THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2)


 Steven Jackson
 1 years ago
 Views:
Transcription
1 THE WAVE EQUATION () The free wave equation takes the form u := ( t x )u = 0, u : R t R d x R In the literature, the operator := t x is called the D Alembertian on R +d. Later we shall also consider the inhomogeneous or forced equation u = f for some given function f (t, x). Since the equation is second order in t, an initial value problem involves initial conditions on both u and t u, and takes the form { ( t x )u = f in (0, ) t R d x u = g, t u = h on {t = 0} R d, x. where g, h : R d R and f : [0, ) R d R are prescribed functions. In contrast with the heat equation, the free wave equation is reversible in time: if u(t, x) is a solution, then so is ũ(t, x) := u( t, x). d = : D Alembert s formula We begin with the initial value problem in space dimension { u = utt u xx = 0, in (0, ) R, () u(0, x) = g(x), t u(0, x) = h(x), Theorem 0. (D Alembert s formula). If u is a smooth solution to (), then u(t, x) = [g(x + t) + g(x t)] + d = 3: Spherical means x+t x t h(y) dy. In three space dimensions, the solution to the initial value problem { u = 0, in (0, ) R 3, (3) u(0, x) = g(x), t u(0, x) = h(x), is expressed in terms of averages of the initial data over spheres. If Σ R 3 is a surface, write u ds := u ds A(Σ) Σ Σ Theorem 0. (Kirchhoff s formula). If u is a smooth solution to (3), then u(t, x) = t h(y) ds y + g(y), y x ds y + g(y) ds y t = h(y) ds y + g(y), ˆn y ds y + g(y) ds 4πt 4πt 4πt y.
2 THE WAVE EQUATION Proof. Fix x R 3. For t, r > 0, introduce the spherical averages U(t, r; x) := u(t, y) ds y = u(t, y) ds 4πr y G(r; x) := g(y) ds y, H(r, x) := H(y) ds y. Lemma 0.3. U is smooth on [0, ) t [0, ) r and satisfy the EulerDarbouxPoisson equation { Utt U rr r U r = 0 in (0, ) t (0, ) r, U(0, r) = G(r), U t (0, r) = H(r) Further, U can be extended as a smooth even function of r to R. Proof. We have U(t, r) = u(t, y) ds y = B (0) u(t, x + rω) ds ω. The second expression is welldefined and smooth for all r R. Thus if we use it to define U for r 0, then U is smooth for all (t, r) (0, ) t R r, and satisfies U(t, r) = U(t, r), U(t, 0) = lim U(t, r) = u(t, x). r 0 + Differentiating and using the divergence theorem and polar coordinates, we have U r = ω, ( u)(t, x + rω) ds ω = u(t, y), ˆn 4π B (0) 4πr y ds y = u(t, y) dy = r [ ] u(t, y) ds 4πr 4πr y ρ dρ, Bρ(x) and so B r (x) r (r U r ) r = u(t, y) dy = ( t u)(t, y) ds y = U tt. This is the EulerDarbouxPoisson equation. The initial conditions U(0, r) = G(r), U t (0, r) = H(r) are immediate. Now set Ũ(t, r) := ru(t, r), and similarly G := rg, H := rh. Recalling that U(t, ), G, H can be extended as smooth even functions on R, we see that Ũ(t, ), G, and H are odd in r. For t, r > 0, the EulerDarbouxPoisson equation implies that Ũ tt Ũ rr = ru tt ru rr U r = 0. In view of the identity Ũ(t, r) = Ũ(t, r), this equation holds for r 0 as well (at r = 0, we have Ũ tt = 0 U tt = 0). By the D Alembert formula, when 0 r t so Ũ(t, r) = [ G(r + t) + G(r t)] + = [ G(t + r) G(t r)] + U(t, r) = r [ G(t + r) G(t r)] + r 0 r+t r t t+r t r t+r t r H(y) dy H(y) dy, H(y) dy,
