The Finite Volume Method in

Size: px
Start display at page:

Download "The Finite Volume Method in"

Transcription

1 FMIA F Moukalled L Mangani M Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in omputational Fluid Dynamics (FD) Readers will discover a thorough explanation o the FVM numerics and algorithms used in the simulation o incompressible and compressible luid lows, along with a detailed examination o the components needed or the development o a collocated unstructured pressure-based FD solver Two particular FD codes are explored The irst is ufvm, a three-dimensional unstructured pressure-based inite volume academic FD code, implemented within Matlab The second is OpenFOAM, an open source ramework used in the development o a range o FD programs or the simulation o industrial scale low problems Moukalled Mangani Darwish Fluid Mechanics and Its Applications 113 Series Editor: A Thess The Finite Volume Method in omputational Fluid Dynamics With over 220 igures, numerous examples and more than one hundred exercises on FVM numerics, programming, and applications, this textbook is suitable or use in an introductory course on the FVM, in an advanced course on FD algorithms, and as a reerence or FD programmers and researchers Fluid Mechanics and Its Applications F Moukalled L Mangani M Darwish The Finite Volume Method in omputational Fluid Dynamics The Finite Volume Method in omputational Fluid Dynamics An Advanced Introduction with OpenFOAM and Matlab Engineering ISBN The Finite Volume Method hapter 05

2 The Process Physical Domain Physical Phenomena Domain Modeling Physical Modeling Set o Governing Equations Deined on a omputational Domain Domain Discretization Equation Discretization Structured Grids artesian, Non-Orthogonal) Block Structured grids Unstructured Grids himera Grids System o Algebraic Equations Finite Dierence Finite Volume Finite Element Boundary Element Solution Method Numerical Solutions ombinations o Multigrid Methods Iterative Solvers oupled-uncoupled 2

3 heat sink microprocessor heat spreader base Domain Modeling Physical Modeling heat sink heat spreader base T sink insulated ( k T ) =!q microprocessor T microprocessor Domain Discretization Equations Discretization Patch2 Patch1 ( ρφ) + ( ρvφ) t = ( Γ φ ) + Q transient term convection term a φ + diusion term F NB source term a F φ F = b Patch3 Solution Method = 3

4 Balance Form onsider the steady state conservation equation o a scalar ρvφ! " $ =! " Γ φ $ +! Qφ convectionterm diusionterm sourceterm FdV =! F ds V V ( ρvφ)dv = ( Γ φ)dv + QdV V V V Diusion onvection Transient! ( ρvφ) ds =! ( Γ φ) ds + QdV V V V Source/ Sink ( ρvφ) ds = ( Γ φ) ds + QdV = aces( V ) = aces( V ) V 4

5 Face Flux Integration = aces( V ) ( ρvφ) ds J ds = ( J S ) ip = J ip w ip S ip ip ( ρuφ) S FluxT = Flux φ + FluxF φ F1 + FluxV FluxT = Flux φ + FluxF φ F1 + FluxV FluxT = Flux φ + FluxF φ F1 + FluxV F 1 F 1 F 1 F S 1 F S 1 F S 1 d N1 6 F 6 6 F 6 6 F 6 d N1 d N F 3 F 3 F F 4 F 5 one integration point 4 5 F 4 F 5 two integration points 4 5 F 4 F 5 three integration points ( ρuφ) 1( ) w 1( ) S + ( ρuφ) 2( ) w 2( ) S 5

6 Source Integration FluxT = QdV = Q V = Q ip ip ip ω ip V ip V = Fluxφ + FluxV ip Q V Q 1 V 1 + Q 2 V 2 + Q 3 V 3 + Q 4 V 4 FluxT = Fluxφ + FluxV FluxT = Fluxφ + FluxV FluxT = Fluxφ + FluxV F 1 F 1 F 1 F 2 F 2 1 F 2 2 F F 6 F 6 F 3 F 3 F 3 F 4 F 5 one integration point 4 5 F 4 F 5 our integration points F 4 F 5 nine integration points 6

7 Flux Linearization F 1 F J φ S = FluxT!" = Flux!" $ φ + FluxF!" φ + FluxV F!" total lux or ace lux linearization coeicient or lux linearization coeicient or F non linearized part F F ( J φ S ) = FluxT nb nb = Flux φ + FluxF φ F + FluxV nb F 4 F 5 Q φ V = FluxT = Fluxφ + FluxV a φ + F NB a F φ F = b a = nb a F = FluxF b = Flux Flux nb FluxV + FluxV 7

