Application of the Fractional Complex Transform to Fractional Differential Equations

Size: px
Start display at page:

Download "Application of the Fractional Complex Transform to Fractional Differential Equations"

Transcription

1 From the SelectedWks of Ji-Huan He 2011 Application of the Fractional Comple Transfm to Fractional Differential Equations Zheng-Biao Li Ji-Huan He Available at:

2 Z.B. Li, J.H. He, Nonlinear Sci. Lett.A, Vol.2, No.3, , 2011 Application of the Fractional Comple Transfm to Fractional Differential Equations Zheng-Biao Li 1, Ji-Huan He *2 1. College of Mathematics and Infmation Science, Qujing Nmal University, Qujing, Yunnan , China; 2. National Engineering Labaty f Modern Silk, College of Tetile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou , China Abstract The fractional comple transfm is used to analytically deal with fractional differential equations. Two eamples are given to elucidate the solution procedure, showing it is etremely accessible to nonmathematicians. Keywds: Fractional Comple Transfm, Modified Riemann-Liouville Derivative, Fractional Differential Equation 1. Introduction Transfm is an imptant method to solve mathematical problems. Many useful transfms f solving various problems were appeared in open literature, such as the travelling wave transfm [1], the Laplace transfm [2], the Fourier transfm [3], the Bäcklund transfmation [4], the integral transfm [5], and the local fractional integral transfms[6]. Very recently the fractional comple transfm [7-10] was suggested to convert fractional der differential equations with modified Riemann-Liouville derivatives [11-13] into integer der differential equations, and the resultant equations can be solved by advanced calculus. 2. Jumarie s Fractional Derivative Jumarie's fractional derivative is a modified Riemann-Liouville derivative defined as[11-13] 1 1 ( ξ) ( f( ξ) f(0)) dξ, < 0, Γ ( ) 0 1 d D f( ) = ( ξ) ( f( ξ) f(0)) dξ, 0< < 1, Γ (1 ) d (1) 0 ( n) ( n) [ f ( )], n < n+ 1, n 1, * Cresponding auth. hejihuan@suda.edu.cn (J.H. He) Copyright 2011 Asian Academic Publisher Ltd. Journal Homepage:

3 122 ISSN : Nonlinear Science Letters A- Mathematics, Physics and Mechanics where f : R R, f( ) denotes a continuous (but not necessarily differentiable) function. Some useful fmulas and results of Jumarie s modified Riemann Liouville derivative were summarized in Refs. [11-13]: D c= 0, > 0, c=constant. (2) D [ cf( )] = cd f( ), > 0, c=constant. (3) D Γ (1 + ) =, > > 0. Γ (1 + ) D [ f( ) g( )] = [ D f( )] g( ) + f( )[ D g( )]. (5) D f t = f t. (6) ' ( ) ( ( )) ( ) ( ) (4) 3. The Fractional Comple Transfm The fractional comple transfm was first proposed in Refs. [7]. Consider a fractional differential equation 3 γ λ u u u u u u 3 γ λ t y z = 0. (7) where u/ t is Jumarie's fractional derivative of der with respect to t. The fractional comple transfm requires qt T =, Γ (1 + ) p X =, Γ (1 + ) γ ky Y =, Γ (1 + γ ) λ lz Z =. Γ (1 + λ) (8) where p, q, k, and l are unknown constants, 0< 1, 0< 1, 0< γ 1, 0< λ 1. Using the basic properties of the fractional derivative listed in Eqs. (2)~(6), we can convert the fractional derivatives into classical derivatives:

4 Z.B. Li, J.H. He, Nonlinear Sci. Lett.A, Vol.2, No.3, , = q, t T = p, X γ = k, γ y Y λ = l. λ z Z (9) Eq. (7) becomes 3 u u 3 u u u q + 2pu + 3p + 4γ + 5λ = 0, (10) 3 T X X Y Z which can be solved by, f eample, the ep-function method [14-15]. 4. Applications Eample 1 As the first eample, we consider a space-time fractional equation [16] f the transpt equation in pous media: ut (, ) ut (, ) + c = 0, 0<, 1, (11) t where c is a constant. Using the following fractional comple transfm t T =, Γ (1 + ) (12) X =, Γ (1 + ) We obtain ut (, ) u T = = 1 =, (13) t T t T T Eq. (11) becomes ut (, ) u X = = 1 =. X X X (14) u T u + c = 0, X (15) Solving Eq. (15) results in 1 u1( X, T) = f( T X), (16) c

