We consider systems of differential equations of the form. x 1 = ax 1 + bx 2,

Size: px
Start display at page:

Download "We consider systems of differential equations of the form. x 1 = ax 1 + bx 2,"

Transcription

1 Chapter 5 Systems We consider systems of differential equations of the fm (5) a + b, c + d, where a, b, c, and d are real numbers At first glance the system may seem to be first-der; however, it is coupled, and this two-dimensional system is me closely related to a second-der differential equation Befe finding the solution, some notation is introduced to simplify the fm of the system The new notation implicitly removes most of the and + operations The fm of the system suggests arranging the unknown functions, vertically and enclosed in brackets (ie matri fm) (5) This new object is similar to a number function Indeed, operations may be perfmed on (5) Let a R We define u u u u au : v v, a a :, v v av and a + b c + d a c b + d The new object can be part of mathematical statements We say a c b d if and only if a c and b d Meover, we set a b a + b : c d c + d 5

2 54 5 Systems Then (5) is equivalent to a c b d, often written me simply as a c b d 5 Real Eigenvalues In the calculations and epressions that follow both the matri fm (above) and the component fm will be given and separated by They are equivalent Based on our discussion in class, we epect a solution of (5) to have the fm ξ (5) e rt ξ e rt ξ e rt ξ where as of now, ξ, ξ, and r are unknown To be me concrete, we consider a specific system Eample 5 Consider the system of differential equations (54) Our guess, (5), is substituted in (54), and we find re rt ξ ξ e rt ξ 4 ξ Rearranging gives r ξ (55) 4 r ξ rξ ξ + ξ rξ 4ξ + ξ ( r)ξ + ξ 4ξ + ( r)ξ Geometrically the last system of equations describe two lines passing through the igin We do not want a unique solution (zero in this case), f that would say ξ ξ, and our guess would not produce anything interesting We want the lines in (55) to be the same, so we require the slopes to be equal That is, r r The roots, called eigenvalues, are r, Left to find are ξ and ξ Inserting r back in (55), we find ξ + ξ 4ξ ξ As epected this system has infinitely many solutions, one of them is ξ ξ ξ, and, a solution is e t e t e t

3 5 Real Eigenvalues 55 A similar calculation f r shows ξ and, a solution is e t ξ ξ, e t e t The roots are called eigenvalues, and the vects ξ are called eigenvects You will learn me about these when you take Linear Algebra The general solution is therefe, c e t + c e t Eample 5 Find the general solution of the ODE using the approach in Eample y y y, y(), y () c e t + c e t c e t c e t Solution We may turn the ODE into a system of ODEs by setting y and y Then the second-der ODE is equivalent to, () A comparison of (54) and (55) in Eample shows that we can immediately find the equations f ξ in our guess Here r ξ rξ + ξ r ξ + ( r)ξ ξ The polynomial f r is just the determinate the upper-left diagonal element times the lower-right minus the product of the remaining two diagonal elements Here, we find r( r) r r Note that this is the characteristic polynomial f the iginal second-der ODE! The roots (eigenvalues) are r, Inserting r in the equations f ξ, we find ξ + ξ ξ ξ As epected this system has infinitely many solutions, one of them is The other root, r gives and ξ ξ ξ + ξ ξ + ξ, ξ ξ, ξ ξ

4 56 5 Systems The general solution is therefe c e t + c e t c e t + c e t c e t c e t Since we set y in the iginal transfmation, the top line is the general solution to the second-der ODE, and the bottom line is the derivative of the top ( y ) To find c and c we use the initial data - c + c Solving, we find c c, and the solution is e t + e t y e t + e t y e t e t Drawing The Phase Ptrait We need a way of representing solutions graphically To do this we will plot trajecties in the, plane That is, we think of any point in the, plane as initial data, and we plot the trajecty from that point F eample, suppose we choose () and () in the previous eample Then we would find c and c (check this! Also you should have been able to guess this by simple inspection) Thus the solution in this case is (t) e t and (t) e t We see that / which has a graph represented by a straight line (y ) Similarly, if we choose () and (), we would find c and c, and the same line would result If we start any where on the line,, we will find c and c 6 Thus the solution will be in the fm (t) ce t, (t) ce t The ratio is always - the solution is always on the line, and the trajecty moves toward the igin The left diagram in Figure below graphs this trajecty along with the trajecty starting at () and () The right diagram shows the Phase Ptrait f the system The arrows indicate the directions of the trajecties The figure is called a Saddle Homewk 5 (Real Eigenvalues) In Problems -5 find the general solution, and sketch a phase ptrait, ()