8 Boundary onditions Value Speciied (Dirichlet Boundary ondition) t n b S b φ b,speciied J b φ S b = J b φ, S b = ρvφ b S b = Flux b φ + FluxV b Flux b = 0 = ( ρ b v b S b )φ b =!m φ b,speciied FluxV b =!m φ b,speciied e b Flux Speciied (Neumann Boundary ondition) J φ b S b =! J φ b n S b b Speciied lux Flux b = 0 = q b, speciied S b FluxV b = q b, speciied S b n t b e b S b q b,speciied 8

9 FVM Accuracy

10 Spatial Variation φ( x) x φ φ x φ(x) = φ P + ( x x P ) ( φ) P + 1 x x 2 ( P ) 2 : ( φ ) P + 1 3! ( x x P ) 3 :: ( φ) P + n ::: n + 1 n! x x P!( " $ φ) + P n φ φ(x) = φ P + ( x x P ) ( φ) P + O( Δx 2 ) 10

11 Mean Value Theorem φ φ ell Value lux φ = 1 V φ dv V = 1 φ + ( x x ) φ V = φ V V + O x x 2 dv dv + 1 ( x x ) ( φ) V V dv O x x V V dv V = φ + O x x 2 11

12 Mean Value Theorem convective lux S J φ,d S = Γ φ φ! " $ Diusion lux F S J φ, S = ρvφ!" $ onvection lux ( ρ v S )φ = ( ρvφ) ds = ρ v φ + ( x x ) φ + O x x 2 ds 2 = ρ v φ ds + ( x x ) ( φ) ρ v ds + O x x = ρ v S 2 φ + O x x ρ v ds diusion lux ( Γ φ φ) ds = Γ φ φ ds = Γ φ φ + x x + O x x 2 ( Γ φ φ) + ( x x )ds = Γ φ 2 ( φ) S + O x x : Γ φ 2 ( ( φ) ) + O x x ds 12

13 Properties o the Discretized Equations

14 onservation Flux φ + FluxF φ F + FluxV FluxF φ F + Flux φ + FluxV F 1 FluxT = FluxT S Flux φ F 1 S 14

15 Transportiveness Pe = 0 Pe > 0 W E 15

16 Other Properties onsistency Stability Economy Boundedness o the Interpolation Proile 16

17 Variable Arrangment

18 Variable Arrangement ell-centered Vertex-centered 18

19 Other Issues S F S θ e t n d F F 19

20 Matrix onnectivity

21 uvm onnectivity 21!!!!!!!!!!!!!!!!! " $ %! " $ % =! " $ % [3] 2 [3,7] 3 [ ] 4 [3 6] 5 [3 6 7] 6 [4 5] 7 [2 5] onnectivity A B

22 OpenFoam onnectivity 22!!!!!!!!!!!!!!!!! " $ %! " $ % =! " $ % ldumatrix diag() lower() upper()

The Finite Volume Mesh

The Finite Volume Mesh FMIA F Moukalled L Mangani M Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational

More information

Solving the Navier-Stokes Equations

Solving the Navier-Stokes Equations FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

More information

Transient, Source Terms and Relaxation

Transient, Source Terms and Relaxation F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational

More information

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M. FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in

More information

The Discretization Process

The Discretization Process FMIA F Moukalled L Mangan M Darwsh An Advanced Introducton wth OpenFOAM and Matlab Ths textbook explores both the theoretcal foundaton of the Fnte Volume Method (FVM) and ts applcatons n Computatonal Flud

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

IMPLEMENTATION OF A PARALLEL AMG SOLVER

IMPLEMENTATION OF A PARALLEL AMG SOLVER IMPLEMENTATION OF A PARALLEL AMG SOLVER Tony Saad May 2005 http://tsaad.utsi.edu - tsaad@utsi.edu PLAN INTRODUCTION 2 min. MULTIGRID METHODS.. 3 min. PARALLEL IMPLEMENTATION PARTITIONING. 1 min. RENUMBERING...