3 THE WAVE EQUATION 3 Taking r 0, we conclude that u(t, x) = lim U(t, r; x) = G (t) + H(t) r 0 + = g(y) ds 4πt y + 4πt g(y), y x ds y + h(y) ds y. t 4πt d = by descending from d = 3 Now consider the equation in two space dimensions { u = ( t x )u = 0, in (0, ) R, (4) u(0, x) = g(x), t u(0, x) = h(x), x R Theorem 0.4 (Poisson s formula). Assume that u is a smooth solution. Then u(t, x) = h(y) π t y x dy + g(y), y x + g(y) πt t y x B t (x) Proof. We simply view u as a solution to the wave equation in R R 3 which does not depend on x 3, and apply Kirchoff s formula. B t (x) dy. ũ(t, x, x x, x 3 ) := u(t, x, x ), g(x, x, x 3 ) := g(x, x ), h(x, x, x 3 ) := h(x, x ). Writing x = (x, x, x 3 ), we then have { ( t x )u = 0, in (0, ) R 3, ũ(0, x) = g( x), t ũ(0, x) = h( x), x R 3. For (t, x) (0, ) R, we apply Kirchoff s formula at the point (t, x, 0) (0, ) R 3 to obtain u(t, x) = ũ(t, x, 0) = h(ỹ) ds ỹ + g(ỹ), ỹ x + g(ỹ) ds ỹ, 4πt ỹ x =t 4πt ỹ x =t = h(y) ds ỹ + g(y), y x) + g(y) ds 4πt ỹ x =t 4πt ỹ ỹ x =t = h(y) ds ỹ + g(y), y x) + g(y) ds ỹ, πt πt ỹ x =t, y 3 0 ỹ x =t, y 3 0 where ỹ := (y, y 3 ), x := (x, 0). For the last line we used symmetry to write the integral over the whole sphere ỹ x = t as twice the integral over the upper hemisphere. Parametrizing the upper hemisphere by y 3 = t y x, y x t, we have ds ỹ = + y 3 dy = u(t, x) = π y x t t t y x dy, and therefore h(y) t y x dy + πt y x t g(y), y x + g(y) t y x dy.
4 4 THE WAVE EQUATION Remark (Finite speed of propagation/huygen s principle). From the representation formulae, we see that the solution at a point (t, x) depends only on the values of the initial data in the ball {y : y x t}; moreover, in odd dimensions, only the values on the sphere {y : y x = t} matter. Here is a slightly different point of view. For each (t, x), consider the backwards light cone = {(s, y) : s t, y x = t s}. C (t,x) Then the value of u(t, x) at the tip (t, x) depends only on the values of u on the cone and in the interior region; it is not influenced by what happens in the exterior of the cone. In particular, if we know that the initial data is zero outside some ball x R, then the solution will be zero in the exterior region { x R + t}. The forced wave equation Using Duhamel s principle, we can solve { u = ( t x )u = f in (0, ) t R d x (5) u = 0, t u = 0 on {t = 0} R d x. For simplicity assume f is a smooth function. Theorem 0.5. For each s, let u( ; s) be the solution to { u(, s) = 0, in (s, ) R d x u(s, x; s) = 0, t u(s, x; s) = f (s, x). Then u(t, x) := is smooth on [0, ) R d, and satisfies (5). t 0 u(t, x; s) ds Proof. Straight computation using the Leibniz integral rule. For instance, in d = 3 we use Kirchhoff s formula to write u(t, x) = t 0 s)[ ] f (s, y) ds y ds. 4π(t y x =t s Remark. Finite speed of propagation for the free wave equation implies that the solution u(t, x) depends only on the values of the forcing term in the backward light cone {(s, y) : y x t s}. Energy methods One can in fact deduce many properties of the wave equation without appealing to the explicit representation formula above. The following technique, based on considering the energy of solutions, is very robust. Let Ω R d be an open bounded set with smooth boundary, and let Ω T = (0, T] Ω and Γ T = Ω T \ Ω T denote the usual cylinder and parabolic boundary, respectively. Proposition 0.6. Suppose u is a C (Ω T ) solution to { u = 0 in ΩT u = 0 on [0, T] Ω.