5 5 Real Eigenvalues 57 Figure Upper: Invariant lines f Eample 5,, + Lower: Phase Ptrait (Saddle) c c 4 c 4 5 c e t + e t e t + c e t + c Answers e t e t e t + c e t + c e t e t

6 58 5 Systems 6 c 4 + c e t 5 Comple Eigenvalues In this section we mostly drop the component fm of the equations (get used to it) As in previous problems we use Euler s fmula to change eponents with comple numbers to oscillaty functions If z a + ib is a comple number, the comple conjugate is z a ib That is, i is replaced with i In addition, the real and imaginary parts are denoted Both are real numbers Re(z) a Im(z) b Eample 5 Solve the initial-value problem 8, () Solution As in the previous eample, the system f ξ is r 8 ξ r The nontrivial solution is obtained by requiring the determinate to be zero That is, ( r)( r) ( )(8) r + 4 The eigenvalues (roots) are r ±i The procedure is the same as in Eample Suppose r i The equations f ξ are ξ ( i)ξ + 8ξ ξ + ( i)ξ It is not obvious the two equations are multiples of one another However, you can verify that ( + i) times the second equation gives the first equation A non-trivial solution is required If we opptunistically set ξ in the second equation, then ξ i So + i ξ will wk, and one solution is () + i e i t Since the other root (eigenvalue) is just the comple conjugate of the first, a second solution is found simply by changing i in the first solution to i (its comple conjugate) So the general solutions is (56) C + i e i t + C i e i t

7 5 Comple Eigenvalues 59 The comple numbers are undesirable We hide them by using Euler s fmula: e iθ cos θ + i sin θ The eponential functions in (56) are replaced, and the result epressed as the real plus imaginary part - C + i (cos t + i sin t) + C i (cos t i sin t) Read across the first line and pick out all the terms without an i Then do the same f the bottom line (that is, find the real part) The result is cos t sin t Re() (C + C ) cos t The imaginary part consists of all the terms with an i in front In particular, cos t + sin t iim() i(c C ) sin t Finally, set c C + C and c i(c C ) Then is the general solution c cos t sin t cos t + c cos t + sin t sin t There is a slight sht-cut to this procedure Since there is so much symmetry in the solutions f the two roots (they differ by replacing i with -i), one might epect that all the necessary infmation is contained in one of the solutions This is the case The solution f r i (first part of Equation (56)) is () + i e i t + i (cos t + i sin t) To find the general solution, only the real and imaginary parts of this solution need to be found Again rewriting as real plus imaginary, () cos t sin t cos t + sin t + i cos t sin t The general solution is () c Re( () ) + c Im( () ) as befe c cos t sin t cos t + c cos t + sin t sin t To construct the phase ptrait f this problem, we first compute a trajecty starting at and y We find, c and c, and the solution is (t) cos t + sin t y(t) sin t We notice that 4 + y + y and recognize this as an ellipse In fact, any initial data produces an ellipse in the y plane Figure depicts the result It is called a Center Focus

8 6 5 Systems Figure Phase Ptrait f Eample 5 The figure is called a Center Homewk 5 (Comple) In Problems -5 find the general solution, and sketch a phase ptrait Answers c e t cos t + c cos t + sin t e t sin t cos t + sin t cos t sin t c e t + c sin t e t cos t 5 cos t 5 sin t c + c cos t + sin t cos t + sin t 4 c e t cos t + c cos t + sin t e t sin t cos t + sin t 5 c cos t cos t + sin t + c sin t cos t + sin t

