13 Lecture 13 L Hospital s Rule and Taylor s Theorem

Size: px
Start display at page:

Download "13 Lecture 13 L Hospital s Rule and Taylor s Theorem"

Transcription

1 3 Lecture 3 L Hospital s Rule and Taylor s Theorem 3 L Hospital s Rule Theorem 3 L Hospital s Rule) Let a R or a = and functions f,g : a,b) R satisfy the following properties ) f,g are differentiable on a,b); ) lim f) g) = or lim g) = + ; a+ a+ a+ 3) g ) for all a,b); f 4) there eists lim ) a+ g ) =: L R f) Then there eists lim a+ g) = L Proof We will only give a proof for the case a R and lim f) g) = For the general a+ a+ case see eg [, p4-44] We first etend the functions f and g to the interval [a,b), setting fa) = ga) := According to assumption ), f and g are continuous at the point a Since f,g are differentiable on a,b), they are continuous also at each point of a,b), by Theorem Thus, f,g are continuous on [a,b) Net, we note that g) for all a,b) Indeed, if g ) = for some a,b), then applying Rolle s theorem see Theorem 3) to the function g : [a, ] R, we obtain that there eists c a, ) such that g c) =, that is impossible by assumption 3) f) g) Net, to show that lim a+ Theorem 77 and assumption 4), = L, we are going to use Theorem 77 Let ε > be fied By δ > a,a+δ) : f ) g ) L < ε Applying the Cauchy theorem see Theorem 5) to the functions f,g : [a,] R, we have for all a,a+δ) f) g) L = f) fa) g) ga) L = f c) g c) L < ε, where c a,) a,a+δ) Remark 3 A similar statement is true for the left-sided limit as goes to b Eample 3 Using L Hospital s Rule, we compute the following limits: sin sin) a) lim ) = ; b) lim ln ln c) lim cos) We compute lim cos ln) ) e lncos lncos lncos lncos) ) ) = lim = ; sin cos 5 = lim sin cos = lim sin lim cos =

2 Thus, by the continuity of the function f) = e, R, we have lim e lncos = e lim lncos = e = e See [, p45-48] for more eamples of the application of L Hospital s Rule Eercise 3 Using L Hospital s Rule, show that sin = ; c) lim ln)α e) β e e cos ln+) a) lim = ; b) lim d) lim 4 π arctan)α ln = α π g) lim, α R; e) lim + ln+) ) = α β e, where α,β are some real numbers; = e ; f) lim = ; ln ε = for all ε > ; h) lim + ε ln = for all ε > ; i) lim + ln+)) = Eercise 3 Compute the following limits: a) lim ; b) lim ; c) lim π arctan)) ; d) lim ln+) e) lim e e sin sin sin + ) ; f) lim 3 Higher Order Derivatives sin + ) ; g) lim +) e ; h) lim ln+) ln ) + ; ln ln) We assume that a function f : a,b) R is differentiable on a,b) We denote its derivative f by g, that is g) = f ), a,b) Definition 3 If there eists a derivative g ) of the function g at a point, then this derivative is called the second derivative of f at the point and is denoted by f ) or d f d ) Let the n-th derivative f n) be defined on a,b) Then the n+)-th derivative of f at a,b) is defined as f n+) ) = dfn) ) d ), if it eists Eample 3 Let a > Then for each R we obtain a ) = a lna, a ) = a ln a, a ) = a ln 3 a,, a ) n) = a ln n a In particular, e ) n) = e, R Eercise 33 Let α R Show that α ) n = αα )α )α n+) α n for all > and n N Eample 33 Let α R Then +) α ) n) = αα )α )α n + ) + ) α n for all > and n N Indeed, +) α ) = α+) α, +) α ) = α+) α ) = αα )+) α and so on Eercise 34 Show that ln+)) n) = )n n )! +) n for all > and n N Eample 34 For each R sin) n) = sin +n π ) and cos) n) = cos +n π ) Indeed, sin) = cos = sin + π ), sin) = cos) = sin = sin + π ), sin) = sin) = cos = sin +3 π ) and so on The same computation for cos) n) Eercise 35 Compute the n-th derivative of the following functions: a) f) =, R; b) f) = +, > ; c) f) = arctan, R Theorem 3 Let functions f,g : a,b) R have n-th derivatives on a,b) Then the following equalities are true 5