5 THE WAVE EQUATION 5 Define the energy where (6) E(t) := Ω t u(t, x) + x u(t, x) dx = e(u)(t, x) := tu(t, x) + xu(t, x) Ω e(u)(t, x) dx, is the energy density of u. Then E is independent of t; thus, the energy is conserved. Proof. Differentiate in t and apply the divergence theorem together with the zero boundary condition to obtain E (t) t u t u t u x u dx = 0. Ω Corollary 0.7 (Uniqueness of solutions). There is at most one solution u C (Ω T ) to the initialboundary value problem u = f in Ω T u = g on Γ T t u = h on {t = 0} Ω. Proof. If u and u are two solutions, their difference u u solves the free wave equation with zero initial and boundary conditions. By energy conservation and the FTOC, u u is constant, and since u = u when t = 0, equality holds everywhere. Proposition 0.8. Let u be a smooth solution to u = 0 such that u(0, x) = 0 and t u(0, x) = 0 for x R. Then u(t, x) = 0 for {(t, x) : x R t, t 0}. Proof. For t < t, let Σ t,t denote the spacetime region Σ t,t = {(t, x) : x R t, t [t, t ]}. The boundary of this region (see Figure below) consists of the t time slice, the t time slice, and the lateral boundary, i.e. the portion of Σ t,t on the light cone: Σ t,t = {(t, x) : x R t } {(t, x) : x R t } {(t, x) : x = R t, t [t, t ]} = S t S t S cone. Now multiply the equation u = 0 by t u integrate over Σ t,t, using the identity t u u = ( t u u) t u, u, to see that 0 = t u t u t x u dxdt = Σ t,t Σ t,t t( t u) + t x u x ( t u u) dxdt = ( t, x ) (e(u), t u u ) dxdt, Σ t,t
6 6 THE WAVE EQUATION Figure. The boundary of the region Σ t,t. where e(u) is the energy density (6). Applying the divergence theorem to the last integral, we discover 0 = (e(u), t u u), (ˆn t, ˆn x ) ds Σ t,t = e(u)(t, x) dx e(u)(t, x) dx + ˆn t e(u) ˆn x, t u u ds, S t S t S cone where ˆn = (ˆn t, ˆn x ) is the outward unit normal to Σ t,t ; thus ˆn = (, 0) on S t, ˆn = (, 0) on S t, ˆn t > 0 and ˆn t = ˆn x on S cone. The last relations ˆn t > 0, ˆn t = ˆn x are key to obtaining a useful estimate, and follows from the fact that the light cone S cone is adapted to light rays that propagate at unit speed. Indeed, note now that by the CauchySchwarz and arithmetic meangeometric mean inequalities, t u + x u ˆn x, t u x u ˆn x t u x u ˆn t = ˆn t e(u). Therefore the integral ˆn t e(u) ˆn x, t u x u ds S cone is nonnegative, and we derive e(u)(t, x) dx = x R t (7) e(u)(t, x) dx + ˆn t e(u) ˆn x, t u x u ds x R t S cone e(u) dx. x R t The integral over the truncated light cone S cone can be interpreted as the energy flux through the light cone x = R t between times t and t ; this flux is nonnegative provided that ˆn t / ˆn x, i.e. energy can t propagate faster than speed.. Taking t = 0 in this inequality and recalling that e(u) is nonnegative, we have 0 e(u) dx 0 x R t for all 0 t R; therefore, e(u)(t, x) = 0 in the solid cone Σ 0,R := {(t, x) : x R t, t [0, R]}. As u(0, x) = 0 when x R, we integrate t u forward in time to conclude that u(t, x) = 0 in Σ 0,R as well.