9 5 Repeated Eigenvalues 6 5 Repeated Eigenvalues Of course the eigenvalues need not all be distinct Consider f eample (57) Proceeding as befe, the system f ξ is r ξ (58) r The nontrivial solution is obtained by requiring the determinate to be zero That is, ( r)( r) ( ) r 4r + 4 ξ The eigenvalues (roots) are r, The equations f ξ are A nontrivial solution is and one solution is ξ ξ ξ + ξ ξ (), e t In analogy with second-der, linear, constant coefficient, homogeneous ODEs, we might epect the second solution to be (59) () t () t e t Unftunately, this is NOT a solution What to do? Somehow a candidate f the second solution has to be constructed from the only solution we have Based on previous eperiences, (59) has to be close to the crect solution We alter it slightly and try again Set (5) () t () + ηe t t e t η + e t We have to see if a choice f η eists so that () solves (57) The left side of (57) (the time derivative of (5)) is (5) () () + t () + η The right side is (5) However, η e t η e t + t te t + te t t η η e t e t η + η e t e t

10 6 5 Systems Equating (5) and (5), canceling the common e t and the other common terms, we find η η + η η After rearranging (r here) r r η η η me generally the system f η is r η (5) r ξ Notice (5) is an iteration of (58) F the current eample, (5) in component fm is η η η + η As f the system f ξ, the two equations f η are multiples of one another Any solution will suffice The simplest way to find a solution is to set either η η to zero Hence, η and η will wk, and the second solution is () t e t + e t, and the general solution is c e t + c ξ te t + e t To construct a phase ptrait we could start on the line y We will discover that 4 c 6 and c That is, trajecties remain on the line and move out to infinity The remaining trajecties are not so easy to predict Figure depicts the situation Eample 54 Find the solution of the following system of differential equations 9, () 4 Solution The system f ξ is r 9 r ξ ξ The nontrivial solution is obtained by requiring the determinate to be zero That is, ( r)( r) ( )(9) r

11 5 Repeated Eigenvalues 6 Figure Phase Ptrait f Eample y, y + y The eigenvalues (roots) are r, The equations f ξ are ξ + 9ξ ξ + ξ A nontrivial solution is ξ, ξ, and () The system f η is η 9 η Any non-trivial solution is sufficient The choice η and η is a solution Therefe, the general solution is c + c t + To find the solution, the initial data must be applied At t () c 4 + c We find c 4 and c 4, and the solution is + 4t (t) 4 4t The phase ptrait in Eample 54 is a bit strange since all of the points on the line y / do not move In fact, all of the trajecties are parallel to this line Figure 4 depicts the situation

12 64 5 Systems Figure 4 Phase Ptrait f Eample 54 Homewk 5 (Repeated) In Problems -5 find the general solution, and the solution if initial data is provided Also sketch a phase ptrait Answers c e t + c te t + e t c + c t + / /4 c + c t + /4 4 c e t + c te t / t + 4t () e t

13 54 Me on Phase Ptraits Me on Phase Ptraits If we are given the matri a b A c d iginating from a system of ODEs, it is possible to sketch the phase ptrait by inspection Indeed, set Δ det(a) ad cb, T r(a) a + d, where det(a) is the determinant of the matri and T r(a) is called the trace Then the eigenvalues are λ τ τ ± 4Δ Thus we see Δ < implies one positive and one negative eigenvalue, and the phase ptrait is a saddle Negative τ and τ 4Δ < implies an inward sprial We summerize the results in Figure 5 Figure 5 summary of phase ptraits f given τ and Δ Below is a gallary of common phase ptraits

14 66 5 Systems Figure 6 Left: λ < λ < Right: λ < λ <, but ξ and ξ close Figure 7 Left: < λ λ Right: Comple roots λ ± i