More information

1 General description of the OpenFOAM suite

1 General description of the OpenFOAM suite Santiago Márquez Damián-Final Work-Computational Fluid Dynamics Description and utilization o interfoam multiphase solver 1 General description o the OpenFOAM suite OpenFOAM Open Field Operation and Manipulation

More information

A Critical Investigation of High-Order Flux Limiters In Multiphase Flow Problems

A Critical Investigation of High-Order Flux Limiters In Multiphase Flow Problems A Critical Investigation o High-Order Flux Limiters In Multiphase Flow Problems Chris Guenther Fluent In., 3647 Collins Ferry Rd., Morgantown, WV 26505, USA cpg@luent.com ABSTRACT. In recent years inite

More information

Development and Testing of a Robust Free-Surface Finite Volume Method. Marwan Darwish, Ph.D.

Development and Testing of a Robust Free-Surface Finite Volume Method. Marwan Darwish, Ph.D. Development and Testing o a Robust Free-Surace Finite Volume Method Marwan Darwish, Ph.D. Faculty o Engineering and Architecture, American University o Beirut July 2003 Summary A robust numerical technique

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

Coupled calculations in OpenFOAM -

Coupled calculations in OpenFOAM - Coupled calculations in OpenFOAM - Multiphysics handling, structures and solvers, Gothenburg Region OpenFOAM User Group Meeting Klas Jareteg Chalmers University of Technology November 14, 2012 Outline

More information

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Instructor: Jayathi Y. Murthy School of Mechanical Engineering Purdue University Spring 00 c 1998 J.Y. Murthy and S.R. Mathur.

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Solution to Final Examination Date: May 4, 2011 1:00 3:00 PM Instructor: J. Murthy Open Book, Open Notes Total: 100 points Use the finite volume

More information

Iterative Methods for Stokes/Darcy Coupling

Iterative Methods for Stokes/Darcy Coupling Iterative Methods or Stokes/Darcy Coupling Marco Discacciati Ecole Polytechnique Fédérale de Lausanne Institut d Analyse et Calcul Scientiique Chair o Modelling and Scientiic Computing marco.discacciati@epl.ch

More information

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications HEFAT27 5 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 1-4 July 27, Sun City, South Arica Paper number: KS2 The Eect o Internal Obstructions in Naturally Ventilated Greenhouse

More information

Solution Methods. Steady State Diffusion Equation. Lecture 04

Solution Methods. Steady State Diffusion Equation. Lecture 04 Solution Methods Steady State Diffusion Equation Lecture 04 1 Solution methods Focus on finite volume method. Background of finite volume method. Discretization example. General solution method. Convergence.

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance Global Weak Solution o Planetary Geostrophic Equations with Inviscid Geostrophic Balance Jian-Guo Liu 1, Roger Samelson 2, Cheng Wang 3 Communicated by R. Temam) Abstract. A reormulation o the planetary

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Galerkin Finite Element Model for Heat Transfer

Galerkin Finite Element Model for Heat Transfer Galerkin Finite Element Model for Heat Transfer Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents 1 Notation remarks 1 2 Local differential

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Discretization of Convection Diffusion type equation

Discretization of Convection Diffusion type equation Discretization of Convection Diffusion type equation 10 th Indo German Winter Academy 2011 By, Rajesh Sridhar, Indian Institute of Technology Madras Guides: Prof. Vivek V. Buwa Prof. Suman Chakraborty

More information

A fully coupled OpenFOAM solver for transient incompressible turbulent flows in ALE formulation

A fully coupled OpenFOAM solver for transient incompressible turbulent flows in ALE formulation Numerical Heat Transfer, Part B: undamentals An International Journal of omputation and Methodology ISSN: 1040-7790 (Print) 1521-0626 (Online) Journal homepage: http://www.tandfonline.com/loi/unhb20 A

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations Ultra Fast Calculation o Temperature Proiles o VLSI ICs in Thermal Packages Considering Parameter Variations Je-Hyoung Park, Virginia Martín Hériz, Ali Shakouri, and Sung-Mo Kang Dept. o Electrical Engineering,

More information

DEVELOPMENT OF A NOVEL FULLY COUPLED SOLVER IN OPENFOAM: STEADY-STATE INCOMPRESSIBLE TURBULENT FLOWS

DEVELOPMENT OF A NOVEL FULLY COUPLED SOLVER IN OPENFOAM: STEADY-STATE INCOMPRESSIBLE TURBULENT FLOWS Numerical Heat Transfer, Part B, 66: 1 20, 2014 opyright # Taylor & Francis Group, LL ISSN: 1040-7790 print=1521-0626 online DOI: 10.1080/10407790.2014.894448 DEVELOPMENT OF A NOVEL FULLY OUPLED SOLVER

