IMPLEMENTATION OF A PARALLEL AMG SOLVER

Size: px
Start display at page:

Download "IMPLEMENTATION OF A PARALLEL AMG SOLVER"

Transcription

1 IMPLEMENTATION OF A PARALLEL AMG SOLVER Tony Saad May tsaad@utsi.edu

2 PLAN INTRODUCTION 2 min. MULTIGRID METHODS.. 3 min. PARALLEL IMPLEMENTATION PARTITIONING. 1 min. RENUMBERING... 1 min. THE SOLVER... 3 min. RESULTS... 3 min. CONCLUSION. 2 min.

3 INTRODUCTION Computational Fluid Dynamics (CFD) is an advanced computing technology developed from traditional fluid mechanics. It uses a set of numerical methods for the solution of PDEs arising from general transport phenomena CFD is being used to model several applications

4 Aerospace INTRODUCTION

5 INTRODUCTION Aerospace Appliances

6 INTRODUCTION Aerospace Appliances Sports

7 INTRODUCTION Aerospace Appliances Sports Environment

8 INTRODUCTION The Finite Volume Method is a very popular method used in CFD It is based on conservation princinples

9 INTRODUCTION ρφ ( ) ( ) t Transient Term + ρuφ = Γ φ + Convection Term Diffusion Term S φ Source Term

10 ρφ ( ) ( ) t Transient Term + ρuφ = Γ φ + Convection Term Diffusion Term INTRODUCTION S φ Source Term a P t CD + a P urf φ + P i= NB( P) a CD φ Ni Ni = Q P V P + a Pt φ P urf urf t CD * ( a P + a P )φ P a p φ P + i= NB( P) a Ni φ Ni = b P a Ni = Γ f E f d PNi &m f,0 b P = Q P V P + a Pt φ 0 P + 1 urf urf t a P = a P a Ni + &m fi i= NB( P) i= nb( P) t CD ( a P + a P )φ * P + Γ φ i= nb( P) ( ) fi T fi

11 INTRODUCTION Discretization yields a linear system of equations a P φ P + a Ni φ Ni = b P i= NB( P) A φ = b The solution of this system requires an iterative procedure as the coefficient matrix is non-linear Famous solvers: SOR, ILU Convergence rate slows down as error becomes smooth

12 SOR Starts with a Gauss-Seidl Iterate k b P a Ni φ Ni ( * φ ) k P = i= NB( P) a P Relax and update the value (k φ ) P = ω( * φ ) k P + ( (k 1) 1 ω)φ P φ P (k ) = ω b P i= NB( P) a P k a Ni φ Ni + ( (k 1) 1 ω)φ P

13 MULTIGRID METHODS Multigrid Methods are designed to overcome this problem by deriving a set of coarse grids from the original grid on which the solution is not smooth Algebraic Multigrid (AMG) is suitable for unstructured grids and FV formulation

14 MULTIGRID METHODS

15 MULTIGRID METHODS At each level, a linear system of equations is solved The coarse grid linear systems are derived from the finer grids using an agglomeration of the coefficients i G I j G J (l A +1) l I,J = A i, j b I (l +1) = i G I r i (l) r k = b A x k

16 PARALLEL IMPLEMENTATION Why think parallel? CFD models are becoming computationally expensive Parallel computing is the future of scientific computing Parallelization requires several steps: Partitioning Partition Renumbering Iterative Solver

17 PARTITIONING Partitioning Divides domain into partitions of equal size Each partition is then assigned to a different processor

18 PARTITIONING

19 PARTITIONING Partitioning Divides domain into partitions of equal size Each partition is then assigned to a different processor

20 PARTITION RENUMBERING Partition Renumbering Each partition is renumbered locally so as to have an independent problem on each process Each processor solves the same set of equations but on its own partition Coupling between processors is done by defining shadow and sender elements at the interface

21 PARTITIONG RENUMBERING

22 SOLVER SYNCHRONIZATION As each processor iterates on its system of equations, updates at the interface need to be made

23 SOLVER SYNCHRONIZATION As each processor iterates on its system of equations, updates at the interface need to be made =

24 AMG SYNCHRONIZATION Linear solver synchronization affects the number of outer iterations and thus scalability degenerates Solution is to parallelize AMG solver Each processor performs agglomeration while enforcing same number of levels across the domain Shadow and sender elements are defined for each level Updates at the interface are made at each level