Systems. x 1 = ax 1 + bx 2, x 2 = cx 1 + dx 2,

Systems. x 1 = ax 1 + bx 2, x 2 = cx 1 + dx 2, Systems We consider systems of differential equations of the fm x ax + bx, x cx + dx, where a,b,c, and d are real numbers At first glance the system may seem to be first-der; however, it is coupled, and

More information

Homogeneous Constant Matrix Systems, Part II

Homogeneous Constant Matrix Systems, Part II 4 Homogeneous Constant Matri Systems, Part II Let us now epand our discussions begun in the previous chapter, and consider homogeneous constant matri systems whose matrices either have comple eigenvalues

More information

Two Dimensional Linear Systems of ODEs

Two Dimensional Linear Systems of ODEs 34 CHAPTER 3 Two Dimensional Linear Sstems of ODEs A first-der, autonomous, homogeneous linear sstem of two ODEs has the fm x t ax + b, t cx + d where a, b, c, d are real constants The matrix fm is 31

More information

Gaussian integrals. Calvin W. Johnson. September 9, The basic Gaussian and its normalization

Gaussian integrals. Calvin W. Johnson. September 9, The basic Gaussian and its normalization Gaussian integrals Calvin W. Johnson September 9, 24 The basic Gaussian and its normalization The Gaussian function or the normal distribution, ep ( α 2), () is a widely used function in physics and mathematical

More information

COUNCIL ROCK HIGH SCHOOL MATHEMATICS. A Note Guideline of Algebraic Concepts. Designed to assist students in A Summer Review of Algebra

COUNCIL ROCK HIGH SCHOOL MATHEMATICS. A Note Guideline of Algebraic Concepts. Designed to assist students in A Summer Review of Algebra COUNCIL ROCK HIGH SCHOOL MATHEMATICS A Note Guideline of Algebraic Concepts Designed to assist students in A Summer Review of Algebra [A teacher prepared compilation of the 7 Algebraic concepts deemed

More information

Solutions to Problem Sheet for Week 11

Solutions to Problem Sheet for Week 11 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week MATH9: Differential Calculus (Advanced) Semester, 7 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

Section 8.2 : Homogeneous Linear Systems

Section 8.2 : Homogeneous Linear Systems Section 8.2 : Homogeneous Linear Systems Review: Eigenvalues and Eigenvectors Let A be an n n matrix with constant real components a ij. An eigenvector of A is a nonzero n 1 column vector v such that Av

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

Unit 11 - Solving Quadratic Functions PART ONE

Unit 11 - Solving Quadratic Functions PART ONE Unit 11 - Solving Quadratic Functions PART ONE PREREQUISITE SKILLS: students should be able to add, subtract and multiply polynomials students should be able to factor polynomials students should be able

More information

Copyright (c) 2006 Warren Weckesser

Copyright (c) 2006 Warren Weckesser 2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

More information

3.1 Energy minimum principle

3.1 Energy minimum principle Ashley Robison My Preferences Site Tools FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki BioWiki GeoWiki StatWiki

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is

More information

A. Incorrect! Apply the rational root test to determine if any rational roots exist.

A. Incorrect! Apply the rational root test to determine if any rational roots exist. College Algebra - Problem Drill 13: Zeros of Polynomial Functions No. 1 of 10 1. Determine which statement is true given f() = 3 + 4. A. f() is irreducible. B. f() has no real roots. C. There is a root

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

Module 2, Section 2 Solving Equations

Module 2, Section 2 Solving Equations Principles of Mathematics Section, Introduction 03 Introduction Module, Section Solving Equations In this section, you will learn to solve quadratic equations graphically, by factoring, and by applying

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29 10 Contents Complex Numbers 10.1 Complex Arithmetic 2 10.2 Argand Diagrams and the Polar Form 12 10.3 The Exponential Form of a Complex Number 20 10.4 De Moivre s Theorem 29 Learning outcomes In this Workbook

More information

Summer MA Lesson 11 Section 1.5 (part 1)