5 124 ISSN : Nonlinear Science Letters A- Mathematics, Physics and Mechanics u ( X, T) = f( X ct), (17) 2 where the function f ( ξ ) is an arbitrary and first der function which is differentiable with respect to ξ. We, therefe, obtain the solution, which reads (, ) ( t u1 t = f Γ (1 + ) cγ (1 + ) ), (18) (, ) t u2 t = c f( ), Γ (1 + ) Γ (1 + ) (19) Eample 2 We investigate a fractional differential equation in the fm [16]: t u(, t) u(, t) + = 0, 0<, 1, Γ (1 + ) t Γ (1 + ) (20) Using the fractional comple transfm, Eq. (12), Eq. (20) is converted into the following partial differential equation Tu where u = u( X, T). Its general solution can be epressed as T + Xu = 0, (21) X uxt (, ) = ft ( / X), (22) uxt (, ) = f( X/ T), (23) where the function f ( ξ ) is an arbitrary and first der function differentiable with respect to ξ. We obtain the needed solution, which reads Introducing ξ defined as t ut (, ) = f( / ), Γ (1 + ) Γ (1 + ) (24) t ut (, ) = f( / ), Γ (1 + ) Γ (1 + ) (25) t ξ = /. Γ (1 + ) Γ(1 + ) (26) and using Jumarie's chain rule, we have

6 Z.B. Li, J.H. He, Nonlinear Sci. Lett.A, Vol.2, No.3, , ut (, ) ( ) = fξξt = fξ/, (27) t Γ (1 + ) and ut 2 (, ) t ( ) / = fξξ = fξ. (28) 2 Γ (1 + ) ( Γ (1 + )) It is easy to prove that Eq. (24) is the solution of Eq. (20). Substituting the results into the left side of Eq. (20) yields t ut (,) ut (,) t / t / + = fξ fξ = 0. Γ (1 + ) t Γ (1 + ) Γ (1 + ) Γ (1 + ) Γ (1 + ) Γ (1 + ) (29) 4. Conclusions The fractional comple transfm is etremely simple but effective f solving fractional differential equations. The method is accessible to all with basic knowledge of Advanced Calculus and with little Fractional Calculus. Acknowledgement The wk is suppted by PAPD (A Project Funded by the Priity Academic Program Development of Jiangsu Higher Education Institutions), National Natural Science Foundation of China under Grant No , Natural Science Foundation of Yunnan Province under Grant No. 2010CD086 and the Project (A study on eact solutions of partial differential equation with fraction der) of the Science and Technology Department of Yunnan Province of China, References [1] Bekir A. New eact travelling wave solutions of some comple nonlinear equations, Communications in Nonlinear Science and Numerical Simulation, 14(4) (2009) [2] Cassol M, Wtmann S, Rizza U. Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace Transfm techniques, Environmental Modelling & Software, 24(1) (2009) [3] Sejdić E, Djurović I, et al. Fractional Fourier transfm as a signal processing tool: An overview of recent developments, Signal Processing, 91(6) (2011) [4] Gdoa PR, Pickering A, Zhu ZN. Bäcklund transfmations f a matri second Painlevé equation, Physics Letters A, 374 (34) (2010) [5] Cotta RM, Mikhailov MD, Integral transfm method, Applied Mathematical Modelling, 17 (3) (1993) [6] Yang X, Local Fractional Integral Transfms, Progress in Nonlinear Science, 4(2011) [7] Li ZB, He JH. Fractional Comple Transfm f Fractional Differential Equations, Mathematical and Computational Applications, 15 (5) (2010) [8] Li ZB. An Etended Fractional Comple Transfm, Journal of Nonlinear Science and Numerical Simulation, 11 (2010) [9] He JH, Li ZB. Converting Fractional differential equations into partial differential equations, Thermal Science, DOI REFERENCE: /TSCI H

7 126 ISSN : Nonlinear Science Letters A- Mathematics, Physics and Mechanics [10] He JH. A Sht Remark on Fractional Variational Iteration Method, Physics Letters A, DOI: /j.physleta [11] Jumarie G. Fractional partial differential equations and modified Riemann- Liouville derivative new methods f solution, Journal of Applied Mathematics and Computing, 24 (1-2) (2007) [12] Jumarie G. Modified Riemann-Liouville Derivative and Fractional Tayl series of Non-differentiable Functions Further Results, Computers and Mathematics with Applications, 51 (9-10) (2006) [13] Jumarie G. Cauchy's integral fmula via the modified Riemann-Liouville derivative f analytic functions of fractional der, Applied Mathematics Letters, 23 (12) (2010) [14] He JH. An elementary introduction to recently developed asymptotic methods and nanomechanics in tetile engineering, International Journal of Modern Physics B, 22(21) (2008) [15] He JH. Some asymptotic methods f strongly nonlinear equations, International Journal of Modern Physics B, 20(10) (2006) [16] Wu GC. A fractional characteristic method f solving fractional partial differential equations, Applied Mathematics Letters, 24(7) (2011)

