New Exact Solutions for a Class of High-order Dispersive Cubic-quintic Nonlinear Schrödinger Equation

Size: px
Start display at page:

Download "New Exact Solutions for a Class of High-order Dispersive Cubic-quintic Nonlinear Schrödinger Equation"

Transcription

1 Journal of Mathematics Research; Vol. 6, No. 4; 2014 ISSN E-ISSN Pulished y Canadian Center of Science and Education New Exact Solutions for a Class of High-order Dispersive Cuic-quintic Nonlinear Schrödinger Equation Ying Huang 1 & Peng Liu 1 1 School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong, P.R.China Correspondence: Ying Huang, School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong, P.R.China. huang @163.com Received: Septemer 27, 2014 Accepted: Octoer 11, 2014 Online Pulished: Novemer 6, 2014 doi: /jmr.v6n4p104 Astract URL: In the paper, the exact solutions to the cuic-quintic nonlinear Schrödinger equation with third and fourth-order dispersion terms is considered. The improved homogeneous alance method is used for constructing a series of new exact envelop wave solutions, including envelop solitary wave solutions, envelop periodic wave solutions and an envelop rational solution. Keywords: exact solution, high dispersive, nonlinear Schrödinger equation 1. Introduction Since third and fourth-order dispersion terms play a crucially important role in descriing the propagation of extremely short pulses, the generalized nonlinear Schrödinger equation iq z β 2 2 q tt + γ 1 q 2 q = i β 3 6 q ttt + β 4 24 q tttt γ 2 q 4 q (1) is taken as a model for a su-picoseconds pulse propagation in a medium which exhiits a paraolic nonlinearity law (Shundong, 2007, Karpman,1997). In particular, q(z, t) is the slowly varying envelope of the electromagnetic field, β 2 is the parameter of the group velocity dispersion, β 3 and β 4 are third-order and fourth-order dispersion, respectively, γ 1 and γ 2 are the nonlinearity coefficients (Karpman, 1998). As to this equation, its modulation instaility of optical wave was numerically investigated (Woo-Pyo,2002), the relative exact analytic solutions were studied very few, the researchers mainly studied its several special cases ecause of itself complications. For the case β 3 = 0, a series of analytical exact solutions are constructed y means of F-expansion method (Gui-Qiong, 2011). In the case β 3 = γ 1 = 0, a dark solitary wave solution with amplitude only depending on the time was presented (Azzouzi,2014). In contrast, when β 3 = β 4 = γ 2 = 0, various types exact solution were discovered (Azzouzi, 2009, Huiqing,2009, Wenxiu,2009, Anjan,2010 ). Two exact periodic solutions and two kink soliton solutions had een constructed with the homogeneous alance method (Shundong, 2007). Here, we construct new the exact solutions with the aid of the improved homogeneous alance method. In section 2, we introduce the general method for solving complex partial differential equations, and solve the new analytical solutions to high-order dispersive cuic-quintic nonlinear Schrödinger equation in section The Main Method In this section, we propose a general method to otain exact solutions for complex nonlinear partial differential equations, ased on the homogeneous alance method. Consider a given complex partial differential equation with independent variales z and t H(q, q z, q zz,...q t,...) = 0, (2) where H is in general a complex polynomial in q and its various partial derivatives. The main steps are: First. Taking the transformation 104

2 q(x, t) = u(ξ)e i(p 1z+p 2 t+c 0 ), ξ = k 1 z + k 2 t + ξ 0, (3) where k i, p i, i = 1, 2 are constants to e determined, c 0, ξ 0 are aritrary constants. Sustituting (3) into (2) yields a complex ordinary differential equation, in which the real and imaginary parts read, respectively, Second. The next crucial step is to take H R (u, u, u,...) = 0, (4) H I (u, u, u,...) = 0. (5) u(ξ) = n a i F i (ξ), (6) i=1 where a i are constants to e determined later, n is a positive integer that can e determined y alancing the highest-order derivative terms with the highest power nonlinear terms in the equations, and F(ξ) satisfies the first kind elliptic equation where i are aritrary constants, ut 3 is not equal to zero. (F (ξ)) 2 = F 2 (ξ) + 3 F 4 (ξ). (7) Third. Sustitute Eq.(7) with (6) into (4) and (5), the left hand sides of (4) and (5) can e converted into two finite series in F i, respectively, and equating each coefficient of F i to zero yields a system of algeraic equations for k i, p i, a i. Solve it, k i, p i and a i can e expressed y i and the coefficients of Eq.(2). Fourth. Solving Eq.(7) and compounding it s solutions with (6) and (3), we can otain a series of envelop solitary wave solutions, triangle functions and rational solutions of Eq.(2). 3. Exact solutions to Eq. (1) In this section, we will construct the exact solutions for Eq.(1). Making the transformation q = u(ξ) e i(ωt+θz), ξ = µt + αz + ξ 0, (8) for Eq.(1), where ω, θ, µ and α are constants to e determined. Then separating the real and imaginary parts of the resulting complex ordinary differential equation, we otain β 4 µ 4 24 u ξξξξ + µ 2 ( β 2 2 β 4 4 ω2 β 3 2 ω)u ξξ + ( β 4 24 ω4 + β 3 6 ω3 + θ β 2 2 ω2 )u γ 1 u 3 γ 2 u 5 = 0; µ 3 ( β β 4 6 ω)u ξξξ + (β 2 ωµ α β 3 2 µω2 β 4 6 µω3 )u ξ = 0. (9) Especially, the method of dealing with the aove relations differs from Shundong s (Shundong,2007). Setting we finally get { µ 3 ( β β 4 6 ω) = 0, β 2 ωµ α β 3 2 µω2 β 4 6 µω3 = 0. (10) β 4 µ 4 u ξξξξ + 6µ 2 (2β 2 β 4 ω 2 2β 3 ω)u ξξ + (β 4 ω 4 + 4β 3 ω θ 12β 2 ω 2 )u 24γ 1 u 3 24γ 2 u 5 = 0. (11) Next, our task is to solve the aove ordinary differential equation, y alancing the highest order derivative terms and the highest power nonlinear terms, we choose the ansatz u = af(ξ), a 0, (12) 105