More information

Final Exam Review Sheet : Comments and Selected Solutions

Final Exam Review Sheet : Comments and Selected Solutions MATH 55 Applied Honors alculus III Winter Final xam Review heet : omments and elected olutions Note: The final exam will cover % among topics in chain rule, linear approximation, maximum and minimum values,

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

SOE3213/4: CFD Lecture 1

SOE3213/4: CFD Lecture 1 What is CFD SOE3213/4: CFD Lecture 1 3d 3d Computational Fluid Dynamics { use of computers to study uid dynamics. Solve the Navier-Stokes Equations (NSE) : r:u = 0 Du Dt = rp + r 2 u + F 4 s for 4 unknowns,

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

Introduction to numerical simulation of fluid flows

Introduction to numerical simulation of fluid flows Introduction to numerical simulation of fluid flows Mónica de Mier Torrecilla Technical University of Munich Winterschool April 2004, St. Petersburg (Russia) 1 Introduction The central task in natural

More information

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION by Asterios Pantokratoras School o Engineering, Democritus University o Thrace, 67100

More information

Pressure-correction algorithm to solve Poisson system with constant coefficients for fast two-phase simulations

Pressure-correction algorithm to solve Poisson system with constant coefficients for fast two-phase simulations Center or Turbulence Research Annual Research Bries 2009 367 Pressure-correction algorithm to solve Poisson system with constant coeicients or ast two-phase simulations By D. Kim AND P. Moin 1. Motivation

More information

Staple or bind all pages together. DO NOT dog ear pages as a method to bind.

Staple or bind all pages together. DO NOT dog ear pages as a method to bind. Math 3337 Homework Instructions: Staple or bind all pages together. DO NOT dog ear pages as a method to bind. Hand-drawn sketches should be neat, clear, of reasonable size, with axis and tick marks appropriately

More information

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance Global Weak Solution o Planetary Geostrophic Equations with Inviscid Geostrophic Balance Jian-Guo Liu 1, Roger Samelson 2, Cheng Wang 3 Communicated by R. Temam Abstract. A reormulation o the planetary

More information

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime.

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime. Metallurgical and Materials Engineering Association o Metallurgical Engineers o Serbia AMES Scientiic paper UDC: 669.245 NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER AROUND A CIRCULAR CYLINDER

More information

Computational Engineering Introduction to Numerical Methods

Computational Engineering Introduction to Numerical Methods Michael Schafer Computational Engineering Introduction to Numerical Methods With 204 Figures 4y Springer ire discussed. The following, structural mechanics, fluid 1 grids, finite-volume meth- n, properties

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE FLUID FLOW AND HEAT TRANSFER IN THE CORE BYPASS REGION OF A PWR

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE FLUID FLOW AND HEAT TRANSFER IN THE CORE BYPASS REGION OF A PWR COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE FLUID FLOW AND HEAT TRANSFER IN THE CORE BYPASS REGION OF A PWR Cliord I, Vasiliev A, Zerkak O, Ferroukhi H and Pautz A Laboratory or Reactor Physics and Systems

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

where the index 2 indicates the particle species (electrons and different ion species if present). With

where the index 2 indicates the particle species (electrons and different ion species if present). With hapter 3 Magnetohydrodynamics luid equations are probably the most widely used equations for the description of inhomogeneous plasmas. While the phase fluid which is governed by the Boltzmann equation

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 5

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 5 .9 Numerical Fluid Mechanics Fall 011 Lecture 5 REVIEW Lecture 4 Roots of nonlinear equations: Open Methods Fixed-point Iteration (General method or Picard Iteration), with examples Iteration rule: x g(

More information

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW OPTIMIZATION AND DESIGN GIDELINES FOR HIGH FLX MICRO-CHANNEL HEAT SINKS FOR LIID AND GASEOS SINGLE-PHASE FLOW Norbert Müller, Luc G. Fréchette Mechanical Engineering Columbia niversity in the City o New

More information

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-0113 Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume

More information

Rhie-Chow interpolation in OpenFOAM 1

Rhie-Chow interpolation in OpenFOAM 1 Rhie-Chow interpolation in OpenFOAM 1 Fabian Peng Kärrholm Department of Applied Mechanics Chalmers Univesity of Technology Göteborg, Sweden, 2006 1 Appendix from Numerical Modelling of Diesel Spray Injection