Exp-function Method for Fractional Differential Equations

Exp-function Method for Fractional Differential Equations From the SelectedWorks of Ji-Huan He 2013 Exp-function Method for Fractional Differential Equations Ji-Huan He Available at: https://works.bepress.com/ji_huan_he/73/ Citation Information: He JH. Exp-function

More information

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 013 Variational iteration method for Nonlinear Oscillators: A comment on Application of Laplace Iteration method to Study

More information

A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY

A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1867-1871 1867 A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY by Fu-Juan LIU a, Hong-Yan LIU a,b, Zheng-Biao LI c, and Ji-Huan HE a* a National

More information

Maximal Thermo-geometric Parameter in a Nonlinear Heat Conduction Equation

Maximal Thermo-geometric Parameter in a Nonlinear Heat Conduction Equation From the SelectedWorks of Ji-Huan He April, 2016 Maximal Thermo-geometric Parameter in a Nonlinear Heat Conduction Equation Ji-Huan He Available at: https://works.bepress.com/ji_huan_he/94/ Bull. Malays.

More information

Local Fractional Integral Transforms

Local Fractional Integral Transforms From the SelectedWorks of Xiao-Jun Yang 2011 Local Fractional Integral Transforms Yang X Available at: https://works.bepress.com/yang_xiaojun/3/ Progress in Nonlinear Science Science is the moving boundary

More information

No. 5 Discrete variational principle the first integrals of the In view of the face that only the momentum integrals can be obtained by the abo

No. 5 Discrete variational principle the first integrals of the In view of the face that only the momentum integrals can be obtained by the abo Vol 14 No 5, May 005 cfl 005 Chin. Phys. Soc. 1009-1963/005/14(05)/888-05 Chinese Physics IOP Publishing Ltd Discrete variational principle the first integrals of the conservative holonomic systems in

More information

Critical exponents for a nonlinear reaction-diffusion system with fractional derivatives

Critical exponents for a nonlinear reaction-diffusion system with fractional derivatives Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume Number 6 (06 pp. 5343 535 Research India Publications http://www.ripublication.com/gjpam.htm Critical exponents f a nonlinear reaction-diffusion

More information

Exact Solutions For Fractional Partial Differential Equations By A New Generalized Fractional Sub-equation Method

Exact Solutions For Fractional Partial Differential Equations By A New Generalized Fractional Sub-equation Method Exact Solutions For Fractional Partial Differential Equations y A New eneralized Fractional Sub-equation Method QINHUA FEN Shandong University of Technology School of Science Zhangzhou Road 12, Zibo, 255049

More information

The Exact Solitary Wave Solutions for a Family of BBM Equation

The Exact Solitary Wave Solutions for a Family of BBM Equation ISSN 749-3889(print),749-3897(online) International Journal of Nonlinear Science Vol. (2006) No., pp. 58-64 The Exact Solitary Wave Solutions f a Family of BBM Equation Lixia Wang, Jiangbo Zhou, Lihong

More information

arxiv: v1 [math.nt] 22 Jun 2014

arxiv: v1 [math.nt] 22 Jun 2014 FIGURATE PRIMES AND HILBERT S 8TH PROBLEM TIANXIN CAI, YONG ZHANG, AND ZHONGYAN SHEN arxiv:140.51v1 [math.nt] 22 Jun 2014 Abstract. In this paper, by using the they of elliptic curves, we discuss several

More information

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD THERMAL SCIENCE, Year 15, Vol. 19, No. 4, pp. 139-144 139 EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD by Hong-Cai MA a,b*, Dan-Dan YAO a, and

More information

Handling the fractional Boussinesq-like equation by fractional variational iteration method

Handling the fractional Boussinesq-like equation by fractional variational iteration method 6 ¹ 5 Jun., COMMUN. APPL. MATH. COMPUT. Vol.5 No. Å 6-633()-46-7 Handling the fractional Boussinesq-like equation by fractional variational iteration method GU Jia-lei, XIA Tie-cheng (College of Sciences,

More information

Oscillatory Solutions of Nonlinear Fractional Difference Equations

Oscillatory Solutions of Nonlinear Fractional Difference Equations International Journal of Difference Equations ISSN 0973-6069, Volume 3, Number, pp. 9 3 208 http://campus.mst.edu/ijde Oscillaty Solutions of Nonlinear Fractional Difference Equations G. E. Chatzarakis

More information

We consider systems of differential equations of the form. x 1 = ax 1 + bx 2,

We consider systems of differential equations of the form. x 1 = ax 1 + bx 2, Chapter 5 Systems We consider systems of differential equations of the fm (5) a + b, c + d, where a, b, c, and d are real numbers At first glance the system may seem to be first-der; however, it is coupled,