3 ) for all k {,,n} f n k) ) k) = f k) ) n k) = f n), where f ) = f; ) for all c R cf) n) = cf n) ; 3) f +g) n) = f n) +g n) Theorem 33 Leibniz Formula) For a number n N let g,f : a,b) R have n-th derivatives on a,b) Then f g has the n-th derivative on a,b) and where C k n = n! n k)! f g) n) = Cnf k k) g n k), Eercise 36 Compute the following derivatives: a) e ) n), R; b) 3 sin) n), R; c) n ln) n), > 33 Taylor s Formula 33 Taylor s Formula for a Polynomial Let n N and {a,a,a,,a n } R For any point R a polynomial can be written in the form k= P) = a +a +a a n n, R, P) = b +b )+b ) b n ) n, R, ) where{b,b,b,,b n }aresomerealnumbers, whichcanbecomputedbythefollowingway Inserting = into ), we obtain b = P ) Net we compute P So, P ) = b +b )+3b 3 ) nb n ) n, R ) Inserting = into ), we get b = P ) Net, we compute the second derivative of P P ) = b +3 b 3 )nn )b n ) n, R 3) Inserting = into 3), we obtain b = P ) Similarly, we obtain Thus, for each R b k = Pk) ), k P) = P )+ P )! )+ P )! ) Pn) ) ) n 4) n! We see that any polynomial can be completely defined only by its value and values of its derivatives at a point Formula 4) does not hold if P is not a polynomial, but it turns out that values of a function are close to the right hand side of 4) if is close to 53

4 33 Taylor s Formula with Peano Remainder Term Let f,g : A R be some functions and be a limit point of A If f) g),, then we will write f) = og)),, or f = og), Eercise 37 Show that a) = o), ; b) 3 = o ), + ; c) ln = o ), + ; d) sin = o), Theorem 34 Let n N and let a function f : a,b) R and a point a,b) satisfy the following conditions: ) there eists f n ) ) for all a,b); ) there eists f n) ) Then f) = k= The term o ) n ) is called the Peano remainder term Proof We recall that! = and set R n ) := f) f k) ) ) k +o ) n ), 5) k= f k) ) ) k, a,b) According to assumptions ) and ), there eists R n ) ) for all a,b) and R n) ) Moreover it is easy to see that R n ) = R n ) = R n ) = = R n) n ) = Assuming > and applying the Lagrange theorem see Theorem 4), we have R n ) ) n = R n ) R n ) ) n = R nc ) ) ) n = R nc ) R n ) ) n = R nc )c ) ) n R nc ) ) n = R nc ) R n ) ) n = R nc 3 )c ) ) n R n n ) c n ) R n n ) ) R n) n ) =, +, where < c n < c n < < c < c < Moreover c n as + One can similarly obtain that Rn) ), n Consequently, by Theorem 78 Eample 35 For every n N R n ) = o ) n ),, e = ++! n n! +on ), The formula follows from Theorem 34 applying to f) = e, R, and the fact that f k) ) = e = see Eample 3) 54

5 Eample 36 For all n N ln+) = )n n n +on ), The formula follows from Theorem 34 applying to f) = ln + ), >, and the fact that f k) ) = )k k )! +) k = ) k k )! see Eample 34) Eample 37 For each α R and n N +) α = +α+ αα )! αα )α n+)n n! +o n ), The formula follows from Theorem 34 applying to f) = + ) α, >, and the fact that f k) ) = αα )α )α k+)+) α k = αα )α )α k+) see Eample 33) Eercise 38 Show that for every n N {} sin = 3 3! + 5 n+ + )n 5! n+)! +on+ ),, cos =! + 4 n + )n 4! n)! +on+ ), Eercise 39 Show that for every n N {} sinh = e e cosh = e +e = + 3 3! + 5 n+ 5! n+)! +on+ ),, = +! + 4 n 4! n)! +on+ ), Eercise 3 Use Taylor s formula to compute the limits: e a) lim ; b) lim ; c) lim sin sin e ln++ ) ln ) cose ; d) lim ) cose ) 3 55

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique.

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique. MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #4 Part I: Cauchy Sequence Definition (Cauchy Sequence): A sequence of real number { n } is Cauchy if and only if for any ε >

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

MAT137 Calculus! Lecture 45

MAT137 Calculus! Lecture 45 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 45 Today: Taylor Polynomials Taylor Series Next: Taylor Series Power Series Definition (Power Series) A power series is a series of the form

More information

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5 Differentiation Table of contents. Derivatives................................................. 2.. Definition................................................ 2.2. Arithmetics...............................................