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2. 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide

IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2. 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide Content ECN part of TNO SU2 applications at ECN Incompressible flow solver Pressure-based

More information

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective Numerical Solution o Ordinary Dierential Equations in Fluctuationlessness Theorem Perspective NEJLA ALTAY Bahçeşehir University Faculty o Arts and Sciences Beşiktaş, İstanbul TÜRKİYE TURKEY METİN DEMİRALP

More information

A Weakly Coupled Strategy for Computational Fluid-Structure Interaction: Theory, Implementation and Application

A Weakly Coupled Strategy for Computational Fluid-Structure Interaction: Theory, Implementation and Application College of Engineering Civil and Computational Engineering Centre Thesis of Master of Science in Computational Mechanics A Weakly Coupled Strategy for Computational Fluid-Structure Interaction: Theory,

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

Numerical Solution of Partial Differential Equations governing compressible flows

Numerical Solution of Partial Differential Equations governing compressible flows Numerical Solution of Partial Differential Equations governing compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Direct Sum. McKelvey, and Madie Wilkin Adviser: Dr. Andrew Christlieb Co-advisers: Eric Wolf and Justin Droba. July 23, Michigan St.

Direct Sum. McKelvey, and Madie Wilkin Adviser: Dr. Andrew Christlieb Co-advisers: Eric Wolf and Justin Droba. July 23, Michigan St. and Adviser: Dr. Andrew Christlieb Co-advisers: Eric Wolf and Justin Droba Michigan St. University July 23, 2014 The N-Body Problem Solar systems The N-Body Problem Solar systems Interacting charges, gases

More information

Tdyn-CFD+HT - Validation Case 9

Tdyn-CFD+HT - Validation Case 9 Two-dimensional heat conduction with heat generation Version 14.0.0 Compass Ingeniería y Sistemas http://www.compassis.com Tel.: +34 932 181 989 - Fax.: +34 933 969 746 - E: info@compassis.com - C/ Tuset

More information

Part I. Discrete Models. Part I: Discrete Models. Scientific Computing I. Motivation: Heat Transfer. A Wiremesh Model (2) A Wiremesh Model

Part I. Discrete Models. Part I: Discrete Models. Scientific Computing I. Motivation: Heat Transfer. A Wiremesh Model (2) A Wiremesh Model Part I: iscrete Models Scientific Computing I Module 5: Heat Transfer iscrete and Continuous Models Tobias Neckel Winter 04/05 Motivation: Heat Transfer Wiremesh Model A Finite Volume Model Time ependent

More information

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer. q 0 = εσ ( T 4 T 4) Figure 1: Computational Domain for Problem 1.

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer. q 0 = εσ ( T 4 T 4) Figure 1: Computational Domain for Problem 1. ME 68 Numerical Methods in Heat, Mass, and Momentum Transfer Mid-Term Examination Solution Date: March 1, 21 6: 8: PM Instructor: J. Murthy Open Book, Open Notes Total: 1 points 1. Consider steady 1D conduction

More information

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains An Immersed Interace Method or the Incompressible Navier-Stokes Equations in Irregular Domains Duc-Vinh Le, Boo Cheong Khoo, Jaime Peraire Singapore-MIT Alliance Department o Mechanical Engineering, National

More information

Thermal Performance Evaluation of Domed Roofs

Thermal Performance Evaluation of Domed Roofs hermal Perormance Evaluation o Domed Roos hmadreza K. Faghih 1,*, Mehdi N. Bahadori 1 Yazd University, Yazd, Iran Shari University o echnology, ehran, Iran * orresponding author. el: 98 351 81561, Fax:

More information

Computational Thermo-Fluid Dynamics

Computational Thermo-Fluid Dynamics Professur für Thermofluiddynamik Notes on Computational Thermo-Fluid Dynamics Camilo F. Silva, Ph. D. Kilian Förner, M. Sc. Prof. Wolfgang Polifke, Ph. D. Summer 216 www.tfd.mw.tum.de An expert is a man

More information

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS THERMAL SCIENCE: Year 8, Vol., No. B, pp. 383-39 383 MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS Introduction by Mohammadreza AZIMI and Rouzbeh RIAZI

More information

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium Comments on Magnetohydrodynamic Unsteady Flow o A Non- Newtonian Fluid Through A Porous Medium Mostaa A.A.Mahmoud Department o Mathematics, Faculty o Science, Benha University (358), Egypt Abstract The

More information

Simulation of electromagnetic devices using coupled models

Simulation of electromagnetic devices using coupled models Manuscript received Aug. 2, 2007; revised Nov. 30, 2007 Simulation o electromagnetic devices using coupled models ION CÂRSEA Department o Computer Engineering and Communication University o Craiova Str.