3 where a is a constant to e determined, and F(ξ) must satisfy the following auxiliary equation ( df dξ )2 = + cf 2 + df 4, (13) where, c and d are aritrary constants. Sustituting (12) with (13) into (11) and letting each coefficient of F i (i = 1, 2, 3) to e zero, we get algeraic equations β 4 µ 4 (c d) + 6µ 2 (2β 2 β 4 ω 2 2β 3 ω)c + β 4 ω 4 + 4β 3 ω θ 12β 2 ω 2 = 0 20cdβ 4 µ dµ 2 (2β 2 β 4 ω 2 2β 3 ω) 24γ 1 a 2 = 0 24d 2 β 4 µ 4 24γ 2 a 4 = 0. Solving the algeraic equations (10) and (14) yields (14) ω = β 3 ; a = ± 1 β 4 β 4 µ = ± 1 6γ 1 d β β4 4 β 4 θ = β2 3 (β β 2β 4 ) 8β 3 4 6γ1 dβ 2 4 3γ β4 2 d γ 2 (2β 2 β 4 + β 2 3 ) ; 5cγ 2 γ 2 3d(2β 2 β 4 + β 2 3 ) 5cd ; α = µ β 3(3β 2 β 4 + β 2 3 ) 3β 3 4 β 4(c d) µ 4 c(2β 2β 4 + β 2 3 ) µ 2. (15) 24 4β 4 Solving F(ξ) from (13) one y one and sustituting them into (15) together with (8) yields the following exact solutions. Envelop period wave solutions of Eq.(1) have the form: d tan 4 dξ e i(ωt+θz), (16) d cot 4 dξ e i(ωt+θz), (17) where c = 2 d. Envelop kink soliton solutions are given y: d tanh 4 dξ e i(ωt+θz), (18) d coth 4 dξ e i(ωt+θz), (19) where c = 2 d. Envelop periodic wave solutions of the form: where = 0, c < 0, d > 0. d sec ξ e i(ωt+θz), (20) d csc ξ e i(ωt+θz), (21) 106

4 Envelop ell soliton solutions are given y: where = 0, c > 0, d < 0, and also where = 0, c > 0, d > 0. q = ± d sech cξ e i(ωt+θz), (22) c d csch cξ e i(ωt+θz), (23) Envelop rational solution is ±1 dξ e i(ωt+θz), (24) where = c = 0, d > 0, and this is singular at ξ = 0. In (16)-(24), ξ = µt + αz + ξ 0, a, θ, ω, α and µ are given y (15). 3. Conclusions In summary, Shundong, Z. early considered the exact envelop wave solutions to the high dispersive cuic-quintic nonlinear Schrödinger equation which descries the propagation of extremely short pulses. Based on the improved homogeneous alance method, we otain some exact envelop wave solutions y taking the first elliptic equation as auxiliary ordinary differential equation, some physical phenomena of extremely short pulses can e etter understood with the help of these new solutions. Acknowledgements This work was supported y Chinese Natural Science Foundation Grant ( ) and Yunnan Provincial Department of Education Research Foundation Grant (2012Y130). References Anjan, B., Allison, M., Daniela, M., Fayequa, M., & Keka, C. B. (2010). An exact solution for the modified nonlinear Schrödingers equation for Davydov solitons in -helix proteins. Mathematical Biosciences, 227(1), Azzouzi, F., Triki, H., & Grelu, P. (2014). Dipole soliton solution for the homogeneous high-order nonlinear Schrödinger equation with cuiccquinticcseptic non-kerr terms. Applied Mathematical Modelling, (in press) Azzouzi, F., Triki, H., Mezghich, K., & EI Akrmi, A. (2009). Solitary wave solutions for higher dispersive cuicquintic nonlinear Schrödinger equation. Chaos Solitons Fract., 39(3), Gui-Qiong, X. (2011). New types of exact solutions for the fourth-order dispersive cuiccquintic nonlinear Schrödinger equation. Applied Mathematics and Computation, 217(12), Huiqun, Z. (2009). New exact complex travelling wave solutions to nonlinear Schrödinger(NLS) equation. Commun Nonlinear Sci Numer Simulat., 14(3), Karpman, V. I., & Shagalov, A. G. (1997). Solitons and their staility in high dispersive system.i. Fourthorder nonlinear Schrödinger-type equations with power-law nonlinearities. Physics letter A, 228(1-2), Karpman, V. I. (1998). Evolution of solitons descried y high-order nonlinear Schrödinger equations. letter A, 244(5), Physics Shundong, Z. (2007). Exact solutions for the high-order dispersive cuic-quintic nonlinear Schrödinger equation y the extended hyperolic auxiliary equation method. Chaos Solitons Fract, 34(5),