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

MAT137 Calculus! Lecture 48

MAT137 Calculus! Lecture 48 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 48 Today: Taylor Series Applications Next: Final Exams Important Taylor Series and their Radii of Convergence 1 1 x = e x = n=0 n=0 x n n!

More information

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. f n (0)x n Recall from

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity Math 0 - Calculus f. Business and Management - Worksheet 1 Solutions for Worksheet 1 - Limits as approaches infinity Simple Limits Eercise 1: Compute the following its: 1a : + 4 1b : 5 + 8 1c : 5 + 8 Solution

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Chapter 3 Differentiation. Historical notes. Some history. LC Abueg: mathematical economics. chapter 3: differentiation 1

Chapter 3 Differentiation. Historical notes. Some history. LC Abueg: mathematical economics. chapter 3: differentiation 1 Chapter 3 Differentiation Lectures in Mathematical Economics L Cagandahan Abueg De La Salle University School of Economics Historical notes Some history Prior to the seventeenth century [1600s], a curve

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

Problem Set 9 Solutions

Problem Set 9 Solutions 8.4 Problem Set 9 Solutions Total: 4 points Problem : Integrate (a) (b) d. ( 4 + 4)( 4 + 5) d 4. Solution (4 points) (a) We use the method of partial fractions to write A B (C + D) = + +. ( ) ( 4 + 5)

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Numerical Verification of the Lagrange s Mean Value Theorem using MATLAB 1*

Numerical Verification of the Lagrange s Mean Value Theorem using MATLAB 1* VOL 4, NO, October 4 ISSN 5-77 -4 All rights reserved http://wwwejournalofscienceorg Numerical Verification of the Lagrange s Mean Value Theorem using MATLAB * Carlos Figueroa, Carlos Robles C, Raul Riera

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Economics 205 Exercises

Economics 205 Exercises Economics 05 Eercises Prof. Watson, Fall 006 (Includes eaminations through Fall 003) Part 1: Basic Analysis 1. Using ε and δ, write in formal terms the meaning of lim a f() = c, where f : R R.. Write the

More information

TAYLOR SERIES [SST 8.8]

TAYLOR SERIES [SST 8.8] TAYLOR SERIES [SST 8.8] TAYLOR SERIES: Every function f C (c R, c + R) has a unique Taylor series about x = c of the form: f (k) (c) f(x) = (x c) k = f(c) + f (c) (x c) + f (c) (x c) 2 + f (c) (x c) 3

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Math Midterm Solutions

Math Midterm Solutions Math 50 - Midterm Solutions November 4, 009. a) If f ) > 0 for all in a, b), then the graph of f is concave upward on a, b). If f ) < 0 for all in a, b), then the graph of f is downward on a, b). This

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: swang@mun.ca Course

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv University, 2014/15 Analysis-III,IV 71 4 Inverse function theorem 4a What is the problem................ 71 4b Simple observations before the theorem..... 72 4c The theorem.....................

More information

Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule

Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule 5. Rolle s Theorem In the following problems (a) Verify that the three conditions of Rolle s theorem have been met. (b) Find all values z that

More information

Written Assignment #1 - SOLUTIONS

Written Assignment #1 - SOLUTIONS Written Assignment #1 - SOLUTIONS Question 1. Use the definitions of continuity and differentiability to prove that the function { cos(1/) if 0 f() = 0 if = 0 is continuous at 0 but not differentiable

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade (MCV4UE) - AP Calculus Etended Page o A unction o n-variales is a real-valued unction... n whose domain D is a set o n-tuples... n in which... n is deined. The range o is the set o all values...

