Lecture 13: Implicit and Logarithmic Differentiation

Size: px
Start display at page:

Download "Lecture 13: Implicit and Logarithmic Differentiation"

Transcription

1 8 6 Lecture 13: Implicit and Logarithmic Differentiation log(e^)= 4 log(a b) = log(a^b) = 2 b log(a) + log(b) b log(a) Drag To 0 1 log(a/b) = a log(e) = 1 Y=log(X) log(1) = 0 log(a) - log(b)

2 Chapter 3: Derivatives LECTURE TOPIC 10 DEFINITION OF THE DERIVATIVE 11 PROPERTIES OF THE DERIVATIVE 12 DERIVATIVES OF COMMON FUNCTIONS 13 IMPLICIT AND LOGARITHMIC DIFFERENTIATION Lecture 13 Implicit and Logarithmic Differentiation 2

3 Calculus Inspiration Brian Greene 3

4 IMPLICIT DIFFERENTIATION Up to now we have differentiated eplicit functions, described in Lecture 1 as separable functions where y is a function of, r is a function of and so forth. For this case we discovered that: dy d d d f ( ) The properties of derivatives were developed and applied to f() in varied forms. However, many interesting curves are implicit, that is, we cannot separate the variables to obtain all the s on the right and y s on the left. When this is the case we use a variation of the chain rule to find the derivative. For eample consider the implicit equation for the circle: 2 + y 2 - r 2 = 0 Sketching our solution we implicity differentiate both sides and use the chain rule to obtain: d/d ( 2 +y 2 - r 2 ) = 0 d/d ( 2 ) + d/d (y 2 ) - d/d (r 2 ) = 0 2 d/d + 2y dy/d = 0 + y dy/d = 0 dy/d = -/y Lecture 13 Implicit and Logarithmic Differentiation 4

5 IMPLICIT DIFFERENTIATION Lets repeat that symbolic calculation using vertical coherence, commenting each step: d/d ( 2 + y 2 - r 2 ) = 0 Take Derivative Termwise d/d ( 2 ) + d/d (y 2 ) = 0 r is Constant, Deriv is 0 2 d/d + 2y dy/d = 0 Chain Rule to Each Term d/d + y dy/d = 0 Divide Through By 2 + y dy/d = 0 d/d = 1 y dy/d = - Sub. from Both Sides dy/d = -/y Divide Both Sides By y This same process can be applied to any implicit equation. 5

6 25 Implicit Derivative of Circle: Lecture13-CircleImplicitDeriv.g y Þ ~ f(,y)=0 10 EXERCISES: 1) Drag f(,y) = 0 to sweep out circle. 2) Drag r to change circle size. 3) Drag T and observe the values of -/y. 4) Does the slope of the tangent line depend on the radius of the circle? 5 r T -z 0 dy/d = -/y Þ = z 1 I O Þ ~ Lecture 13 Implicit and Logarithmic Differentiation 6

7 Lecture13-ImplicitDerivBifolium.wm IMPLICIT DIFFERENTIATION OF BIFOLIUM Open and run this file in wmaima to find the slope of the implicit bifolium curve. The resulting slope is an implicit equation in and y! 7

8 IMPLICIT DERIVATIVE IN POLAR COORDINATES Lecture13-ImplicitDerivBifoliumPolar.wm Perhaps the derivative in polar coordinates will be eplicit, running the net file gives us: Again dy/d is a function of both r and, which is still implicit. Lecture 13 Implicit and Logarithmic Differentiation 8

9 BIFOLIUM TANGENT LINE AUTOMATICALLY Since we can define the bifolium as an eplicit function of we can draw it in Geometry Epressions. We can then select the curve, choose the tangent icon and the tangent line is computed and displayed automatically. Try it yourself. 9 For the general case, the interconversion of the three representions, eplicit, implicit and parmetric is a research topic in advance mathematics.

10 Implicit 14Derivative of Bifolium: Lecture13-BifoliumImplicitDeriv.g EXERCISES: 1) Drag tangent T and observe the values of dy/d. 2) How is this curve different than the one in Lecture 2? 3) What impact does this have on the scale factor a? y Þ ~ r=4 a sin(t) cos(t) 2 T 4 2 a H z 4 dy/d = Þ z 3 I K J -2-2 O Þ ~16.4 Lecture 13 Implicit and Logarithmic Differentiation 10

11 2.0 Implicit Derivative of Atlas Curves: Cardioid: Eplicit Polar Form: Implicit Cartesian Form: B 0.5 θ A EXERCISES: For any four curves in Lecture 2 1) Add a tangent line. 2) Compute the derivative of the implicit form. 3) Add a control for parameters such as a above and drag it a (1+cos(θ)) 11