5 Wenxiu, M., & Min, C. (2009). Direct search for exact solutions to the nonlinear Schrödinger equation. Applied Mathematics and Computation, 215(8), Woo-Pyo, H. (2002). Modulational instaility of optical waves in the high dispersive cuic-quintic nonlinear Schrödinger equation. Opt Commum., 213(1-3), Copyrights Copyright for this article is retained y the author(s), with first pulication rights granted to the journal. This is an open-access article distriuted under the terms and conditions of the Creative Commons Attriution license ( 108

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media

Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media MM Research Preprints 342 349 MMRC AMSS Academia Sinica Beijing No. 22 December 2003 Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media

More information

Exact Solutions for a BBM(m,n) Equation with Generalized Evolution

Exact Solutions for a BBM(m,n) Equation with Generalized Evolution pplied Mathematical Sciences, Vol. 6, 202, no. 27, 325-334 Exact Solutions for a BBM(m,n) Equation with Generalized Evolution Wei Li Yun-Mei Zhao Department of Mathematics, Honghe University Mengzi, Yunnan,

More information

Soliton solutions of Hirota equation and Hirota-Maccari system

Soliton solutions of Hirota equation and Hirota-Maccari system NTMSCI 4, No. 3, 231-238 (2016) 231 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016115853 Soliton solutions of Hirota equation and Hirota-Maccari system M. M. El-Borai 1, H.

More information

Integral Bifurcation Method and Its Application for Solving the Modified Equal Width Wave Equation and Its Variants

Integral Bifurcation Method and Its Application for Solving the Modified Equal Width Wave Equation and Its Variants Rostock. Math. Kolloq. 62, 87 106 (2007) Subject Classification (AMS) 35Q51, 35Q58, 37K50 Weiguo Rui, Shaolong Xie, Yao Long, Bin He Integral Bifurcation Method Its Application for Solving the Modified

More information

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation Journal of Mathematics Research; Vol. 6, No. ; ISSN 96-9795 E-ISSN 96-989 Published by Canadian Center of Science and Education New Approach of Ǵ/G Expansion Method. Applications to KdV Equation Mohammad

More information

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation Physics Letters A 07 (00) 107 11 www.elsevier.com/locate/pla New explicit solitary wave solutions for ( + 1)-dimensional Boussinesq equation and ( + 1)-dimensional KP equation Yong Chen, Zhenya Yan, Honging

More information

Analytic Solutions for A New Kind. of Auto-Coupled KdV Equation. with Variable Coefficients

Analytic Solutions for A New Kind. of Auto-Coupled KdV Equation. with Variable Coefficients Theoretical Mathematics & Applications, vol.3, no., 03, 69-83 ISSN: 79-9687 (print), 79-9709 (online) Scienpress Ltd, 03 Analytic Solutions for A New Kind of Auto-Coupled KdV Equation with Variable Coefficients

More information

Topological and Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger and the Coupled Quadratic Nonlinear Equations

Topological and Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger and the Coupled Quadratic Nonlinear Equations Quant. Phys. Lett. 3, No., -5 (0) Quantum Physics Letters An International Journal http://dx.doi.org/0.785/qpl/0300 Topological Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS

EXACT TRAVELLING WAVE SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS Journal of Applied Analysis and Computation Volume 7, Number 4, November 2017, 1586 1597 Website:http://jaac-online.com/ DOI:10.11948/2017096 EXACT TRAVELLIN WAVE SOLUTIONS FOR NONLINEAR SCHRÖDINER EQUATION

More information

A Generalized Extended F -Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation

A Generalized Extended F -Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 6 (006) pp. 580 586 c International Academic Publishers Vol. 6, No., October 15, 006 A Generalized Extended F -Expansion Method and Its Application in (+1)-Dimensional

More information

Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation

Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation Applied Mathematics & Information Sciences 4(2) (2010), 253 260 An International Journal c 2010 Dixie W Publishing Corporation, U. S. A. Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation

More information

Exact Solutions of Kuramoto-Sivashinsky Equation

Exact Solutions of Kuramoto-Sivashinsky Equation I.J. Education and Management Engineering 01, 6, 61-66 Published Online July 01 in MECS (http://www.mecs-press.ne DOI: 10.5815/ijeme.01.06.11 Available online at http://www.mecs-press.net/ijeme Exact Solutions

More information

New Exact Solutions to NLS Equation and Coupled NLS Equations

New Exact Solutions to NLS Equation and Coupled NLS Equations Commun. Theor. Phys. (Beijing, China 4 (2004 pp. 89 94 c International Academic Publishers Vol. 4, No. 2, February 5, 2004 New Exact Solutions to NLS Euation Coupled NLS Euations FU Zun-Tao, LIU Shi-Da,