Summer MA Lesson 11 Section 1.5 (part 1) Summer MA 500 Lesson Section.5 (part ) The general form of a quadratic equation is a + b + c = 0, where a, b, and c are real numbers and a 0. This is a second degree equation. There are four ways to possibly

More information

Asymptotic Stability Analysis of 2-D Discrete State Space Systems with Singular Matrix

Asymptotic Stability Analysis of 2-D Discrete State Space Systems with Singular Matrix Asymptotic Stability Analysis of 2-D Discrete State Space Systems with Singular Matri GUIDO IZUTA Department of Social Infmation Science Yonezawa Women s Juni College 6-15-1 Toi Machi, Yonezawa, Yamagata

More information

Basic ALGEBRA 2 SUMMER PACKET

Basic ALGEBRA 2 SUMMER PACKET Name Basic ALGEBRA SUMMER PACKET This packet contains Algebra I topics that you have learned before and should be familiar with coming into Algebra II. We will use these concepts on a regular basis throughout

More information

Practice Final Exam. Solutions.

Practice Final Exam. Solutions. MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be

More information

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations 1 Math 122 Fall 2008 Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations The purpose of this handout is to review the techniques that you will learn for

More information

z = a + bi Addition, subtraction, and multiplication of complex numbers

z = a + bi Addition, subtraction, and multiplication of complex numbers MAT 332: Frithjof Lutscher 4 Comple numbers Introductory consideration We can easily solve the equation 2 4 The answer is ±2, in particular, is a rational number, even an integer The equation 2 2 is a

More information

Often, in this class, we will analyze a closed-loop feedback control system, and end up with an equation of the form

Often, in this class, we will analyze a closed-loop feedback control system, and end up with an equation of the form ME 32, Spring 25, UC Berkeley, A. Packard 55 7 Review of SLODEs Throughout this section, if y denotes a function (of time, say), then y [k or y (k) denotes the k th derivative of the function y, y [k =

More information

A summary of factoring methods

A summary of factoring methods Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 A summary of factoring methods What you need to know already: Basic algebra notation and facts. What you can learn here: What

More information

1 Last time: row reduction to (reduced) echelon form

1 Last time: row reduction to (reduced) echelon form MATH Linear algebra (Fall 8) Lecture Last time: row reduction to (reduced) echelon fm The leading entry in a nonzero row of a matrix is the first nonzero entry from left going right example, the row 7

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

Homogeneous Constant Matrix Systems, Part II

Homogeneous Constant Matrix Systems, Part II 4 Homogeneous Constant Matrix Systems, Part II Let us now expand our discussions begun in the previous chapter, and consider homogeneous constant matrix systems whose matrices either have complex eigenvalues

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

Chapter 12: Iterative Methods

Chapter 12: Iterative Methods ES 40: Scientific and Engineering Computation. Uchechukwu Ofoegbu Temple University Chapter : Iterative Methods ES 40: Scientific and Engineering Computation. Gauss-Seidel Method The Gauss-Seidel method

More information

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0.

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Infinite Limits Return to Table of Contents Infinite Limits Infinite Limits Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Now we will consider rational functions

More information

SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS

SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS STRUCTURE OF EXAMINATION PAPER. There will be one -hour paper consisting of 4 questions..

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann June 7, 04 The eigenvalues for a triangular

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

Math Analysis/Honors Math Analysis Summer Assignment

Math Analysis/Honors Math Analysis Summer Assignment Math Analysis/Honors Math Analysis Summer Assignment To be successful in Math Analysis or Honors Math Analysis, a full understanding of the topics listed below is required prior to the school year. To

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7 Calculus I Practice Test Problems for Chapter Page of 7 This is a set of practice test problems for Chapter This is in no way an inclusive set of problems there can be other types of problems on the actual

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

ES.1803 Topic 19 Notes Jeremy Orloff. 19 Variation of parameters; exponential inputs; Euler s method