12 LOGARITHMIC DIFFERENTIATION Just as the chain rule provides a tool for differentiating implicit functions, logarithmic differentiation provides a tool for differentiating eponential functions which do not fit into any of the categories we have studed. One eample of this is finding the derivative of: y The power rule will not work for this because in the equation: n y The eponent n is considered constant. The solution is logarithmic differentation, but for that to work, we must first review the properties of logarithms and we will do that with Geometry Epressions. Note that natural log is written as log(). Other sources may use ln() for natural log. Lecture 13 Implicit and Logarithmic Differentiation 12

13 8 Properties of Logarithms EXERCISES: 1) Find log(1) = 0 property. 2) Find 6 log(e) = 1 property. 3) Find log(e ) = property. 4) Find log(a b ) = b log(a) property. 5) Find log(a b) = log(a) + log(b) property. 6) Find log(a/b) = log(a) - log(b) property. 7) Drag point b towards point a. 4 8) Drag the black dot to 0. log(e^)= log(a b) = Lecture13-LogProperties.g log(a^b) = 2 b log(a) + log(b) b log(a) Drag To 0 1 log(a/b) = a log(e) = 1 Y=log(X) log(1) = log(a) - log(b)

14 LOGARITHMIC DIFFERENTIATION OF AN EXPLODING FUNCTION Now that we have the properties of logarithms in hand, let s find the derivative of: y The trick is to take the log of BOTH SIDES, and use the property of logs: log y log( ) log( ) Now we differentiate both sides using the product rule to obtain: 1 y 1 log( ) y Multiplying both sides by y yields: y y(1 log( )) Back substituting the original function of y provides the eplicit result: y (1 log( )) Which we can now eamine in Geometry Epressions. Lecture 13 Implicit and Logarithmic Differentiation 14

15 Log Derivative of Eploding Function 2.5 Lecture13-LogDiffEploding.g EXERCISES: 1) Drag the blue dot to move the tangent line ) What are the values being computed? 3) At what is the slope of the tangent line zero? 4) What is the value of y at this? 5) Which increases faster, the function or its derivative? 1.5 6) How would you prove that? y 1.0 Y=X X ' Y=X X (1+log(X)) z 1 Þ ~ z 1 z 0 Þ O z 0 Þ ~

16 LOGARITHMIC DIFFERENTIATION OF A SLOW FUNCTION Functions like 1, and log() change slowly relative to linear functions for large values of. We need logarithms to differentiate increasing functions like: log( ) y log( ) Lecture13-LogDerivSlow.wm Using wmaima to manage epression compleity we run the problem and obtain: Which we can now eamine in Geometry Epressions. Lecture 13 Implicit and Logarithmic Differentiation 16

17 Log Derivative of Slow Function Lecture13-LogDiffSlow.g EXERCISES: 1) Drag the blue dot to move the tangent line. 2) What are the values being computed? 3) 3 Zoom out and assess how slow the function really is. 4) Which is slower the slow function or its derivative? 5) Is a slow function raised to a slow power still slow? 4 2 y 1 z 1 Þ ~1.12 O Y=log(X) log(x) z 1 z 0 Þ z 0 Þ ~ ' Y= 1 X + log(log(x)) X log(x) log(x) 17

18 LOGARITHMIC DIFFERENTIATION OF A PERIODIC FUNCTION We can logarithmically differentiate the periodic function: 1 y sin( ) Lecture13-LogDerivPeriodic.wm Using wmaima to manage epression compleity we run the problem and obtain: We now eamine the periodic function and its derivative in Geometry Epressions : Lecture 13 Implicit and Logarithmic Differentiation 18

19 Log Derivative of Periodic Function Lecture13-LogDiffPeriodic.g EXERCISES: 1) Drag the blue dot across different sections of the function. 2) What are the values of the function between sections? 3) How would you evaluate them? δ y δ Þ y O Y=sin(X) δ y Þ ~ X 2009 L. Van Warren / wdv.com / All Rights Reserved Y'= -log(sin(x)) X 2 + cos(x) 1 X sin(x) sin(x) X 19

20 End Lecture 13 Implicit and Logarithmic Differentiation 20

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

Lecture 12: Derivatives of Common Functions

Lecture 12: Derivatives of Common Functions 5 0 Lecture 1: Derivatives of ' A ω Common Functions 15 r=b+a tan(φ+t ω) r= cos(φ+t ω) 10 (-φ,b) 5 (1/ω,A) -30-5 -0-15 -10-5 5 10 15 0-5 -10 Chapter 3: Derivatives LECTURE TOPIC 10 DEFINITION OF THE DERIVATIVE