More information

Soliton Solutions of a General Rosenau-Kawahara-RLW Equation

Soliton Solutions of a General Rosenau-Kawahara-RLW Equation Soliton Solutions of a General Rosenau-Kawahara-RLW Equation Jin-ming Zuo 1 1 School of Science, Shandong University of Technology, Zibo 255049, PR China Journal of Mathematics Research; Vol. 7, No. 2;

More information

Traveling Wave Solutions of Degenerate Coupled Multi-KdV Equations

Traveling Wave Solutions of Degenerate Coupled Multi-KdV Equations Traveling Wave Solutions of Degenerate Coupled Multi-KdV Equations Metin Gürses Aslı Pekcan Department of Mathematics, Science Faculty Bilkent University, 68 Ankara - Turkey Department of Mathematics,

More information

The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations

The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations MM Research Preprints, 275 284 MMRC, AMSS, Academia Sinica, Beijing No. 22, December 2003 275 The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear

More information

The Solitary Wave Solutions of Zoomeron Equation

The Solitary Wave Solutions of Zoomeron Equation Applied Mathematical Sciences, Vol. 5, 011, no. 59, 943-949 The Solitary Wave Solutions of Zoomeron Equation Reza Abazari Deparment of Mathematics, Ardabil Branch Islamic Azad University, Ardabil, Iran

More information

Exact Solutions for Generalized Klein-Gordon Equation

Exact Solutions for Generalized Klein-Gordon Equation Journal of Informatics and Mathematical Sciences Volume 4 (0), Number 3, pp. 35 358 RGN Publications http://www.rgnpublications.com Exact Solutions for Generalized Klein-Gordon Equation Libo Yang, Daoming

More information

Research Article Application of the G /G Expansion Method in Ultrashort Pulses in Nonlinear Optical Fibers

Research Article Application of the G /G Expansion Method in Ultrashort Pulses in Nonlinear Optical Fibers Advances in Optical Technologies Volume 013, Article ID 63647, 5 pages http://dx.doi.org/10.1155/013/63647 Research Article Application of the G /G Expansion Method in Ultrashort Pulses in Nonlinear Optical

More information

Solitary Wave Solutions of a Fractional Boussinesq Equation

Solitary Wave Solutions of a Fractional Boussinesq Equation International Journal of Mathematical Analysis Vol. 11, 2017, no. 9, 407-423 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.7346 Solitary Wave Solutions of a Fractional Boussinesq Equation

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations Volume 28, N. 1, pp. 1 14, 2009 Copyright 2009 SBMAC ISSN 0101-8205 www.scielo.br/cam New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations HASSAN A. ZEDAN Mathematics

More information

The General Form of Linearized Exact Solution for the KdV Equation by the Simplest Equation Method

The General Form of Linearized Exact Solution for the KdV Equation by the Simplest Equation Method Applied and Computational Mathematics 015; 4(5): 335-341 Published online August 16 015 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.11648/j.acm.0150405.11 ISSN: 38-5605 (Print); ISSN: 38-5613

More information

KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION

KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION THERMAL SCIENCE, Year 05, Vol. 9, No. 4, pp. 49-435 49 KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION by Hong-Ying LUO a*, Wei TAN b, Zheng-De DAI b, and Jun LIU a a College

More information

Research Article New Exact Solutions for the 2 1 -Dimensional Broer-Kaup-Kupershmidt Equations

Research Article New Exact Solutions for the 2 1 -Dimensional Broer-Kaup-Kupershmidt Equations Hindawi Publishing Corporation Abstract and Applied Analysis Volume 00, Article ID 549, 9 pages doi:0.55/00/549 Research Article New Exact Solutions for the -Dimensional Broer-Kaup-Kupershmidt Equations

More information

Elsayed M. E. Zayed 1 + (Received April 4, 2012, accepted December 2, 2012)

Elsayed M. E. Zayed 1 + (Received April 4, 2012, accepted December 2, 2012) ISSN 746-7659, England, UK Journal of Information and Computing Science Vol. 8, No., 03, pp. 003-0 A modified (G'/G)- expansion method and its application for finding hyperbolic, trigonometric and rational

More information

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method ISSN 1749-3889 (print, 1749-3897 (online International Journal of Nonlinear Science Vol8(009 No3,pp368-373 Travelling Wave Solutions for the ilson-pickering Equation by Using the Simplified /-expansion

More information

SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS

SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS HOURIA TRIKI 1, ABDUL-MAJID WAZWAZ 2, 1 Radiation Physics Laboratory, Department of Physics, Faculty of

More information

Research Article The Extended Hyperbolic Function Method for Generalized Forms of Nonlinear Heat Conduction and Huxley Equations

Research Article The Extended Hyperbolic Function Method for Generalized Forms of Nonlinear Heat Conduction and Huxley Equations Journal of Applied Mathematics Volume 0 Article ID 769843 6 pages doi:0.55/0/769843 Research Article The Extended Hyperbolic Function Method for Generalized Forms of Nonlinear Heat Conduction and Huxley