More information

Compacton Solutions and Peakon Solutions for a Coupled Nonlinear Wave Equation

Compacton Solutions and Peakon Solutions for a Coupled Nonlinear Wave Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol 4(007) No1,pp31-36 Compacton Solutions Peakon Solutions for a Coupled Nonlinear Wave Equation Dianchen Lu, Guangjuan

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 1 (211) 233 2341 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Variational

More information

Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets

Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets Copyright 22 Tech Science Press CMES, vol.89, no.6, pp.48-495, 22 Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets Jinxia Wei, Yiming

More information

Explicit Solutions of the Heat Equation

Explicit Solutions of the Heat Equation LECTURE 6 Eplicit Solutions of the Heat Equation Recall the -dimensional homogeneous) Heat Equation: ) u t a 2 u. In this lecture our goal is to construct an eplicit solution to the Heat Equation ) on

More information

NEW PERIODIC WAVE SOLUTIONS OF (3+1)-DIMENSIONAL SOLITON EQUATION

NEW PERIODIC WAVE SOLUTIONS OF (3+1)-DIMENSIONAL SOLITON EQUATION Liu, J., et al.: New Periodic Wave Solutions of (+)-Dimensional Soliton Equation THERMAL SCIENCE: Year 7, Vol., Suppl., pp. S69-S76 S69 NEW PERIODIC WAVE SOLUTIONS OF (+)-DIMENSIONAL SOLITON EQUATION by

More information

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2012, Article ID 924956, 11 pages doi:10.1155/2012/924956 Research Article The Extended Fractional Subequation Method for Nonlinear

More information

Asymptotic Stability Analysis of 2-D Discrete State Space Systems with Singular Matrix

Asymptotic Stability Analysis of 2-D Discrete State Space Systems with Singular Matrix Asymptotic Stability Analysis of 2-D Discrete State Space Systems with Singular Matri GUIDO IZUTA Department of Social Infmation Science Yonezawa Women s Juni College 6-15-1 Toi Machi, Yonezawa, Yamagata

More information

New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation Yun-jie YANG and Li YAO

New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation Yun-jie YANG and Li YAO 06 International Conference on Artificial Intelligence and Computer Science (AICS 06) ISBN: 978--60595-4-0 New Exact Solutions of the Modified Benamin-Bona-Mahony Equation Yun-ie YANG and Li YAO Department

More information

RECENTLY, many artificial neural networks especially

RECENTLY, many artificial neural networks especially 502 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 6, JUNE 2007 Robust Adaptive Control of Unknown Modified Cohen Grossberg Neural Netwks With Delays Wenwu Yu, Student Member,

More information

Weak Solution of the Singular Cauchy Problem of Euler-Poisson-Darboux Equation for n =4

Weak Solution of the Singular Cauchy Problem of Euler-Poisson-Darboux Equation for n =4 Applied Mathematical Sciences, Vol. 7, 3, no. 7, 35-35 Weak Solution of the Singular Cauchy Problem of Euler-Poisson-Darboux Equation f n =4 A. Manyonge, D. Kweyu, J. Bitok 3, H. Nyambane 3 and J. Maremwa

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

SECOND ORDER TWO DIMENSIONAL SYSTEMS: COMPUTING THE TRANSFER FUNCTION

SECOND ORDER TWO DIMENSIONAL SYSTEMS: COMPUTING THE TRANSFER FUNCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 11-12, 2004, 296 300 SECOND ORDER TWO DIMENSIONAL SYSTEMS: COMPUTING THE TRANSFER FUNCTION Gege E. Antoniou Marinos T. Michael In this paper the discrete

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Conversion of the Riemann prime number formula

Conversion of the Riemann prime number formula South Asian Journal of Mathematics 202, Vol. 2 ( 5): 535 54 www.sajm-online.com ISSN 225-52 RESEARCH ARTICLE Conversion of the Riemann prime number formula Dan Liu Department of Mathematics, Chinese sichuan

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD Jan 4. Vol. 4 No. 7-4 EAAS & ARF. All rights reserved ISSN5-869 EXACT TRAVELIN WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USIN THE IMPROVED ( /) EXPANSION METHOD Elsayed M.

More information

Exact Solutions of Space-time Fractional EW and modified EW equations

Exact Solutions of Space-time Fractional EW and modified EW equations arxiv:1601.01294v1 [nlin.si] 6 Jan 2016 Exact Solutions of Space-time Fractional EW and modified EW equations Alper Korkmaz Department of Mathematics, Çankırı Karatekin University, Çankırı, TURKEY January

More information

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 7 (2011) No. 1, pp. 52-57 Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

More information

New Exact Solutions for MKdV-ZK Equation

New Exact Solutions for MKdV-ZK Equation ISSN 1749-3889 (print) 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.3pp.318-323 New Exact Solutions for MKdV-ZK Equation Libo Yang 13 Dianchen Lu 1 Baojian Hong 2 Zengyong

