Generalized implicit function

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

Avon High School Name AP Calculus AB Summer Review Packet Score Period

Avon High School Name AP Calculus AB Summer Review Packet Score Period Avon High School Name AP Calculus AB Summer Review Packet Score Period f 4, find:.) If a.) f 4 f 4 b.) Topic A: Functions f c.) f h f h 4 V r r a.) V 4.) If, find: b.) V r V r c.) V r V r.) If f and g

More information

Basic methods to solve equations

Basic methods to solve equations Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 Basic methods to solve equations What you need to know already: How to factor an algebraic epression. What you can learn here:

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5).

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5). Mathematics 6 HWK 4 Solutions Section 4.5 p305 Note: This set of solutions also includes 3 problems from HWK 2 (5,7, from 4.5). Find the indicated it. Use l Hospital s Rule where appropriate. Consider

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Computing Derivatives Solutions

Computing Derivatives Solutions Stuent Stuy Session Solutions We have intentionally inclue more material than can be covere in most Stuent Stuy Sessions to account for groups that are able to answer the questions at a faster rate. Use

More information

Calculus w/applications Prerequisite Packet Paint Branch High School Math Department

Calculus w/applications Prerequisite Packet Paint Branch High School Math Department Updated 6/014 The problems in this packet are designed to help you review topics from previous math courses that are important to your success in Calculus with Applications. It is important that you take

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Performing well in calculus is impossible without a solid algebra foundation. Many calculus

Performing well in calculus is impossible without a solid algebra foundation. Many calculus Chapter Algebra Review Performing well in calculus is impossible without a solid algebra foundation. Many calculus problems that you encounter involve a calculus concept but then require many, many steps

More information

Section 2.2 Solutions to Separable Equations

Section 2.2 Solutions to Separable Equations Section. Solutions to Separable Equations Key Terms: Separable DE Eponential Equation General Solution Half-life Newton s Law of Cooling Implicit Solution (The epression has independent and dependent variables

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

Exponential, Logarithmic and Inverse Functions

Exponential, Logarithmic and Inverse Functions Chapter Review Sec.1 and. Eponential, Logarithmic and Inverse Functions I. Review o Inverrse I Functti ions A. Identiying One-to-One Functions is one-to-one i every element in the range corresponds to

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers. CALCULUS AB THE SECOND FUNDAMENTAL THEOREM OF CALCULUS AND REVIEW E. Find the derivative. Do not leave negative eponents or comple fractions in your answers. 4 (a) y 4 e 5 f sin (b) sec (c) g 5 (d) y 4

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

Chapter 8. Exponential and Logarithmic Functions

Chapter 8. Exponential and Logarithmic Functions Chapter 8 Eponential and Logarithmic Functions Lesson 8-1 Eploring Eponential Models Eponential Function The general form of an eponential function is y = ab. Growth Factor When the value of b is greater

More information

UNIT 4A MATHEMATICAL MODELING OF INVERSE, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS Lesson 2: Modeling Logarithmic Functions

UNIT 4A MATHEMATICAL MODELING OF INVERSE, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS Lesson 2: Modeling Logarithmic Functions Lesson : Modeling Logarithmic Functions Lesson A..1: Logarithmic Functions as Inverses Utah Core State Standards F BF. Warm-Up A..1 Debrief In the metric system, sound intensity is measured in watts per

More information

Fox Lane High School Department of Mathematics

Fox Lane High School Department of Mathematics Fo Lane High School Department of Mathematics June 08 Hello Future AP Calculus AB Student! This is the summer assignment for all students taking AP Calculus AB net school year. It contains a set of problems

More information

Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 4. The chain rule

Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 4. The chain rule Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 4 The chain rule What you need to know already: The concept and definition of derivative, basic differentiation rules.

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information