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Department of Applied Mathematics, Dalian University of Technology, Dalian , China

Department of Applied Mathematics, Dalian University of Technology, Dalian , China Commun Theor Phys (Being, China 45 (006 pp 199 06 c International Academic Publishers Vol 45, No, February 15, 006 Further Extended Jacobi Elliptic Function Rational Expansion Method and New Families of

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

Optical solitons and other solutions to the conformable space time fractional complex Ginzburg Landau equation under Kerr law nonlinearity

Optical solitons and other solutions to the conformable space time fractional complex Ginzburg Landau equation under Kerr law nonlinearity Pramana J. Phys. (2018) 91:58 https://doi.org/10.1007/s12043-018-1635-9 Indian Academy of Sciences Optical solitons other solutions to the conformale space time fractional complex Ginzurg Lau equation

More information

The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system

The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol., No., 014, pp. 83-90 The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system Mohammad

More information

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.008) No.1,pp.4-5 New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Euations

More information

Exact solutions for the KdV mkdv equation with time-dependent coefficients using the modified functional variable method

Exact solutions for the KdV mkdv equation with time-dependent coefficients using the modified functional variable method APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE Exact solutions for the KdV mkdv equation with time-dependent coefficients using the modified functional variable method Received: 15 June 016 Accepted:

More information

Traveling wave solutions of new coupled Konno-Oono equation

Traveling wave solutions of new coupled Konno-Oono equation NTMSCI 4, No. 2, 296-303 (2016) 296 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016218536 Traveling wave solutions of new coupled Konno-Oono equation Md. Abul Bashar, Gobinda

More information

Optical Solitary Waves in Fourth-Order Dispersive Nonlinear Schrödinger Equation with Self-steepening and Self-frequency Shift

Optical Solitary Waves in Fourth-Order Dispersive Nonlinear Schrödinger Equation with Self-steepening and Self-frequency Shift Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 721 726 c International Academic Publishers Vol. 45, No. 4, April 15, 2006 Optical Solitary Waves in Fourth-Order Dispersive Nonlinear Schrödinger Equation

More information

New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation Yun-jie YANG and Li YAO

New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation Yun-jie YANG and Li YAO 06 International Conference on Artificial Intelligence and Computer Science (AICS 06) ISBN: 978--60595-4-0 New Exact Solutions of the Modified Benamin-Bona-Mahony Equation Yun-ie YANG and Li YAO Department

More information

JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS

JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS ZAI-YUN ZHANG 1,2 1 School of Mathematics, Hunan Institute of Science Technology,

More information

Progress In Electromagnetics Research Letters, Vol. 10, 69 75, 2009 TOPOLOGICAL SOLITONS IN 1+2 DIMENSIONS WITH TIME-DEPENDENT COEFFICIENTS

Progress In Electromagnetics Research Letters, Vol. 10, 69 75, 2009 TOPOLOGICAL SOLITONS IN 1+2 DIMENSIONS WITH TIME-DEPENDENT COEFFICIENTS Progress In Electromagnetics Research Letters, Vol. 10, 69 75, 2009 TOPOLOGICAL SOLITONS IN 1+2 DIMENSIONS WITH TIME-DEPENDENT COEFFICIENTS B. Sturdevant Center for Research and Education in Optical Sciences

More information

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics Vol.3, Issue., Jan-Feb. 3 pp-369-376 ISSN: 49-6645 The ('/) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics J.F.Alzaidy Mathematics Department, Faculty

More information

New Exact Solutions for MKdV-ZK Equation

New Exact Solutions for MKdV-ZK Equation ISSN 1749-3889 (print) 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.3pp.318-323 New Exact Solutions for MKdV-ZK Equation Libo Yang 13 Dianchen Lu 1 Baojian Hong 2 Zengyong

More information

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation Yunjie Yang Yan He Aifang Feng Abstract A generalized G /G-expansion method is used to search for the exact traveling wave solutions

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Periodic, hyperbolic and rational function solutions of nonlinear wave equations

Periodic, hyperbolic and rational function solutions of nonlinear wave equations Appl Math Inf Sci Lett 1, No 3, 97-101 (013 97 Applied Mathematics & Information Sciences Letters An International Journal http://dxdoiorg/101785/amisl/010307 Periodic, hyperbolic and rational function

More information

Exact Solutions of Space-time Fractional EW and modified EW equations

Exact Solutions of Space-time Fractional EW and modified EW equations arxiv:1601.01294v1 [nlin.si] 6 Jan 2016 Exact Solutions of Space-time Fractional EW and modified EW equations Alper Korkmaz Department of Mathematics, Çankırı Karatekin University, Çankırı, TURKEY January

More information

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.4(0 No.,pp.48-5 The New eneralized ( -Expansion Method for Solving (+ Dimensional PKP Equation Rajeev Budhiraja, R.K.