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

MA2223 Tutorial solutions Part 1. Metric spaces

MA2223 Tutorial solutions Part 1. Metric spaces MA2223 Tutorial solutions Part 1. Metric spaces T1 1. Show that the function d(,y) = y defines a metric on R. The given function is symmetric and non-negative with d(,y) = 0 if and only if = y. It remains

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 36 Application of MVT, Darbou Theorem, L Hospital Rule (Refer Slide

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13 Taylor Series Math114 Department of Mathematics, University of Kentucky March 1, 2017 Math114 Lecture 18 1/ 13 Given a function, can we find a power series representation? Math114 Lecture 18 2/ 13 Given

More information

MA 1: PROBLEM SET NO. 7 SOLUTIONS

MA 1: PROBLEM SET NO. 7 SOLUTIONS MA 1: PROBLEM SET NO. 7 SOLUTIONS 1. (1) Obtain the number r = 15 3 as an approimation to the nonzero root of the equation 2 = sin() by using the cubic Taylor polynomial approimation to sin(). Proof. The

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

HW #1 SOLUTIONS. g(x) sin 1 x

HW #1 SOLUTIONS. g(x) sin 1 x HW #1 SOLUTIONS 1. Let f : [a, b] R and let v : I R, where I is an interval containing f([a, b]). Suppose that f is continuous at [a, b]. Suppose that lim s f() v(s) = v(f()). Using the ɛ δ definition

More information

1 Continuity and Limits of Functions

1 Continuity and Limits of Functions Week 4 Summary This week, we will move on from our discussion of sequences and series to functions. Even though sequences and functions seem to be very different things, they very similar. In fact, we

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Chapter 10: Limit of a Function. SSMTH1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 10: Limit of a Function. SSMTH1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 10: Limit of a Function SSMTH1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 10: Limit of a Function Lecture 10.1: Limit of a Function

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Fixed Point Theorem and Sequences in One or Two Dimensions

Fixed Point Theorem and Sequences in One or Two Dimensions Fied Point Theorem and Sequences in One or Two Dimensions Dr. Wei-Chi Yang Let us consider a recursive sequence of n+ = n + sin n and the initial value can be an real number. Then we would like to ask

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c)

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c) Maimum and Minimum Values Etreme Value Theorem If f () is continuous on the closed interval [a, b], then f () achieves both a global (absolute) maimum and global minimum at some numbers c and d in [a,

More information

Differential Calculus

Differential Calculus Differential Calculus. Compute the derivatives of the following functions a() = 4 3 7 + 4 + 5 b() = 3 + + c() = 3 + d() = sin cos e() = sin f() = log g() = tan h() = 3 6e 5 4 i() = + tan 3 j() = e k()

More information

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx Lecture 3 We give a couple examples of using L Hospital s Rule: Example 3.. [ (a) Compute x 0 sin(x) x. To put this into a form for L Hospital s Rule we first put it over a common denominator [ x 0 sin(x)

More information

MATH20101 Real Analysis, Exam Solutions and Feedback. 2013\14

MATH20101 Real Analysis, Exam Solutions and Feedback. 2013\14 MATH200 Real Analysis, Exam Solutions and Feedback. 203\4 A. i. Prove by verifying the appropriate definition that ( 2x 3 + x 2 + 5 ) = 7. x 2 ii. By using the Rules for its evaluate a) b) x 2 x + x 2

More information

Solutions to Homework 8, Mathematics 1

Solutions to Homework 8, Mathematics 1 Solutions to Homework 8, Mathematics Problem [6 points]: Do the detailed graphing definition domain, intersections with the aes, its at ±, monotonicity, local and global etrema, conveity/concavity, inflection

More information

Functions If (x, y 1 ), (x, y 2 ) S, then y 1 = y 2

Functions If (x, y 1 ), (x, y 2 ) S, then y 1 = y 2 Functions 4-3-2008 Definition. A function f from a set X to a set Y is a subset S of the product X Y such that if (, y 1 ), (, y 2 ) S, then y 1 = y 2. Instead of writing (, y) S, you usually write f()

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

LIMITS OF COMPOSITE FUNCTIONS. Milosav M. Marjanović and Zoran Kadelburg

LIMITS OF COMPOSITE FUNCTIONS. Milosav M. Marjanović and Zoran Kadelburg THE TEACHING OF MATHEMATICS 29, Vol. XII, 1, pp. 1 6 LIMITS OF COMPOSITE FUNCTIONS Milosav M. Marjanović and Zoran Kadelburg Abstract. Finding gf)), first the following two its i) f) = y ii) gy) = α are

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1 9-75 SECTION 9.8.. Applications of Taylor Series 677 and f 0) miles/min 3. Predict the location of the plane at time t min. 5. Suppose that an astronaut is at 0, 0) and the moon is represented by a circle

More information

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class.