ES.1803 Topic 19 Notes Jeremy Orloff. 19 Variation of parameters; exponential inputs; Euler s method ES83 Topic 9 Notes Jeremy Orloff 9 Variation of parameters; eponential inputs; Euler s method 9 Goals Be able to derive and apply the eponential response formula for constant coefficient linear systems

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

First Semester. Second Semester

First Semester. Second Semester Algebra II Scope and Sequence 014-15 (edited May 014) HOLT Algebra Page -4 Unit Linear and Absolute Value Functions Abbreviated Name 5-8 Quadratics QUADS Algebra II - Unit Outline First Semester TEKS Readiness

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

2 3 x = 6 4. (x 1) 6

2 3 x = 6 4. (x 1) 6 Solutions to Math 201 Final Eam from spring 2007 p. 1 of 16 (some of these problem solutions are out of order, in the interest of saving paper) 1. given equation: 1 2 ( 1) 1 3 = 4 both sides 6: 6 1 1 (

More information

2. Higher-order Linear ODE s

2. Higher-order Linear ODE s 2. Higher-order Linear ODE s 2A. Second-order Linear ODE s: General Properties 2A-1. On the right below is an abbreviated form of the ODE on the left: (*) y + p()y + q()y = r() Ly = r() ; where L is the

More information

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions 01 Summer Assignment Theme 1: Linear Functions 1. Write the equation for the line through the point P(, -1) that is perpendicular to the line 5y = 7. (A) + 5y = -1 (B) 5 y = 8 (C) 5 y = 1 (D) 5 + y = 7

More information

MATH 320, WEEK 11: Eigenvalues and Eigenvectors

MATH 320, WEEK 11: Eigenvalues and Eigenvectors MATH 30, WEEK : Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors We have learned about several vector spaces which naturally arise from matrix operations In particular, we have learned about the

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

In this unit we will study exponents, mathematical operations on polynomials, and factoring.

In this unit we will study exponents, mathematical operations on polynomials, and factoring. GRADE 0 MATH CLASS NOTES UNIT E ALGEBRA In this unit we will study eponents, mathematical operations on polynomials, and factoring. Much of this will be an etension of your studies from Math 0F. This unit

More information

3.3 Limits and Infinity

3.3 Limits and Infinity Calculus Maimus. Limits Infinity Infinity is not a concrete number, but an abstract idea. It s not a destination, but a really long, never-ending journey. It s one of those mind-warping ideas that is difficult

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Mathematics Specialist Units 3 & 4 Program 2018

Mathematics Specialist Units 3 & 4 Program 2018 Mathematics Specialist Units 3 & 4 Program 018 Week Content Assessments Complex numbers Cartesian Forms Term 1 3.1.1 review real and imaginary parts Re(z) and Im(z) of a complex number z Week 1 3.1. review

More information

You may use a calculator, but you must show all your work in order to receive credit.

You may use a calculator, but you must show all your work in order to receive credit. Math 2410-010/015 Exam II April 7 th, 2017 Name: Instructions: Key Answer each question to the best of your ability. All answers must be written clearly. Be sure to erase or cross out any work that you

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

Mathematics of Imaging: Lecture 3

Mathematics of Imaging: Lecture 3 Mathematics of Imaging: Lecture 3 Linear Operators in Infinite Dimensions Consider the linear operator on the space of continuous functions defined on IR. J (f)(x) = x 0 f(s) ds Every function in the range

More information

CHAPTER 1. FUNCTIONS 7

CHAPTER 1. FUNCTIONS 7 CHAPTER 1. FUNCTIONS 7 1.3.2 Polynomials A polynomial is a function P with a general form P (x) a 0 + a 1 x + a 2 x 2 + + a n x n, (1.4) where the coe cients a i (i 0, 1,...,n) are numbers and n is a non-negative

More information

AP CALCULUS SUMMER REVIEW WORK

AP CALCULUS SUMMER REVIEW WORK AP CALCULUS SUMMER REVIEW WORK The following problems are all ALGEBRA concepts you must know cold in order to be able to handle Calculus. Most of them are from Algebra, some are from Pre-Calc. This packet