More information

Optical Solitons. Lisa Larrimore Physics 116

Optical Solitons. Lisa Larrimore Physics 116 Lisa Larrimore Physics 116 Optical Solitons An optical soliton is a pulse that travels without distortion due to dispersion or other effects. They are a nonlinear phenomenon caused by self-phase modulation

More information

IMA Preprint Series # 2014

IMA Preprint Series # 2014 GENERAL PROJECTIVE RICCATI EQUATIONS METHOD AND EXACT SOLUTIONS FOR A CLASS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS By Emmanuel Yomba IMA Preprint Series # 2014 ( December 2004 ) INSTITUTE FOR MATHEMATICS

More information

NEW PERIODIC SOLITARY-WAVE SOLUTIONS TO THE (3+1)- DIMENSIONAL KADOMTSEV-PETVIASHVILI EQUATION

NEW PERIODIC SOLITARY-WAVE SOLUTIONS TO THE (3+1)- DIMENSIONAL KADOMTSEV-PETVIASHVILI EQUATION Mathematical and Comptational Applications Vol 5 No 5 pp 877-88 00 Association for Scientific Research NEW ERIODIC SOLITARY-WAVE SOLUTIONS TO THE (+- DIMENSIONAL KADOMTSEV-ETVIASHVILI EQUATION Zitian Li

More information

New Exact Traveling Wave Solutions of Nonlinear Evolution Equations with Variable Coefficients

New Exact Traveling Wave Solutions of Nonlinear Evolution Equations with Variable Coefficients Studies in Nonlinear Sciences (: 33-39, ISSN -39 IDOSI Publications, New Exact Traveling Wave Solutions of Nonlinear Evolution Equations with Variable Coefficients M.A. Abdou, E.K. El-Shewy and H.G. Abdelwahed

More information

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 7 (2011) No. 1, pp. 52-57 Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

More information

Compacton Solutions and Peakon Solutions for a Coupled Nonlinear Wave Equation

Compacton Solutions and Peakon Solutions for a Coupled Nonlinear Wave Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol 4(007) No1,pp31-36 Compacton Solutions Peakon Solutions for a Coupled Nonlinear Wave Equation Dianchen Lu, Guangjuan

More information

Hongliang Zhang 1, Dianchen Lu 2

Hongliang Zhang 1, Dianchen Lu 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(010) No.,pp.5-56 Exact Solutions of the Variable Coefficient Burgers-Fisher Equation with Forced Term Hongliang

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

THE ANALYTICAL CHAOTIC MODEL OF STOCK PRICES AND ITS APPLICATIONS

THE ANALYTICAL CHAOTIC MODEL OF STOCK PRICES AND ITS APPLICATIONS Journal of Pure and Applied Mathematics: Advances and Applications Volume, Numer,, Pages 5-77 THE ANALYTICAL CHAOTIC MODEL OF STOCK PRICES AND ITS APPLICATIONS Graduate School of Business Fordham University

More information

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 014 ISSN 1-707 A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS Bin Zheng 1 In this paper,

More information

1D spirals: is multi stability essential?

1D spirals: is multi stability essential? 1D spirals: is multi staility essential? A. Bhattacharyay Dipartimento di Fisika G. Galilei Universitá di Padova Via Marzolo 8, 35131 Padova Italy arxiv:nlin/0502024v2 [nlin.ps] 23 Sep 2005 Feruary 8,

More information

Exact Travelling Wave Solutions to the (3+1)-Dimensional Kadomtsev Petviashvili Equation

Exact Travelling Wave Solutions to the (3+1)-Dimensional Kadomtsev Petviashvili Equation Vol. 108 (005) ACTA PHYSICA POLONICA A No. 3 Exact Travelling Wave Solutions to the (3+1)-Dimensional Kadomtsev Petviashvili Equation Y.-Z. Peng a, and E.V. Krishnan b a Department of Mathematics, Huazhong

More information

Localized and periodic wave patterns for a nonic nonlinear Schrodinger equation. Citation Physics Letters A, 2013, v. 377 n. 38, p.

Localized and periodic wave patterns for a nonic nonlinear Schrodinger equation. Citation Physics Letters A, 2013, v. 377 n. 38, p. Title Localized and periodic wave patterns for a nonic nonlinear Schrodinger equation Author(s) Chow, KW; Rogers, C Citation Physics Letters A, 013, v. 377 n. 38, p. 56 550 Issued Date 013 URL http://hdl.handle.net/107/185956

More information

Traveling Wave Solutions for a Generalized Kawahara and Hunter-Saxton Equations

Traveling Wave Solutions for a Generalized Kawahara and Hunter-Saxton Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 34, 1647-1666 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3483 Traveling Wave Solutions for a Generalized Kawahara and Hunter-Saxton

More information

Soliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System

Soliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System Appl. Math. Inf. Sci. 9, No., 17-153 (015) 17 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.1/amis/090 Soliton Solutions of the Time Fractional Generalized Hirota-satsuma

More information

PRAMANA c Indian Academy of Sciences Vol. 83, No. 3 journal of September 2014 physics pp

PRAMANA c Indian Academy of Sciences Vol. 83, No. 3 journal of September 2014 physics pp PRAMANA c Indian Academy of Sciences Vol. 83, No. 3 journal of September 204 physics pp. 37 329 Exact travelling wave solutions of the (3+)-dimensional mkdv-zk equation and the (+)-dimensional compound

More information

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation Commun. Theor. Phys. (Beijing, China) 50 (008) pp. 309 314 c Chinese Physical Society Vol. 50, No., August 15, 008 An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson

More information

1-SOLITON SOLUTION OF THE THREE COMPONENT SYSTEM OF WU-ZHANG EQUATIONS

1-SOLITON SOLUTION OF THE THREE COMPONENT SYSTEM OF WU-ZHANG EQUATIONS Hacettepe Journal of Mathematics and Statistics Volume 414) 01) 57 54 1-SOLITON SOLUTION OF THE THREE COMPONENT SYSTEM OF WU-ZHANG EQUATIONS Houria Triki T. Hayat Omar M. Aldossary and Anjan Biswas Received

More information

Exact Soliton Solutions to an Averaged Dispersion-managed Fiber System Equation

Exact Soliton Solutions to an Averaged Dispersion-managed Fiber System Equation Exact Soliton Solutions to an Averaged Dispersion-managed Fiber System Equation Biao Li Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (corresponding adress) and

More information

A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers Fisher Equation with Nonlinear Terms of Any Order

A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers Fisher Equation with Nonlinear Terms of Any Order Commun. Theor. Phys. Beijing China) 46 006) pp. 779 786 c International Academic Publishers Vol. 46 No. 5 November 15 006 A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers

More information

Computational Solutions for the Korteweg devries Equation in Warm Plasma

Computational Solutions for the Korteweg devries Equation in Warm Plasma COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 16(1, 13-18 (1 Computational Solutions for the Korteweg devries Equation in Warm Plasma E.K. El-Shewy*, H.G. Abdelwahed, H.M. Abd-El-Hamid. Theoretical Physics

More information

Kink, singular soliton and periodic solutions to class of nonlinear equations

Kink, singular soliton and periodic solutions to class of nonlinear equations Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 193-9466 Vol. 10 Issue 1 (June 015 pp. 1 - Applications and Applied Mathematics: An International Journal (AAM Kink singular soliton and periodic

More information

ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION

ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION Romanian Reports in Physics, Vol. 64, No. 4, P. 95 9, ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION GHODRAT EBADI, NAZILA YOUSEFZADEH, HOURIA TRIKI, AHMET YILDIRIM,4,

More information

Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics

Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics PRMN c Indian cademy of Sciences Vol. 77, No. 6 journal of December 011 physics pp. 103 109 pplication of the trial equation method for solving some nonlinear evolution equations arising in mathematical

More information

Exact travelling wave solutions of a variety of Boussinesq-like equations

Exact travelling wave solutions of a variety of Boussinesq-like equations University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2 Exact travelling wave solutions of a variety

More information

Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrodinger equation

Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrodinger equation Loughborough University Institutional Repository Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrodinger equation This item was submitted to Loughborough University's Institutional

More information

Bifurcations of Travelling Wave Solutions for the B(m,n) Equation

Bifurcations of Travelling Wave Solutions for the B(m,n) Equation American Journal of Computational Mathematics 4 4 4-8 Published Online March 4 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/.436/jasmi.4.4 Bifurcations of Travelling Wave Solutions for

More information

TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY

TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY Progress In Electromagnetics Research, PIER 96, 1 7, 2009 TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY A. Biswas Center for Research Education in Optical

More information

Simulation for Different Order Solitons in Optical Fibers and the Behaviors of Kink and Antikink Solitons

Simulation for Different Order Solitons in Optical Fibers and the Behaviors of Kink and Antikink Solitons Simulation for Different Order Solitons in Optical Fibers and the Behaviors of Kink and Antikink Solitons MOHAMMAD MEHDI KARKHANEHCHI and MOHSEN OLIAEE Department of Electronics, Faculty of Engineering

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 1, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 1, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 1, 15-22 ISSN: 1927-5307 BRIGHT AND DARK SOLITON SOLUTIONS TO THE OSTROVSKY-BENJAMIN-BONA-MAHONY (OS-BBM) EQUATION MARWAN ALQURAN

More information

Application of fractional sub-equation method to the space-time fractional differential equations

Application of fractional sub-equation method to the space-time fractional differential equations Int. J. Adv. Appl. Math. and Mech. 4(3) (017) 1 6 (ISSN: 347-59) Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics Application of fractional

More information

Double Elliptic Equation Expansion Approach and Novel Solutions of (2+1)-Dimensional Break Soliton Equation

Double Elliptic Equation Expansion Approach and Novel Solutions of (2+1)-Dimensional Break Soliton Equation Commun. Theor. Phys. (Beijing, China) 49 (008) pp. 8 86 c Chinese Physical Society Vol. 49, No., February 5, 008 Double Elliptic Equation Expansion Approach and Novel Solutions of (+)-Dimensional Break

More information

Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method

Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method Zhang Huan-Ping( 张焕萍 ) a) Li Biao( 李彪 ) a) and Chen Yong( 陈勇 ) b) a) Nonlinear Science Center Ningbo

More information

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30] ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.12(2011) No.1,pp.95-99 The Modified Sine-Cosine Method and Its Applications to the Generalized K(n,n) and BBM Equations

More information

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods Abstract and Applied Analysis Volume 2012, Article ID 350287, 7 pages doi:10.1155/2012/350287 Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation

More information

The cosine-function method and the modified extended tanh method. to generalized Zakharov system