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class. Math 1431 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus Visit CASA regularly for announcements and course material! If you e-mail me, please mention your course (1431) in the subject

More information

CHAPTER 10, INFINITE SERIES Infinite Sequence

CHAPTER 10, INFINITE SERIES Infinite Sequence CHAPTER INFINITE SERIES Definition. = f(n).. Infinite Sequence a a a 3 { } n= { } { }. () { n } { n } { 3n 7} 3 {sin nπ } {3+( )n }. () { 3 5 7 3 7 3 } (3) {3 4 5 9 6 5 3 5 } (4) Fibonacii sequemce F =F

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA

NATIONAL OPEN UNIVERSITY OF NIGERIA NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH 341 COURSE TITLE: REAL ANAYSIS 1 Course Title Course Code MTH 341 REAL ANAYSIS Course Writer: Dr Bankole Abiola. Course

More information

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD!

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Handout Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Review:. The Substitution Rule Indefinite f (g()) g ()d =

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

10.4: WORKING WITH TAYLOR SERIES

10.4: WORKING WITH TAYLOR SERIES 04: WORKING WITH TAYLOR SERIES Contributed by OpenSta Mathematics at OpenSta CNX In the preceding section we defined Taylor series and showed how to find the Taylor series for several common functions

More information

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

Integration: Using the chain rule in reverse

Integration: Using the chain rule in reverse Mathematics Learning Centre Integration: Using the chain rule in reverse Mary Barnes c 999 University of Syney Mathematics Learning Centre, University of Syney Using the Chain Rule in Reverse Recall that

More information

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2.

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2. ) Solve the following inequalities.) ++.) 4 > 3.3) Calculus-Lab { + > + 5 + < 3 +. ) Graph the functions f() = 3, g() = + +, h() = 3 cos( ), r() = 3 +. 3) Find the domain of the following functions 3.)

More information

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w.

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w. Selected problems from the tetbook J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I Problems in Mathematics I I. LINEAR ALGEBRA I.. Vectors, vector spaces Given the vectors u, v, w and real numbers

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

ECM Calculus and Geometry. Revision Notes

ECM Calculus and Geometry. Revision Notes ECM1702 - Calculus and Geometry Revision Notes Joshua Byrne Autumn 2011 Contents 1 The Real Numbers 1 1.1 Notation.................................................. 1 1.2 Set Notation...............................................

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Additional Material On Recursive Sequences

Additional Material On Recursive Sequences Penn State Altoona MATH 141 Additional Material On Recursive Sequences 1. Graphical Analsis Cobweb Diagrams Consider a generic recursive sequence { an+1 = f(a n ), n = 1,, 3,..., = Given initial value.

More information

Midterm 1 Solutions. Monday, 10/24/2011

Midterm 1 Solutions. Monday, 10/24/2011 Midterm Solutions Monday, 0/24/20. (0 points) Consider the function y = f() = e + 2e. (a) (2 points) What is the domain of f? Epress your answer using interval notation. Solution: We must eclude the possibility

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

MATH 1A, Complete Lecture Notes. Fedor Duzhin

MATH 1A, Complete Lecture Notes. Fedor Duzhin MATH 1A, Complete Lecture Notes Fedor Duzhin 2007 Contents I Limit 6 1 Sets and Functions 7 1.1 Sets................................. 7 1.2 Functions.............................. 8 1.3 How to define a

More information

Limits and Continuity

Limits and Continuity Limits and Continuity Philippe B. Laval Kennesaw State University January 2, 2005 Contents Abstract Notes and practice problems on its and continuity. Limits 2. Introduction... 2.2 Theory:... 2.2. GraphicalMethod...

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information

x y x 2 2 x y x x y x U x y x y

x y x 2 2 x y x x y x U x y x y Lecture 7 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for hapter 4 4: 8 Solution: We want to learn about the analyticity properties of the function

More information

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use,

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use, Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7 Discontinuities What you need to know already: The concept and definition of continuity. What you can learn here: The

More information

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Eercise 1 2 3 4 5 6 Total Points Department of Economics Mathematics I Final Eam January 22nd 2018 LAST NAME: Eam time: 2 hours. FIRST NAME: ID: DEGREE: GROUP: 1 (1) Consider

More information

Analysis/Calculus Review Day 3

Analysis/Calculus Review Day 3 Analysis/Calculus Review Day 3 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 15, 2010 Big- Oh and Little- Oh Notation We write

More information

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES)

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) INSTRUCTOR: CEZAR LUPU Problem. Decide which of the following sequences of functions

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information