More information

Quantum Teleportation Last Update: 22 nd June 2008

Quantum Teleportation Last Update: 22 nd June 2008 Rick s Fmulation of Quantum Mechanics QM: Quantum Teleptation Quantum Teleptation Last Update: nd June 8. What Is Quantum Teleptation? Of course it s a cheat really. The classical equivalent of what passes

More information

Application of fractional sub-equation method to the space-time fractional differential equations

Application of fractional sub-equation method to the space-time fractional differential equations Int. J. Adv. Appl. Math. and Mech. 4(3) (017) 1 6 (ISSN: 347-59) Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics Application of fractional

More information

PROBLEMS In each of Problems 1 through 12:

PROBLEMS In each of Problems 1 through 12: 6.5 Impulse Functions 33 which is the formal solution of the given problem. It is also possible to write y in the form 0, t < 5, y = 5 e (t 5/ sin 5 (t 5, t 5. ( The graph of Eq. ( is shown in Figure 6.5.3.

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

EXP-FUNCTION AND -EXPANSION METHODS

EXP-FUNCTION AND -EXPANSION METHODS SOLVIN NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS USIN EXP-FUNCTION AND -EXPANSION METHODS AHMET BEKIR 1, ÖZKAN ÜNER 2, ALI H. BHRAWY 3,4, ANJAN BISWAS 3,5 1 Eskisehir Osmangazi University, Art-Science

More information

Solving fuzzy fractional Riccati differential equations by the variational iteration method

Solving fuzzy fractional Riccati differential equations by the variational iteration method International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661 Volume-2 Issue-11 November 2015 Solving fuzzy fractional Riccati differential equations by the variational iteration method

More information

TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD

TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 13 TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD Habibolla Latifizadeh, Shiraz University

More information

Existence of solutions for multi-point boundary value problem of fractional q-difference equation

Existence of solutions for multi-point boundary value problem of fractional q-difference equation Electronic Journal of Qualitative Theory of Differential Euations 211, No. 92, 1-1; http://www.math.u-szeged.hu/ejtde/ Existence of solutions for multi-point boundary value problem of fractional -difference

More information

FRACTIONAL CALCULUS APPROACH IN THE STUDY OF INSTABILITY PHENOMENON IN FLUID DYNAMICS

FRACTIONAL CALCULUS APPROACH IN THE STUDY OF INSTABILITY PHENOMENON IN FLUID DYNAMICS Palestine Journal of Mathematics Vol. 1() (1), 95 13 Palestine Polytechnic University-PPU 1 FRACTIONA CACUUS APPROACH IN THE STUDY OF INSTABIITY PHENOMENON IN FUID DYNAMICS J. C. Prajapati, A. D. Patel,

More information

The local fractional Hilbert transform in fractal space

The local fractional Hilbert transform in fractal space The local fractional ilbert transform in fractal space Guang-Sheng Chen Department of Computer Engineering, Guangxi Modern Vocational Technology College, echi,guangxi, 547000, P.. China E-mail address:

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 24 (211) 219 223 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Laplace transform and fractional differential

More information

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION THERMAL SCIENCE: Year 7, Vol., Suppl., pp. S-S7 S A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION by Wei XU a, Wen CHEN a*, Ying-Jie LIANG a*, and Jose WEBERSZPIL b a State Key Laboratory

More information

Fractional differential equations with integral boundary conditions

Fractional differential equations with integral boundary conditions Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 (215), 39 314 Research Article Fractional differential equations with integral boundary conditions Xuhuan Wang a,, Liping Wang a, Qinghong Zeng

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE in Core Mathematics C1 (6663/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE in Core Mathematics C1 (6663/01) Mark Scheme (Results) Summer 015 Pearson Edecel GCE in Ce Mathematics C1 (6663/01) Edecel and BTEC Qualifications Edecel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body.

More information

Exact Solutions for a BBM(m,n) Equation with Generalized Evolution

Exact Solutions for a BBM(m,n) Equation with Generalized Evolution pplied Mathematical Sciences, Vol. 6, 202, no. 27, 325-334 Exact Solutions for a BBM(m,n) Equation with Generalized Evolution Wei Li Yun-Mei Zhao Department of Mathematics, Honghe University Mengzi, Yunnan,

More information

Systems. x 1 = ax 1 + bx 2, x 2 = cx 1 + dx 2,

Systems. x 1 = ax 1 + bx 2, x 2 = cx 1 + dx 2, Systems We consider systems of differential equations of the fm x ax + bx, x cx + dx, where a,b,c, and d are real numbers At first glance the system may seem to be first-der; however, it is coupled, and