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND

SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND (Section 2.5: The Indeterminate Forms 0/0 and / ) 2.5. SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND LEARNING OBJECTIVES Understand what it means for a Limit Form to be indeterminate. Recognize indeterminate

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

AP Calculus BC Summer Review

AP Calculus BC Summer Review AP Calculus BC 07-08 Summer Review Due September, 07 Name: All students entering AP Calculus BC are epected to be proficient in Pre-Calculus skills. To enhance your chances for success in this class, it

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

Solving Quadratic Equations Using the Quadratic Formula

Solving Quadratic Equations Using the Quadratic Formula Section 9 : Solving Quadratic Equations Using the Quadratic Fmula Quadratic Equations are equations that have an x term as the highest powered term. They are also called Second Degree Equations. The Standard

More information

Introduction. So, why did I even bother to write this?

Introduction. So, why did I even bother to write this? Introduction This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The review contains the occasional

More information

Algebraic Functions, Equations and Inequalities

Algebraic Functions, Equations and Inequalities Algebraic Functions, Equations and Inequalities Assessment statements.1 Odd and even functions (also see Chapter 7)..4 The rational function a c + b and its graph. + d.5 Polynomial functions. The factor

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

CALC1 SUMMER REVIEW WORK

CALC1 SUMMER REVIEW WORK CALC SUMMER REVIEW WORK The following problems are all ALGEBRA concepts you must know cold in order to be able to handle Calculus. Most of them are from Algebra, some are from Pre-Calc. This packet is

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

Solve Wave Equation from Scratch [2013 HSSP]

Solve Wave Equation from Scratch [2013 HSSP] 1 Solve Wave Equation from Scratch [2013 HSSP] Yuqi Zhu MIT Department of Physics, 77 Massachusetts Ave., Cambridge, MA 02139 (Dated: August 18, 2013) I. COURSE INFO Topics Date 07/07 Comple number, Cauchy-Riemann

More information

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES abc General Certificate of Education Mathematics Further Pure SPECIMEN UNITS AND MARK SCHEMES ADVANCED SUBSIDIARY MATHEMATICS (56) ADVANCED SUBSIDIARY PURE MATHEMATICS (566) ADVANCED SUBSIDIARY FURTHER

More information

A Tutorial on Euler Angles and Quaternions

A Tutorial on Euler Angles and Quaternions A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weimann Institute of Science http://www.weimann.ac.il/sci-tea/benari/ Version.0.1 c 01 17 b Moti Ben-Ari. This work

More information

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012 Sophomore Year: Algebra II Tetbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012 Course Description: The purpose of this course is to give students a strong foundation

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

Midterm 1 Solutions. Monday, 10/24/2011

Midterm 1 Solutions. Monday, 10/24/2011 Midterm Solutions Monday, 0/24/20. (0 points) Consider the function y = f() = e + 2e. (a) (2 points) What is the domain of f? Epress your answer using interval notation. Solution: We must eclude the possibility

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Core Connections Algebra 2 Checkpoint Materials

Core Connections Algebra 2 Checkpoint Materials Core Connections Algebra 2 Note to Students (and their Teachers) Students master different skills at different speeds. No two students learn eactly the same way at the same time. At some point you will

More information

A matrix times a column vector is the linear combination of the columns of the matrix weighted by the entries in the column vector.

A matrix times a column vector is the linear combination of the columns of the matrix weighted by the entries in the column vector. 18.03 Class 33, Apr 28, 2010 Eigenvalues and eigenvectors 1. Linear algebra 2. Ray solutions 3. Eigenvalues 4. Eigenvectors 5. Initial values [1] Prologue on Linear Algebra. Recall [a b ; c d] [x ; y]

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs AQA Level Further mathematics Number & algebra Section : Functions and their graphs Notes and Eamples These notes contain subsections on: The language of functions Gradients The equation of a straight

More information