More information

Development of unsteady algorithms for pressurebased unstructured solver for two-dimensional incompressible flows

Development of unsteady algorithms for pressurebased unstructured solver for two-dimensional incompressible flows Graduate Theses and Dissertations Graduate College 2009 Development of unsteady algorithms for pressurebased unstructured solver for two-dimensional incompressible flows Angela Dwi Lestari Iowa State University

More information

EXISTENCE OF SOLUTIONS TO SYSTEMS OF EQUATIONS MODELLING COMPRESSIBLE FLUID FLOW

EXISTENCE OF SOLUTIONS TO SYSTEMS OF EQUATIONS MODELLING COMPRESSIBLE FLUID FLOW Electronic Journal o Dierential Equations, Vol. 15 (15, No. 16, pp. 1 8. ISSN: 17-6691. URL: http://ejde.math.txstate.e or http://ejde.math.unt.e tp ejde.math.txstate.e EXISTENCE OF SOLUTIONS TO SYSTEMS

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID Proceedings o the International Conerence on Mechanical Engineering and Reneable Energy 7 (ICMERE7) 8 December, 7, Chittagong, Bangladesh ICMERE7-PI- BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE

More information

Thermal Analysis with SOLIDWORKS Simulation 2016 and Flow Simulation 2016

Thermal Analysis with SOLIDWORKS Simulation 2016 and Flow Simulation 2016 Thermal Analysis with SOLIDWORKS Simulation 2016 and Flow Simulation 2016 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit

More information

MTF071 Computational Fluid Dynamics of Turbulent

MTF071 Computational Fluid Dynamics of Turbulent CHALMERS TEKNISKA HÖGSKOLA Termo- och Fluiddynamik 42 96 Göteborg MTF07 Computational Fluid Dynamics of Turbulent Flow http://wwwtfdchalmersse/gr-kurs/mtf07 Task K2 Lars Davidson 2003-02-03 In Task K you

More information

Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure World Academy o Science, Engineering Technology International Journal o Mechanical Mechatronics Engineering Vol:8, o:8, 014 Estimation o atural Convection Heat Transer rom Plate-Fin Heat Sins in a Closed

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

Vector and scalar variables laminar natural convection in 2D geometry arbitrary angle of inclination

Vector and scalar variables laminar natural convection in 2D geometry arbitrary angle of inclination Vector and scalar variables laminar natural convection in 2D geometry arbitrary angle of inclination Miomir Raos and Ljubiša Nešić Abstract The aim of this study 1 is to analyze vector and scalar depending

More information

THE NEAR-WELLBORE PRESSURE CALCULATION MODEL INCORPORATING THERMOCHEMICAL EFFECT

THE NEAR-WELLBORE PRESSURE CALCULATION MODEL INCORPORATING THERMOCHEMICAL EFFECT HERMAL CIENCE: Year 2018, Vol. 22, No. 1B, pp. 623-630 623 HE NEAR-WELLBORE PREURE CALCULAION MODEL INCORPORAING HERMOCHEMICAL EFFEC by Zhiqiang ANG, Qian LI *, and Hu YIN Petroleum and Natural Gas Engineering

More information

Development of an explicit pressure-based unstructured solver for three-dimensional incompressible flows with graphics hardware acceleration

Development of an explicit pressure-based unstructured solver for three-dimensional incompressible flows with graphics hardware acceleration Graduate Theses and Dissertations Graduate College 2012 Development of an explicit pressure-based unstructured solver for three-dimensional incompressible flows with graphics hardware acceleration Jordan

More information

Divergence Theorem and Its Application in Characterizing

Divergence Theorem and Its Application in Characterizing Divergence Theorem and Its Application in Characterizing Fluid Flow Let v be the velocity of flow of a fluid element and ρ(x, y, z, t) be the mass density of fluid at a point (x, y, z) at time t. Thus,

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

Line, surface and volume integrals

Line, surface and volume integrals www.thestudycampus.com Line, surface and volume integrals In the previous chapter we encountered continuously varying scalar and vector fields and discussed the action of various differential operators