More information

Exact Solutions for Generalized Klein-Gordon Equation

Exact Solutions for Generalized Klein-Gordon Equation Journal of Informatics and Mathematical Sciences Volume 4 (0), Number 3, pp. 35 358 RGN Publications http://www.rgnpublications.com Exact Solutions for Generalized Klein-Gordon Equation Libo Yang, Daoming

More information

Local Fractional Laplace s Transform Based Local Fractional Calculus

Local Fractional Laplace s Transform Based Local Fractional Calculus From the SelectedWork of Xiao-Jun Yang 2 Local Fractional Laplace Tranform Baed Local Fractional Calculu Yang Xiaojun Available at: http://workbeprecom/yang_iaojun/8/ Local Fractional Laplace Tranform

More information

Hongliang Zhang 1, Dianchen Lu 2

Hongliang Zhang 1, Dianchen Lu 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(010) No.,pp.5-56 Exact Solutions of the Variable Coefficient Burgers-Fisher Equation with Forced Term Hongliang

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

Simultaneous Accumulation Points to Sets of d-tuples

Simultaneous Accumulation Points to Sets of d-tuples ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.92010 No.2,pp.224-228 Simultaneous Accumulation Points to Sets of d-tuples Zhaoxin Yin, Meifeng Dai Nonlinear Scientific

More information

Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV Burgers-type equations with nonlinear terms of any order

Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV Burgers-type equations with nonlinear terms of any order Physics Letters A 305 (00) 377 38 www.elsevier.com/locate/pla Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV Burgers-type equations with nonlinear terms of any

More information

A. Then p P( ) if and only if there exists w Ω such that p(z)= (z U). (1.4)

A. Then p P( ) if and only if there exists w Ω such that p(z)= (z U). (1.4) American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

OPERATION PRINCIPLE OF INDEFINITE INTEGRALS

OPERATION PRINCIPLE OF INDEFINITE INTEGRALS Int J of Mathematical Sciences and Applications, Vol 2 No 2 (July-December, 206) ISSN: 2230-9888 Int J of Mathematical Sciences and Applications, Vol 2 No 2 (July-December, 206) ISSN: 2230-9888 OPEATION

More information

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1.

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1. Quadratic Equation A quadratic equation is any equation that is equialent to the equation in fmat a c + + = 0 (1.1) where a,, and c are coefficients and a 0. The ariale name is ut the same fmat applies

More information

Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator

Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator Mathematical Problems in Engineering, Article ID 9322, 7 pages http://d.doi.org/.55/24/9322 Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local

More information

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation Yunjie Yang Yan He Aifang Feng Abstract A generalized G /G-expansion method is used to search for the exact traveling wave solutions

More information

MECHANISM OF NANOFIBER CRIMP

MECHANISM OF NANOFIBER CRIMP THERMAL SCIENCE, Year 013, Vol. 17, No. 5, pp. 1473-1477 1473 MECHANISM OF NANOFIBER CRIMP by Rou-Xi CHEN a, Li ZHANG b, Hai-Yan KONG a, Ji-Huan HE a*, and Yun Chen b a National Engineering Laboratory

More information

New Exact Solutions for a Class of High-order Dispersive Cubic-quintic Nonlinear Schrödinger Equation

New Exact Solutions for a Class of High-order Dispersive Cubic-quintic Nonlinear Schrödinger Equation Journal of Mathematics Research; Vol. 6, No. 4; 2014 ISSN 1916-9795 E-ISSN 1916-9809 Pulished y Canadian Center of Science and Education New Exact Solutions for a Class of High-order Dispersive Cuic-quintic

More information

Traveling wave solutions of new coupled Konno-Oono equation

Traveling wave solutions of new coupled Konno-Oono equation NTMSCI 4, No. 2, 296-303 (2016) 296 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016218536 Traveling wave solutions of new coupled Konno-Oono equation Md. Abul Bashar, Gobinda

More information

New Iterative Method for Time-Fractional Schrödinger Equations

New Iterative Method for Time-Fractional Schrödinger Equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 2013) No. 2, pp. 89-95 New Iterative Method for Time-Fractional Schrödinger Equations Ambreen Bibi 1, Abid Kamran 2, Umer Hayat

More information

Variational Homotopy Perturbation Method for the Fisher s Equation

Variational Homotopy Perturbation Method for the Fisher s Equation ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.9() No.3,pp.374-378 Variational Homotopy Perturbation Method for the Fisher s Equation M. Matinfar, Z. Raeisi, M.

More information

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods Abstract and Applied Analysis Volume 2012, Article ID 350287, 7 pages doi:10.1155/2012/350287 Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Zhenjiang, Jiangsu, , P.R. China (Received 7 June 2010, accepted xx, will be set by the editor)

Zhenjiang, Jiangsu, , P.R. China (Received 7 June 2010, accepted xx, will be set by the editor) ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.132012) No.3,pp.380-384 Fractal Interpolation Functions on the Stability of Vertical Scale Factor Jiao Xu 1, Zhigang

More information

Equivalence of the Initialized Riemann-Liouville Derivatives and the Initialized Caputo Derivatives arxiv: v1 [math.