More information

Section 4.5 Graphs of Logarithmic Functions

Section 4.5 Graphs of Logarithmic Functions 6 Chapter 4 Section 4. Graphs of Logarithmic Functions Recall that the eponential function f ( ) would produce this table of values -3 - -1 0 1 3 f() 1/8 ¼ ½ 1 4 8 Since the arithmic function is an inverse

More information

Lecture 5: Rules of Differentiation. First Order Derivatives

Lecture 5: Rules of Differentiation. First Order Derivatives Lecture 5: Rules of Differentiation First order derivatives Higher order derivatives Partial differentiation Higher order partials Differentials Derivatives of implicit functions Generalized implicit function

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

Math Practice Exam 3 - solutions

Math Practice Exam 3 - solutions Math 181 - Practice Exam 3 - solutions Problem 1 Consider the function h(x) = (9x 2 33x 25)e 3x+1. a) Find h (x). b) Find all values of x where h (x) is zero ( critical values ). c) Using the sign pattern

More information

Core Mathematics 2 Unit C2 AS

Core Mathematics 2 Unit C2 AS Core Mathematics 2 Unit C2 AS compulsory unit for GCE AS and GCE Mathematics, GCE AS and GCE Pure Mathematics C2.1 Unit description Algebra and functions; coordinate geometry in the (, y) plane; sequences

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

23. Implicit differentiation

23. Implicit differentiation 23. 23.1. The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x and y. If a value of x is given, then a corresponding value of y is determined. For instance, if x = 1, then y

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

Unit #5 : Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates.

Unit #5 : Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates. Unit #5 : Implicit Differentiation, Related Rates Goals: Introduce implicit differentiation. Study problems involving related rates. Textbook reading for Unit #5 : Study Sections 3.7, 4.6 Unit 5 - Page

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

M151B Practice Problems for Exam 1

M151B Practice Problems for Exam 1 M151B Practice Problems for Eam 1 Calculators will not be allowed on the eam. Unjustified answers will not receive credit. 1. Compute each of the following its: 1a. 1b. 1c. 1d. 1e. 1 3 4. 3. sin 7 0. +

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

( ) ( ) x. The exponential function f(x) with base b is denoted by x

( ) ( ) x. The exponential function f(x) with base b is denoted by x Page of 7 Eponential and Logarithmic Functions Eponential Functions and Their Graphs: Section Objectives: Students will know how to recognize, graph, and evaluate eponential functions. The eponential function

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

MATH 118, LECTURES 13 & 14: POLAR EQUATIONS

MATH 118, LECTURES 13 & 14: POLAR EQUATIONS MATH 118, LECTURES 13 & 1: POLAR EQUATIONS 1 Polar Equations We now know how to equate Cartesian coordinates with polar coordinates, so that we can represents points in either form and understand what

More information

Math 1 Lecture 22. Dartmouth College. Monday

Math 1 Lecture 22. Dartmouth College. Monday Math 1 Lecture 22 Dartmouth College Monday 10-31-16 Contents Reminders/Announcements Last Time Implicit Differentiation Derivatives of Inverse Functions Derivatives of Inverse Trigonometric Functions Examish

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Functions and Logarithms

Functions and Logarithms 36 Chapter Prerequisites for Calculus.5 Inverse You will be able to find inverses of one-to-one functions and will be able to analyze logarithmic functions algebraically, graphically, and numerically as

More information

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx. Unit 3. Integration 3A. Differentials, indefinite integration 3A- a) 7 6 d. (d(sin ) = because sin is a constant.) b) (/) / d c) ( 9 8)d d) (3e 3 sin + e 3 cos)d e) (/ )d + (/ y)dy = implies dy = / d /

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

Summary sheet: Exponentials and logarithms

Summary sheet: Exponentials and logarithms F Know and use the function a and its graph, where a is positive Know and use the function e and its graph F2 Know that the gradient of e k is equal to ke k and hence understand why the eponential model

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Simultaneous Equations Solve for x and y (What are the values of x and y): Summation What is the value of the following given x = j + 1. x i.

Simultaneous Equations Solve for x and y (What are the values of x and y): Summation What is the value of the following given x = j + 1. x i. 1 Algebra Simultaneous Equations Solve for x and y (What are the values of x and y): x + 2y = 6 x - y = 3 Summation What is the value of the following given x = j + 1. Summation Calculate the following:

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 1 Motivation Goal: We want to derive rules to find the derivative of

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates.

Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates. Unit #5 : Implicit Differentiation, Related Rates Goals: Introduce implicit differentiation. Study problems involving related rates. Tangent Lines to Relations - Implicit Differentiation - 1 Implicit Differentiation

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Brushing up on Basic skills. Calculus AB (*problems for BC)

Brushing up on Basic skills. Calculus AB (*problems for BC) Brushing up on Basic skills To get you ready for Calculus AB (*problems for BC) Name: Directions: Use a pencil and the space provided next to each question to show all work. The purpose of this packet

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

Chapter 5 Symbolic Increments

Chapter 5 Symbolic Increments Chapter 5 Symbolic Increments The main idea of di erential calculus is that small changes in smooth functions are approimately linear. In Chapter 3, we saw that most microscopic views of graphs appear

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

AP Calculus AB Summer Assignment School Year

AP Calculus AB Summer Assignment School Year AP Calculus AB Summer Assignment School Year 018-019 Objective of the summer assignment: The AP Calculus summer assignment is designed to serve as a review for many of the prerequisite math skills required

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

The Chain Rule. The Chain Rule. dy dy du dx du dx. For y = f (u) and u = g (x)

The Chain Rule. The Chain Rule. dy dy du dx du dx. For y = f (u) and u = g (x) AP Calculus Mrs. Jo Brooks The Chain Rule To find the derivative of more complicated functions, we use something called the chain rule. It can be confusing unless you keep yourself organized as you go

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises Section 4.3 Properties of Logarithms 437 34. Graph each of the following functions in the same viewing rectangle and then place the functions in order from the one that increases most slowly to the one

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim Amherst College, DEPARTMENT OF MATHEMATICS Math, Final Eamination, May 4, Answer Key. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value,

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Solutions to Problem Sheet for Week 11

Solutions to Problem Sheet for Week 11 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week MATH9: Differential Calculus (Advanced) Semester, 7 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

11.4 Dot Product Contemporary Calculus 1

11.4 Dot Product Contemporary Calculus 1 11.4 Dot Product Contemporary Calculus 1 11.4 DOT PRODUCT In the previous sections we looked at the meaning of vectors in two and three dimensions, but the only operations we used were addition and subtraction

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Unit 6: 10 3x 2. Semester 2 Final Review Name: Date: Advanced Algebra

Unit 6: 10 3x 2. Semester 2 Final Review Name: Date: Advanced Algebra Semester Final Review Name: Date: Advanced Algebra Unit 6: # : Find the inverse of: 0 ) f ( ) = ) f ( ) Finding Inverses, Graphing Radical Functions, Simplifying Radical Epressions, & Solving Radical Equations

More information

AP Calculus Summer Prep

AP Calculus Summer Prep AP Calculus Summer Prep Topics from Algebra and Pre-Calculus (Solutions are on the Answer Key on the Last Pages) The purpose of this packet is to give you a review of basic skills. You are asked to have

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Finding Slope. Find the slopes of the lines passing through the following points. rise run

Finding Slope. Find the slopes of the lines passing through the following points. rise run Finding Slope Find the slopes of the lines passing through the following points. y y1 Formula for slope: m 1 m rise run Find the slopes of the lines passing through the following points. E #1: (7,0) and

More information

Chapter 3: Topics in Differentiation

Chapter 3: Topics in Differentiation Chapter 3: Topics in Differentiation Summary: Having investigated the derivatives of common functions in Chapter (i.e., polynomials, rational functions, trigonometric functions, and their combinations),

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

AP CALCULUS AB - SUMMER ASSIGNMENT 2018

AP CALCULUS AB - SUMMER ASSIGNMENT 2018 Name AP CALCULUS AB - SUMMER ASSIGNMENT 08 This packet is designed to help you review and build upon some of the important mathematical concepts and skills that you have learned in your previous mathematics

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

MAC 1105 Review for Exam 4. Name

MAC 1105 Review for Exam 4. Name MAC 1105 Review for Eam Name For the given functions f and g, find the requested composite function. 1) f() = +, g() = 8-7; Find (f g)(). 1) Find the domain of the composite function f g. 9 ) f() = + 9;

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1 Section 5 B: Graphs of Decreasing Eponential Functions We want to determine what the graph of an eponential function y = a looks like for all values of a such that 0 > a > We will select a value of a such

More information

Edexcel Core Mathematics 4 Parametric equations.