7 THE WAVE EQUATION 7 Question. How would you modify this proof for the wave equation t u c x u = 0, where c > 0 is a constant?
where F denoting the force acting on V through V, ν is the unit outnormal on V. Newton s law says (assume the mass is 1) that
Chapter 5 The Wave Equation In this chapter we investigate the wave equation 5.) u tt u = and the nonhomogeneous wave equation 5.) u tt u = fx, t) subject to appropriate initial and boundary conditions.
More informationPartial Differential Equations
Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,
More informationMATH 425, FINAL EXAM SOLUTIONS
MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u
More informationMATH COURSE NOTES  CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck
MATH 8.52 COURSE NOTES  CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations
More informationWave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space:
Nov. 07 Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: u u t t u = 0, R n 0, ) ; u x, 0) = g x), u t x, 0) = h x). ) It
More informationMATH COURSE NOTES  CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck
MATH 8.52 COURSE NOTES  CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations
More informationLecture No 1 Introduction to Diffusion equations The heat equat
Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and
More informationWave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space:
Math 57 Fall 009 Lecture 7 Sep. 8, 009) Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: u u t t u = 0, R n 0, ) ; u x,
More informationLecture 7: The wave equation: higher dimensional case
Lecture 7: The wave equation: higher dimensional case Some auxiliary facts The co area formula. Let be a bounded domain and be a function of class. Denote by : the level set of. Let be any integrable function.
More informationChapter 3 Second Order Linear Equations
Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 20152014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Secondorder partial differential equations for an known function u(x,
More informationA review: The Laplacian and the d Alembertian. j=1
Chapter One A review: The Laplacian and the d Alembertian 1.1 THE LAPLACIAN One of the main goals of this course is to understand well the solution of wave equation both in Euclidean space and on manifolds
More informationPARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007
PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.
More informationLaplace s Equation. Chapter Mean Value Formulas
Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic
More informationu xx + u yy = 0. (5.1)
Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The nonhomogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function
More informationẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.
4 Periodic Solutions We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phasespace. Autonomous twodimensional systems with phasespace R
More informationApplied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.
Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R
More information1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =
Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values
More informationx + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the
1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle
More informationFinal Exam. Monday March 19, 3:305:30pm MAT 21D, Temple, Winter 2018
Name: Student ID#: Section: Final Exam Monday March 19, 3:305:30pm MAT 21D, Temple, Winter 2018 Show your work on every problem. orrect answers with no supporting work will not receive full credit. Be
More informationSections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.
MTH 34 Review for Exam 4 ections 16.116.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line
More informationClass Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry
MATH 8.52 COURSE NOTES  CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready
More informationSOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am12:00 (3 hours)
SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am12:00 (3 hours) 1) For each of (a)(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please
More informationMath The Laplacian. 1 Green s Identities, Fundamental Solution
Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external
More informationPractice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.
1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line
More informationMATH 126 FINAL EXAM. Name:
MATH 126 FINAL EXAM Name: Exam policies: Closed book, closed notes, no external resources, individual work. Please write your name on the exam and on each page you detach. Unless stated otherwise, you
More informationMTH 847: PDE I (Fall 2017) Exam 2,
MTH 847: PDE I (Fall 2017) Exam 2, 2017.12.8 Name: Standard exam rules apply: You are not allowed to give or receive help from other students. All electronic devices must be turned off for the duration
More informationf(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da
MAH 55 Flux integrals Fall 16 1. Review 1.1. Surface integrals. Let be a surface in R. Let f : R be a function defined on. efine f ds = f(p i Area( i lim mesh(p as a limit of Riemann sums over sampledpartitions.
More informationG G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv
1. Matching. Fill in the appropriate letter. 1. ds for a surface z = g(x, y) A. r u r v du dv 2. ds for a surface r(u, v) B. r u r v du dv 3. ds for any surface C. G x G z, G y G z, 1 4. Unit normal N
More informationMAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.
MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant
More informationMidterm Exam, Thursday, October 27
MATH 18.152  MIDTERM EXAM 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Midterm Exam, Thursday, October 27 Answer questions I  V below. Each question is worth 20 points, for a total of
More information(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.
MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.