25 RESULTS Non-linear Diffusion problem is a square domain ( Γ φ)= 0 Γ = φ 0.1

26 RESULTS Speedup Solution Time Shadow-to-core Ratio Efficiency Solution Time Ideal ,454 99, ,222 99, , , , , , , , , Maximum Number shadow/core Processors of Partitions elements ratio

27 CONCLUSION A Parallel AMG solver has been implemented and tested using available resources Good scalability was achieved Improvement by using better network switch Future plans included implementation of the solution of the Navier-Stokes equations

28 THANK YOU FOR ATTENDING

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Transient, Source Terms and Relaxation

Transient, Source Terms and Relaxation F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational

More information

The Finite Volume Mesh

The Finite Volume Mesh FMIA F Moukalled L Mangani M Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Instructor: Jayathi Y. Murthy School of Mechanical Engineering Purdue University Spring 00 c 1998 J.Y. Murthy and S.R. Mathur.

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

The Finite Volume Method in

The Finite Volume Method in FMIA F Moukalled L Mangani M Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in omputational

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

CFD Analysis of Mixing in Polymerization Reactor. By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari IPR 2007

CFD Analysis of Mixing in Polymerization Reactor. By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari IPR 2007 CFD Analysis of Mixing in Polymerization Reactor By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari Introduction Model development Simulation Outline Model Setup for Fluent Results and discussion

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Solution Methods. Steady State Diffusion Equation. Lecture 04

Solution Methods. Steady State Diffusion Equation. Lecture 04 Solution Methods Steady State Diffusion Equation Lecture 04 1 Solution methods Focus on finite volume method. Background of finite volume method. Discretization example. General solution method. Convergence.

More information

Scientific Computing II

Scientific Computing II Technische Universität München ST 008 Institut für Informatik Dr. Miriam Mehl Scientific Computing II Final Exam, July, 008 Iterative Solvers (3 pts + 4 extra pts, 60 min) a) Steepest Descent and Conjugate

More information

A Finite-Element based Navier-Stokes Solver for LES

A Finite-Element based Navier-Stokes Solver for LES A Finite-Element based Navier-Stokes Solver for LES W. Wienken a, J. Stiller b and U. Fladrich c. a Technische Universität Dresden, Institute of Fluid Mechanics (ISM) b Technische Universität Dresden,

More information

An Introduction of Multigrid Methods for Large-Scale Computation

An Introduction of Multigrid Methods for Large-Scale Computation An Introduction of Multigrid Methods for Large-Scale Computation Chin-Tien Wu National Center for Theoretical Sciences National Tsing-Hua University 01/4/005 How Large the Real Simulations Are? Large-scale

More information

Poisson Equation in 2D

Poisson Equation in 2D A Parallel Strategy Department of Mathematics and Statistics McMaster University March 31, 2010 Outline Introduction 1 Introduction Motivation Discretization Iterative Methods 2 Additive Schwarz Method

More information

Review: From problem to parallel algorithm

Review: From problem to parallel algorithm Review: From problem to parallel algorithm Mathematical formulations of interesting problems abound Poisson s equation Sources: Electrostatics, gravity, fluid flow, image processing (!) Numerical solution:

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

Simulating Solid Tumor Growth using Multigrid Algorithms

Simulating Solid Tumor Growth using Multigrid Algorithms Simulating Solid Tumor Growth using Multigrid Applied Mathematics, Statistics, and Program Advisor: Doron Levy, PhD Department of Mathematics/CSCAMM University of Maryland, College Park September 30, 2014

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

An efficient multigrid solver based on aggregation

An efficient multigrid solver based on aggregation An efficient multigrid solver based on aggregation Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Graz, July 4, 2012 Co-worker: Artem Napov Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization. Laslo Tibor Diosady

A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization. Laslo Tibor Diosady A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization by Laslo Tibor Diosady B.A.Sc., University of Toronto (2005) Submitted to

More information

Aggregation-based algebraic multigrid

Aggregation-based algebraic multigrid Aggregation-based algebraic multigrid from theory to fast solvers Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire CEMRACS, Marseille, July 18, 2012 Supported by the Belgian FNRS

More information

Active Flux for Advection Diffusion

Active Flux for Advection Diffusion Active Flux for Advection Diffusion A Miracle in CFD Hiroaki Nishikawa National Institute of Aerospace! NIA CFD Seminar! August 25, 2015 In collaboration with the University of Michigan Supported by NASA

More information

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand Institute of Aerospace Thermodynamics Numerical modelling of phase change processes in clouds Challenges and Approaches Martin Reitzle Bernard Weigand Introduction Institute of Aerospace Thermodynamics