Edexcel Core Mathematics 4 Parametric equations. Edexcel Core Mathematics 4 Parametric equations. Edited by: K V Kumaran kumarmaths.weebly.com 1 Co-ordinate Geometry A parametric equation of a curve is one which does not give the relationship between

More information

UNIT 4A MATHEMATICAL MODELING OF INVERSE, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS Lesson 2: Modeling Logarithmic Functions

UNIT 4A MATHEMATICAL MODELING OF INVERSE, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS Lesson 2: Modeling Logarithmic Functions Lesson : Modeling Logarithmic Functions Lesson A..1: Logarithmic Functions as Inverses Utah Core State Standards F BF. Warm-Up A..1 Debrief In the metric system, sound intensity is measured in watts per

More information

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions 01 Summer Assignment Theme 1: Linear Functions 1. Write the equation for the line through the point P(, -1) that is perpendicular to the line 5y = 7. (A) + 5y = -1 (B) 5 y = 8 (C) 5 y = 1 (D) 5 + y = 7

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

MATH 124. Midterm 2 Topics

MATH 124. Midterm 2 Topics MATH 124 Midterm 2 Topics Anything you ve learned in class (from lecture and homework) so far is fair game, but here s a list of some main topics since the first midterm that you should be familiar with:

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION Section.5 Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:47 AM.5: Implicit Differentiation 1 REVIEW Solve or d of 4 + 3 = 6 4 3 6 4 3 6 4 3 4 ' 3 3 7/30/018 1:47

More information

12.3 Properties of Logarithms

12.3 Properties of Logarithms 12.3 Properties of Logarithms The Product Rule Let b, and N be positive real numbers with b 1. N = + N The logarithm of a product is the sum of the logarithms of the factors. Eample 1: Use the product

More information

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001 Math D Calculus Exam Practice Problems Fall This is not a comprehensive set of problems, but I ve added some more problems since Monday in class.. Find the derivatives of the following functions a) y =

More information

Higher Mathematics Course Notes

Higher Mathematics Course Notes Higher Mathematics Course Notes Equation of a Line (i) Collinearity: (ii) Gradient: If points are collinear then they lie on the same straight line. i.e. to show that A, B and C are collinear, show that

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

FINAL EXAM STUDY GUIDE

FINAL EXAM STUDY GUIDE FINAL EXAM STUDY GUIDE The Final Exam takes place on Wednesday, June 13, 2018, from 10:30 AM to 12:30 PM in 1100 Donald Bren Hall (not the usual lecture room!!!) NO books/notes/calculators/cheat sheets

More information

7.1 INVERSE FUNCTIONS

7.1 INVERSE FUNCTIONS 7. Inverse Functions Contemporary Calculus 7. INVERSE FUNCTIONS One to one functions are important because their equations, f() = k, have (at most) a single solution. One to one functions are also important

More information

Avon High School Name AP Calculus AB Summer Review Packet Score Period

Avon High School Name AP Calculus AB Summer Review Packet Score Period Avon High School Name AP Calculus AB Summer Review Packet Score Period f 4, find:.) If a.) f 4 f 4 b.) Topic A: Functions f c.) f h f h 4 V r r a.) V 4.) If, find: b.) V r V r c.) V r V r.) If f and g

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

Introduction. So, why did I even bother to write this?

Introduction. So, why did I even bother to write this? Introduction This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The review contains the occasional

More information

Graphical Analysis and Errors MBL

Graphical Analysis and Errors MBL Graphical Analysis and Errors MBL I Graphical Analysis Graphs are vital tools for analyzing and displaying data Graphs allow us to explore the relationship between two quantities -- an independent variable

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Pre-Calculus Summer Packet

Pre-Calculus Summer Packet Pre-Calculus Summer Packet Name ALLEN PARK HIGH SCHOOL Summer Assessment Pre-Calculus Summer Packet For Students Entering Pre-Calculus Summer 05 This summer packet is intended to be completed by the FIRST

More information

Mathematics 111 (Calculus II) Laboratory Manual

Mathematics 111 (Calculus II) Laboratory Manual Mathematics (Calculus II) Laboratory Manual Department of Mathematics & Statistics University of Regina nd edition prepared by Patrick Maidorn, Fotini Labropulu, and Robert Petry University of Regina Department

More information

PRACTICE PROBLEMS FOR MIDTERM I

PRACTICE PROBLEMS FOR MIDTERM I Problem. Find the limits or explain why they do not exist (i) lim x,y 0 x +y 6 x 6 +y ; (ii) lim x,y,z 0 x 6 +y 6 +z 6 x +y +z. (iii) lim x,y 0 sin(x +y ) x +y Problem. PRACTICE PROBLEMS FOR MIDTERM I

More information