The cosine-function method and the modified extended tanh method. to generalized Zakharov system Mathematica Aeterna, Vol. 2, 2012, no. 4, 287-295 The cosine-function method and the modified extended tanh method to generalized Zakharov system Nasir Taghizadeh Department of Mathematics, Faculty of

More information

New Solutions for Some Important Partial Differential Equations

New Solutions for Some Important Partial Differential Equations ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.2,pp.109-117 New Solutions for Some Important Partial Differential Equations Ahmed Hassan Ahmed Ali

More information

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations The Modified ( /-Expansion Method for Nonlinear Evolution Equations Sheng Zhang, Ying-Na Sun, Jin-Mei Ba, and Ling Dong Department of Mathematics, Bohai University, Jinzhou 11000, P. R. China Reprint requests

More information

Traveling Wave Solutions For The Fifth-Order Kdv Equation And The BBM Equation By ( G G

Traveling Wave Solutions For The Fifth-Order Kdv Equation And The BBM Equation By ( G G Traveling Wave Solutions For The Fifth-Order Kdv Equation And The BBM Equation By ( )-expansion method Qinghua Feng Shandong University of Technology School of Science Zhangzhou Road 1, Zibo, 55049 China

More information

Moving fronts for complex Ginzburg-Landau equation with Raman term

Moving fronts for complex Ginzburg-Landau equation with Raman term PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Moving fronts for complex Ginzburg-Lau equation with Raman term Adrian Ankiewicz Nail Akhmediev Optical Sciences Centre, The Australian National University,

More information

A Stable and Convergent Finite Difference Scheme for 2D Incompressible Nonlinear Viscoelastic Fluid Dynamics Problem

A Stable and Convergent Finite Difference Scheme for 2D Incompressible Nonlinear Viscoelastic Fluid Dynamics Problem Applied and Computational Mathematics 2018; (1): 11-18 http://www.sciencepulishinggroup.com/j/acm doi: 10.11648/j.acm.2018001.12 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Stale and Convergent

More information

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods.

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods. ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.14(01) No.,pp.150-159 Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric

More information

A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems

A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems Zehra Pınar a Turgut Öziş b a Namık Kemal University, Faculty of Arts and Science,

More information

The Exact Solitary Wave Solutions for a Family of BBM Equation

The Exact Solitary Wave Solutions for a Family of BBM Equation ISSN 749-3889(print),749-3897(online) International Journal of Nonlinear Science Vol. (2006) No., pp. 58-64 The Exact Solitary Wave Solutions f a Family of BBM Equation Lixia Wang, Jiangbo Zhou, Lihong

More information

EXACT SOLUTIONS OF THE GENERALIZED POCHHAMMER-CHREE EQUATION WITH SIXTH-ORDER DISPERSION

EXACT SOLUTIONS OF THE GENERALIZED POCHHAMMER-CHREE EQUATION WITH SIXTH-ORDER DISPERSION EXACT SOLUTIONS OF THE GENERALIZED POCHHAMMER-CHREE EQUATION WITH SIXTH-ORDER DISPERSION HOURIA TRIKI, ABDELKRIM BENLALLI, ABDUL-MAJID WAZWAZ 2 Radiation Physics Laboratory, Department of Physics, Faculty

More information

The New Exact Solutions of the New Coupled Konno-Oono Equation By Using Extended Simplest Equation Method

The New Exact Solutions of the New Coupled Konno-Oono Equation By Using Extended Simplest Equation Method Applied Mathematical Sciences, Vol. 12, 2018, no. 6, 293-301 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8118 The New Exact Solutions of the New Coupled Konno-Oono Equation By Using

More information

ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION

ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION THERMAL SCIENCE, Year 07, Vol., No. 4, pp. 70-705 70 Introduction ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION by Da-Jiang DING, Di-Qing JIN, and Chao-Qing DAI * School of Sciences,

More information

Davydov Soliton Collisions

Davydov Soliton Collisions Davydov Soliton Collisions Benkui Tan Department of Geophysics Peking University Beijing 100871 People s Republic of China Telephone: 86-10-62755041 email:dqgchw@ibmstone.pku.edu.cn John P. Boyd Dept.

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

1-Soliton Solution of the Coupled Nonlinear Klein-Gordon Equations

1-Soliton Solution of the Coupled Nonlinear Klein-Gordon Equations Studies in Mathematical Sciences Vol. 1, No. 1, 010, pp. 30-37 www.cscanada.org ISSN 193-8444 [Print] ISSN 193-845 [Online] www.cscanada.net 1-Soliton Solution of the Coupled Nonlinear Klein-Gordon Equations

More information

Modulational Instability of the Higher-Order Nonlinear Schrödinger Equation with Fourth-Order Dispersion and Quintic Nonlinear Terms

Modulational Instability of the Higher-Order Nonlinear Schrödinger Equation with Fourth-Order Dispersion and Quintic Nonlinear Terms Modulational Instability of the Higher-Order Nonlinear Schrödinger Equation with Fourth-Order Dispersion and Quintic Nonlinear Terms Woo-Pyo Hong Department of Electronics Engineering, Catholic University

More information