More informationPartial Differential Equations for Engineering Math 312, Fall 2012
Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant
More informationAn introduction to Mathematical Theory of Control
An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018
More informationNonlinear stabilization via a linear observability
via a linear observability Kaïs Ammari Department of Mathematics University of Monastir Joint work with Fathia AlabauBoussouira Collocated feedback stabilization Outline 1 Introduction and main result
More informationPARTIAL DIFFERENTIAL EQUATIONS MIDTERM
PARTIAL DIFFERENTIAL EQUATIONS MIDTERM ERIN PEARSE. For b =,,..., ), find the explicit fundamental solution to the heat equation u + b u u t = 0 in R n 0, ). ) Letting G be what you find, show u 0 x) =
More informationMathematics of Physics and Engineering II: Homework problems
Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates
More informationMath 342 Partial Differential Equations «Viktor Grigoryan
Math 342 Partial ifferential Equations «Viktor Grigoryan 3 Green s first identity Having studied Laplace s equation in regions with simple geometry, we now start developing some tools, which will lead
More informationCONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY SOLUTIONS FOR 2 t U c 2 U = 0
Electronic Journal of Differential Equations, Vol. 206 (206), No. 266, pp. 6. ISSN: 072669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu CONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY
More informationPreliminary Exam 2018 Solutions to Morning Exam
Preliminary Exam 28 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem. Consider the series n 2 (n log n) and n 2 (n(log n)2 ). Show that one converges and one diverges
More informationMATH H53 : Final exam
MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out
More informationThe wave equation. Intoduction to PDE. 1 The Wave Equation in one dimension. 2 u. v = f(ξ 1 ) + g(ξ 2 )
The wave equation Intoduction to PDE The Wave Equation in one dimension The equation is u t u c =. () x Setting ξ = x + ct, ξ = x ct and looking at the function v(ξ, ξ ) = u ( ξ +ξ, ξ ξ ) c, we see that
More informationControllability of the linear 1D wave equation with inner moving for
Controllability of the linear D wave equation with inner moving forces ARNAUD MÜNCH Université Blaise Pascal  ClermontFerrand  France Toulouse, May 7, 4 joint work with CARLOS CASTRO (Madrid) and NICOLAE
More informationStarting from Heat Equation
Department of Applied Mathematics National Chiao Tung University HsinChu 30010, TAIWAN 20th August 2009 Analytical Theory of Heat The differential equations of the propagation of heat express the most
More informationMAC Calculus II Spring Homework #6 Some Solutions.
MAC 231215931Calculus II Spring 23 Homework #6 Some Solutions. 1. Find the centroid of the region bounded by the curves y = 2x 2 and y = 1 2x 2. Solution. It is obvious, by inspection, that the centroid
More information18 Green s function for the Poisson equation
8 Green s function for the Poisson equation Now we have some experience working with Green s functions in dimension, therefore, we are ready to see how Green s functions can be obtained in dimensions 2
More informationMATH 332: Vector Analysis Summer 2005 Homework
MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,
More informationIntroduction to Partial Differential Equations. Jason Murphy
Introduction to Partial Differential Equations Jason Murphy May 13, 2017 Contents 1 Introduction 4 1.1 Derivation of some common PDE................ 4 2 Review of Topology and Calculus 7 2.1 Properties
More informationMath 53 Spring 2018 Practice Midterm 2
Math 53 Spring 218 Practice Midterm 2 Nikhil Srivastava 8 minutes, closed book, closed notes 1. alculate 1 y 2 (x 2 + y 2 ) 218 dxdy Solution. Since the type 2 region D = { y 1, x 1 y 2 } is a quarter
More informationA proof for the full Fourier series on [ π, π] is given here.
niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at
More information9 More on the 1D Heat Equation
9 More on the D Heat Equation 9. Heat equation on the line with sources: Duhamel s principle Theorem: Consider the Cauchy problem = D 2 u + F (x, t), on x t x 2 u(x, ) = f(x) for x < () where f
More informationMath 220A  Fall 2002 Homework 5 Solutions
Math 0A  Fall 00 Homework 5 Solutions. Consider the initialvalue problem for the hyperbolic equation u tt + u xt 0u xx 0 < x 0 u t (x, 0) ψ(x). Use energy methods to show that the domain of dependence
More informationOne side of each sheet is blank and may be used as scratch paper.
Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever
More informationMULTIVARIABLE CALCULUS
MULTIVARIABLE CALCULUS JOHN QUIGG Contents 13.1 ThreeDimensional Coordinate Systems 2 13.2 Vectors 3 13.3 The Dot Product 5 13.4 The Cross Product 6 13.5 Equations of Lines and Planes 7 13.6 Cylinders
More informationLecture Notes Math 632, PDE Spring Semester Sigmund Selberg Visiting Assistant Professor Johns Hopkins University
Lecture Notes Math 63, PDE Spring Semester 1 Sigmund Selberg Visiting Assistant Professor Johns Hopkins University CHAPTER 1 The basics We consider the equation 1.1. The wave equation on R 1+n u =, where
More informationClass Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES  CLASS MEETING # 1 18.152 Introduction to PDEs, Spring 2017 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u =
More informationMathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.
Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u
More informatione x3 dx dy. 0 y x 2, 0 x 1.
Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=
More informationExercises for Multivariable Differential Calculus XM521
This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done
More informationMATH 52 FINAL EXAM SOLUTIONS
MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an xsimple region. R = {(x, y) y, x y }
More informationNonlinear Wave Equations
Nonlinear Wave Equations Notes taken from lectures of Professor Monica Visan Yunfeng Zhang 04 Contents Fundamental Solutions Symmetries and Conservation Laws 7 3 The EnergyFlux Identity 9 4 Morawetz Identity
More informationMath 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C
Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line
More informationIntroduction to Algebraic and Geometric Topology Week 14
Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart
More informationA connection between Lorentzian distance and mechanical least action
A connection between Lorentzian distance and mechanical least action Ettore Minguzzi Università Degli Studi Di Firenze Noncommutative structures and nonrelativistic (super)symmetries, LMPT Tours, June
More information2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1
Lectures  Week 11 General First Order ODEs & Numerical Methods for IVPs In general, nonlinear problems are much more difficult to solve than linear ones. Unfortunately many phenomena exhibit nonlinear
More informationLEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.
LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is
More informationu( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)
M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation
More informationMATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.
MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c
More informationFundamental Solution
Fundamental Solution onsider the following generic equation: Lu(X) = f(x). (1) Here X = (r, t) is the spacetime coordinate (if either space or time coordinate is absent, then X t, or X r, respectively);
More informationMATH 220: MIDTERM OCTOBER 29, 2015
MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems 3 and one of Problems 4 and 5. Write your solutions to problems and
More information1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0
1. Classification of 1manifolds Theorem 1.1. Let M be a connected 1 manifold. Then M is diffeomorphic either to [0, 1], [0, 1), (0, 1), or S 1. We know that none of these four manifolds are not diffeomorphic
More informationDifferential equations, comprehensive exam topics and sample questions
Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters 5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions
More informationVector Calculus handout
Vector Calculus handout The Fundamental Theorem of Line Integrals Theorem 1 (The Fundamental Theorem of Line Integrals). Let C be a smooth curve given by a vector function r(t), where a t b, and let f
More informationEnergy method for wave equations
Energy method for wave equations Willie Wong Based on commit 5dfb7e5 of 20171106 13:29 Abstract We give an elementary discussion of the energy method (and particularly the vector field method) in the
More informationJim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 2121 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
More informationFOURIER METHODS AND DISTRIBUTIONS: SOLUTIONS
Centre for Mathematical Sciences Mathematics, Faculty of Science FOURIER METHODS AND DISTRIBUTIONS: SOLUTIONS. We make the Ansatz u(x, y) = ϕ(x)ψ(y) and look for a solution which satisfies the boundary
More information1. Statement of the problem.