Equivalence of the Initialized Riemann-Liouville Derivatives and the Initialized Caputo Derivatives arxiv: v1 [math. Equivalence of the Initialized Riemann-Liouville Derivatives and the Initialized Caputo Derivatives arxiv:1811.11537v1 [math.gm] 14 Nov 218 Jian Yuan 1, College of Mathematic and Information Science, Shandong

More information

Research Article New Exact Solutions for the 2 1 -Dimensional Broer-Kaup-Kupershmidt Equations

Research Article New Exact Solutions for the 2 1 -Dimensional Broer-Kaup-Kupershmidt Equations Hindawi Publishing Corporation Abstract and Applied Analysis Volume 00, Article ID 549, 9 pages doi:0.55/00/549 Research Article New Exact Solutions for the -Dimensional Broer-Kaup-Kupershmidt Equations

More information

ON THE FRACTAL HEAT TRANSFER PROBLEMS WITH LOCAL FRACTIONAL CALCULUS

ON THE FRACTAL HEAT TRANSFER PROBLEMS WITH LOCAL FRACTIONAL CALCULUS THERMAL SCIENCE, Year 2015, Vol. 19, No. 5, pp. 1867-1871 1867 ON THE FRACTAL HEAT TRANSFER PROBLEMS WITH LOCAL FRACTIONAL CALCULUS by Duan ZHAO a,b, Xiao-Jun YANG c, and Hari M. SRIVASTAVA d* a IOT Perception

More information

Research Article Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

Research Article Fractal Derivative Model for Air Permeability in Hierarchic Porous Media Abstract and Applied Analysis Volume 2012, Article ID 354701, 7 pages doi:10.1155/2012/354701 Research Article Fractal Derivative Model for Air Permeability in Hierarchic Porous Media Jie Fan 1, 2, 3,

More information

TTC Catalog - Mathematics (MAT)

TTC Catalog - Mathematics (MAT) 2018-2019 TTC Catalog - Mathematics (MAT) MAT 001 - MAT 001 Lec: 0 Lab: 0 Credit: * Indicates credit given f rigous calculus-track mathematics course wk transferred from another college f which there is

More information

Experimental and Theoretical Calculation Investigation on

Experimental and Theoretical Calculation Investigation on Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is The Royal Society of Chemistry 2018 Experimental and Theoretical Calculation Investigation on Efficient Pb(II) Adsorption

More information

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation Physics Letters A 07 (00) 107 11 www.elsevier.com/locate/pla New explicit solitary wave solutions for ( + 1)-dimensional Boussinesq equation and ( + 1)-dimensional KP equation Yong Chen, Zhenya Yan, Honging

More information

Solve Wave Equation from Scratch [2013 HSSP]

Solve Wave Equation from Scratch [2013 HSSP] 1 Solve Wave Equation from Scratch [2013 HSSP] Yuqi Zhu MIT Department of Physics, 77 Massachusetts Ave., Cambridge, MA 02139 (Dated: August 18, 2013) I. COURSE INFO Topics Date 07/07 Comple number, Cauchy-Riemann

More information

Dark and gray spatial optical solitons in Kerr-type nonlocal media

Dark and gray spatial optical solitons in Kerr-type nonlocal media Dark and gray spatial optical solitons in Kerr-type nonlocal media Shigen Ouyang and Qi Guo Laboratory of Photonic Information Technology, South China Normal University, Guangzhou, 510631, P. R. China

More information

I N T R O D U C T I O N T O P A R T I A L D I F F E R E N T I A L E Q U AT I O N S

I N T R O D U C T I O N T O P A R T I A L D I F F E R E N T I A L E Q U AT I O N S R U S S E L L L. H E R M A N I N T R O D U C T I O N T O P A R T I A L D I F F E R E N T I A L E Q U AT I O N S R. L. H E R M A N - V E R S I O N D AT E : S E P T E M B E R 3, 4 Copyright 4 by Russell

More information

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations Computers and Mathematics with Applications 6 (21) 1868 1872 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A modified

More information

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods Abstract and Applied Analysis Volume 0, Article ID 603748, 8 pages doi:0.55/0/603748 Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization

More information

arxiv: v1 [cs.cv] 5 Nov 2011

arxiv: v1 [cs.cv] 5 Nov 2011 Covariant fractional extension of the modified Laplace-operator used in 3D-shape recovery Richard Herrmann GigaHedron, Berliner Ring 8, D-6333 Dreieich (e-mail: herrmann@gigahedron.com arxiv:.3v [cs.cv]