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

The Relationship between Discrete Calculus Methods and other Mimetic Approaches

The Relationship between Discrete Calculus Methods and other Mimetic Approaches The Relationship between Discrete Calculus Methods and other Mimetic Approaches Blair Perot Theoretical and Computational Fluid Dynamics Laboratory Woudschoten Conerence Oct. 2011 October 7, 2011 Background

More information

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Sanjay K Khattri Abstract We present an Altered Jacobian Newton Iterative Method for solving nonlinear elliptic problems Effectiveness

More information

Unit 6 Line and Surface Integrals

Unit 6 Line and Surface Integrals Unit 6 Line and Surface Integrals In this unit, we consider line integrals and surface integrals and the relationships between them. We also discuss the three theorems Green s theorem, the divergence theorem

More information

Continuum Mechanics Lecture 5 Ideal fluids

Continuum Mechanics Lecture 5 Ideal fluids Continuum Mechanics Lecture 5 Ideal fluids Prof. http://www.itp.uzh.ch/~teyssier Outline - Helmholtz decomposition - Divergence and curl theorem - Kelvin s circulation theorem - The vorticity equation

More information

THE STOCHASTIC PERTURBATION BASED FINITE VOLUME METHOD FOR THE FLOW PROBLEMS. M. K A M I Ń S K I and R. L. O S S O W S K I

THE STOCHASTIC PERTURBATION BASED FINITE VOLUME METHOD FOR THE FLOW PROBLEMS. M. K A M I Ń S K I and R. L. O S S O W S K I Journal of Technical Physics, J. Tech. Phys., 50, 4, 295 313, 2009 Polish Academy of Sciences, Institute of Fundamental Technological Research, Warszawa FIFTY YEARS OF THE JOURNAL OF TECHNICAL PHYSICS

More information

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Thomas Gallinger * Alexander Kupzok Roland Wüchner Kai-Uwe Bletzinger Lehrstuhl für Statik Technische Universität München

More information

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams P Periodica Polytechnica Mechanical Engineering P 60(4), pp. 193-202, 2016 DOI: 10.3311/PPme.8511 Creative Commons Attribution b 3D Numerical Modelling o Convective Heat Transer through Two-sided Vertical

More information

HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS

HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS ABSTRACT Of The Thesis Entitled HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS Submitted To The University of Delhi In Partial Fulfillment For The Award of The Degree

More information

Received: 30 July 2017; Accepted: 29 September 2017; Published: 8 October 2017

Received: 30 July 2017; Accepted: 29 September 2017; Published: 8 October 2017 mathematics Article Least-Squares Solution o Linear Dierential Equations Daniele Mortari ID Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA; mortari@tamu.edu; Tel.: +1-979-845-734

More information

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES SHRUTI JAIN B.Tech III Year, Electronics and Communication IIT Roorkee Tutors: Professor G. Biswas Professor S. Chakraborty ACKNOWLEDGMENTS I would like

More information

COMPUTATIONAL STUDY OF CHEMICALLY REACTING HYPERSONIC FLOW

COMPUTATIONAL STUDY OF CHEMICALLY REACTING HYPERSONIC FLOW COMPUTATIONAL STUDY OF CHEMICALLY REACTING HYPERSONIC FLOW Yoshiuru Funahashi Department o Aeronautics and Astronautics, Graduate School o Engineering, The University o Tokyo, Tokyo, JAPAN Keywords: Hypersonic

More information

Experiments and Numerical Simulations of the Flow Within a Simplified Model of a Surge Chamber

Experiments and Numerical Simulations of the Flow Within a Simplified Model of a Surge Chamber Experiments and Numerical Simulations o the Flow Within a Simpliied Model o a Surge Chamber by Alexandre Massé* 1,3, Maryse age2 and Laurent Mydlarski3 1 Groupe-Conseil LaSalle, LaSalle (Qc), H8R 1R8,

More information

Work and Energy. chapter 7

Work and Energy. chapter 7 chapter 7 Work and Energy Work Work in one dimension: (Section 7.1, part 1) The following two problems involve pulleys and may be used after Example 2 in Section 7.1: 1. twood machine 2. Raising m by a

More information

Calculating equation coefficients

Calculating equation coefficients Fluid flow Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009)

EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009) EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009) Dr. Mohamad Hekarl Uzir-chhekarl@eng.usm.my School of Chemical Engineering Engineering Campus, Universiti

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information