218 Нелинейные граничные задачи 18, 218229 (2008 c 2008. M. A. Borodin THE STEFAN PROBLEM The Stefan problem in its classical statement is a mathematical model of the process of propagation of heat in
More informationNONLOCAL DIFFUSION EQUATIONS
NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Nonlocal diffusion. The function J. Let J : R N R, nonnegative,
More informationSOME PROBLEMS YOU SHOULD BE ABLE TO DO
OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples
More informationLine Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12
Line Integrals (4A Line Integral Path Independence Copyright (c 2012 Young W. Lim. Permission is granted to copy, distriute and/or modify this document under the terms of the GNU Free Documentation License,
More informationLecture 13  Wednesday April 29th
Lecture 13  Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131
More informationSalmon: Lectures on partial differential equations
6. The wave equation Of the 3 basic equations derived in the previous section, we have already discussed the heat equation, (1) θ t = κθ xx + Q( x,t). In this section we discuss the wave equation, () θ
More informationPartial differential equation for temperature u(x, t) in a heat conducting insulated rod along the xaxis is given by the Heat equation:
Chapter 7 Heat Equation Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the xaxis is given by the Heat equation: u t = ku x x, x, t > (7.1) Here k is a constant
More informationMATH 263 ASSIGNMENT 9 SOLUTIONS. F dv =
MAH AIGNMEN 9 OLUION ) Let F = (x yz)î + (y + xz)ĵ + (z + xy)ˆk and let be the portion of the cylinder x + y = that lies inside the sphere x + y + z = 4 be the portion of the sphere x + y + z = 4 that
More informationStability of an abstract wave equation with delay and a Kelvin Voigt damping
Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMVUVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability
More informationCourse 212: Academic Year Section 1: Metric Spaces
Course 212: Academic Year 19912 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........
More informationGREEN S IDENTITIES AND GREEN S FUNCTIONS
GREEN S IENTITIES AN GREEN S FUNCTIONS Green s first identity First, recall the following theorem. Theorem: (ivergence Theorem) Let be a bounded solid region with a piecewise C 1 boundary surface. Let
More informationPrint Your Name: Your Section:
Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,
More informationCHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.
1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function
More informationMath Boot Camp: Integration
Math Boot Camp: Integration You can skip this boot camp if you can answer the following questions: What is the line integral of 1 r 2 r along a radial path starting from r = and ending at r = R? Prove
More informationComplex Analysis MATH 6300 Fall 2013 Homework 4
Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,
More informationMultiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015
Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction
More information4 Divergence theorem and its consequences
Tel Aviv University, 205/6 AnalysisIV 65 4 Divergence theorem and its consequences 4a Divergence and flux................. 65 4b Piecewise smooth case............... 67 4c Divergence of gradient: Laplacian........
More information6.14 Review exercises for Chapter 6
6.4 Review exercises for Chapter 6 699 6.4 Review exercises for Chapter 6 In Exercise 6., B is an n n matrix and ϕ and ψ are both  forms on R 3 ; v and w are vectors 6. Which of the following are numbers?
More informationES.182A Topic 44 Notes Jeremy Orloff
E.182A Topic 44 Notes Jeremy Orloff 44 urface integrals and flux Note: Much of these notes are taken directly from the upplementary Notes V8, V9 by Arthur Mattuck. urface integrals are another natural
More informationClass Meeting # 13: Geometric Energy Estimates
MATH 18.15 COURSE NOTES  CLASS MEETING # 13 18.15 Introduction to PDEs, Fall 011 Professor: Jared Speck Class Meeting # 13: Geometric Energy Estimates 1. m, the energymomentum tensor, and compatible
More informationMATH 6337: Homework 8 Solutions
6.1. MATH 6337: Homework 8 Solutions (a) Let be a measurable subset of 2 such that for almost every x, {y : (x, y) } has measure zero. Show that has measure zero and that for almost every y, {x : (x,
More informationGauss s Law & Potential
Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to
More information1 The Derivative and Differrentiability
1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped
More informationMATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS
MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,
More information