More information

1.5 First Order PDEs and Method of Characteristics

1.5 First Order PDEs and Method of Characteristics 1.5. FIRST ORDER PDES AND METHOD OF CHARACTERISTICS 35 1.5 First Order PDEs and Method of Characteristics We finish this introductory chapter by discussing the solutions of some first order PDEs, more

More information

CHEMISTRY PROGRAMS AT THE UNIVERSITY OF VIRGINIA

CHEMISTRY PROGRAMS AT THE UNIVERSITY OF VIRGINIA CHEMISTRY PROGRAMS AT THE UNIVERSITY OF VIRGINIA An understanding of chemical principles is imptant in many fields of endeav. Several chemistry programs are available depending on your educational and

More information

Research Article An Exact Solution of the Second-Order Differential Equation with the Fractional/Generalised Boundary Conditions

Research Article An Exact Solution of the Second-Order Differential Equation with the Fractional/Generalised Boundary Conditions Advances in Mathematical Physics Volume 218, Article ID 7283518, 9 pages https://doi.org/1.1155/218/7283518 Research Article An Eact Solution of the Second-Order Differential Equation with the Fractional/Generalised

More information

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method ISSN 1749-3889 (print, 1749-3897 (online International Journal of Nonlinear Science Vol8(009 No3,pp368-373 Travelling Wave Solutions for the ilson-pickering Equation by Using the Simplified /-expansion

More information

A Propagating Wave Packet The Group Velocity

A Propagating Wave Packet The Group Velocity Lecture 7 A Propagating Wave Pacet The Group Velocity Phys 375 Overview and Motivation: Last time we looed at a solution to the Schrödinger equation (SE) with an initial condition (,) that corresponds

More information

A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source

A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source ITM Web of Conferences, 7 18) ICM 18 https://doi.org/1.151/itmconf/187 A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source Luu Vu Cam Hoan 1,,, Ho

More information

Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method

Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method Zhang Huan-Ping( 张焕萍 ) a) Li Biao( 李彪 ) a) and Chen Yong( 陈勇 ) b) a) Nonlinear Science Center Ningbo

More information

Fractional Trigonometric Functions in Complexvalued Space: Applications of Complex Number to Local Fractional Calculus of Complex Function

Fractional Trigonometric Functions in Complexvalued Space: Applications of Complex Number to Local Fractional Calculus of Complex Function From the SelectedWorks of Xiao-Jun Yang June 4, 2 Fractional Trigonometric Functions in omplevalued Space: Applications of omple Number to Local Fractional alculus of omple Function Yang Xiao-Jun Available

More information

Average Receiving Time for Weighted-Dependent Walks on Weighted Koch Networks

Average Receiving Time for Weighted-Dependent Walks on Weighted Koch Networks ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.17(2014) No.3,pp.215-220 Average Receiving Time for Weighted-Dependent Walks on Weighted Koch Networks Lixin Tang

More information

The Solitary Wave Solutions of Zoomeron Equation

The Solitary Wave Solutions of Zoomeron Equation Applied Mathematical Sciences, Vol. 5, 011, no. 59, 943-949 The Solitary Wave Solutions of Zoomeron Equation Reza Abazari Deparment of Mathematics, Ardabil Branch Islamic Azad University, Ardabil, Iran

More information

The Discrete Yang-Fourier Transforms in Fractal Space

The Discrete Yang-Fourier Transforms in Fractal Space From the Selectedorks of Xiao-Jun Yang April 4, 2012 The Discrete Yang-Fourier Transforms in Fractal Space Yang Xiao-Jun Available at: https://worksbepresscom/yang_xiaojun/21/ Advances in Electrical Engineering

More information

and P'(r /, 0 /, >.')

and P'(r /, 0 /, >.') 1.4 ELEMENTS OF ELLIPSOIDAL GEOMETRY 13 which obviously is closely related to (1-46), 'IJ being the spherical distance between the points (0, >') and (0, N): cos'ij = cos 0 cos 0' + sin 0 sin 0' cos( >"

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods.

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods. ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.14(01) No.,pp.150-159 Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction International Journal of Analysis and Applications ISSN 229-8639 Volume 0, Number (206), 9-6 http://www.etamaths.com HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION MOUNTASSIR

More information

A new method for solving nonlinear fractional differential equations

A new method for solving nonlinear fractional differential equations NTMSCI 5 No 1 225-233 (2017) 225 New Trends in Mathematical Sciences http://dxdoiorg/1020852/ntmsci2017141 A new method for solving nonlinear fractional differential equations Serife Muge Ege and Emine

More information

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Stability and hybrid synchronization of a time-delay financial hyperchaotic system ISSN 76-7659 England UK Journal of Information and Computing Science Vol. No. 5 pp. 89-98 Stability and hybrid synchronization of a time-delay financial hyperchaotic system Lingling Zhang Guoliang Cai

More information