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Solving the Navier-Stokes Equations

Solving the Navier-Stokes Equations FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

More information

NumAn2014 Conference Proceedings

NumAn2014 Conference Proceedings OpenAccess Proceedings of the 6th International Conference on Numerical Analysis, pp 198-03 Contents lists available at AMCL s Digital Library. NumAn014 Conference Proceedings Digital Library Triton :

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Short Training Program Report Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Julian Koellermeier RWTH Aachen University Supervisor: Advisor: Prof. Thierry Magin von

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

On the Development of Implicit Solvers for Time-Dependent Systems

On the Development of Implicit Solvers for Time-Dependent Systems School o something FACULTY School OF OTHER o Computing On the Development o Implicit Solvers or Time-Dependent Systems Peter Jimack School o Computing, University o Leeds In collaboration with: P.H. Gaskell,

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations 2013 SIAM Conference On Computational Science and Engineering Boston, 27 th February 2013 PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations U. Villa,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Numerical Methods for Partial Differential Equations: an Overview.

Numerical Methods for Partial Differential Equations: an Overview. Numerical Methods for Partial Differential Equations: an Overview math652_spring2009@colorstate PDEs are mathematical models of physical phenomena Heat conduction Wave motion PDEs are mathematical models

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline - Part 4 - Multicore and Manycore Technology: Chances and Challenges Vincent Heuveline 1 Numerical Simulation of Tropical Cyclones Goal oriented adaptivity for tropical cyclones ~10⁴km ~1500km ~100km 2

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

CFD with OpenSource software

CFD with OpenSource software CFD with OpenSource software The Harmonic Balance Method in foam-extend Gregor Cvijetić Supervisor: Hrvoje Jasak Faculty of Mechanical Engineering and Naval Architecture University of Zagreb gregor.cvijetic@fsb.hr

More information

Parallel sparse linear solvers and applications in CFD

Parallel sparse linear solvers and applications in CFD Parallel sparse linear solvers and applications in CFD Jocelyne Erhel Joint work with Désiré Nuentsa Wakam () and Baptiste Poirriez () SAGE team, Inria Rennes, France journée Calcul Intensif Distribué

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 12-10 Fast linear solver for pressure computation in layered domains P. van Slingerland and C. Vuik ISSN 1389-6520 Reports of the Department of Applied Mathematical

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations

Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations Khosro Shahbazi,a Dimitri J. Mavriplis b Nicholas K. Burgess b a Division of Applied

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

NAVIER STOKES EQS. SOLVER LAPLACE EQ. SOLVER 1D COOLANT FLOW SOLVER OUTER LOOP INNER LOOP YES CONVERGENCE

NAVIER STOKES EQS. SOLVER LAPLACE EQ. SOLVER 1D COOLANT FLOW SOLVER OUTER LOOP INNER LOOP YES CONVERGENCE 1 st International Conference "From Scientific Computing to Computational Engineering " 1 st IC-SCCE Athens, 8-10 September, 2004 IC-SCCE AUTOMATED PARALLEL CFD ANALYSIS OF INTERNALLY COOLED TURBINE BLADES

More information

Solution Methods. Steady convection-diffusion equation. Lecture 05

Solution Methods. Steady convection-diffusion equation. Lecture 05 Solution Methods Steady convection-diffusion equation Lecture 05 1 Navier-Stokes equation Suggested reading: Gauss divergence theorem Integral form The key step of the finite volume method is to integrate

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

Simulating Solid Tumor Growth Using Multigrid Algorithms

Simulating Solid Tumor Growth Using Multigrid Algorithms Simulating Solid Tumor Growth Using Multigrid Algorithms Asia Wyatt Applied Mathematics, Statistics, and Scientific Computation Program Advisor: Doron Levy Department of Mathematics/CSCAMM Abstract In

More information

Fine-grained Parallel Incomplete LU Factorization

Fine-grained Parallel Incomplete LU Factorization Fine-grained Parallel Incomplete LU Factorization Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Sparse Days Meeting at CERFACS June 5-6, 2014 Contribution

More information

Recent Developments in Overture

Recent Developments in Overture Recent Developments in Overture Bill Henshaw Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA. 11th Symposium on Overset Grids and Solution Technology,

More information

Algebraic multigrid within defect correction for the linearized Euler equations

Algebraic multigrid within defect correction for the linearized Euler equations NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2010; 17:307 324 Published online 10 December 2009 in Wiley InterScience (www.interscience.wiley.com)..687 Algebraic multigrid within

More information

Direct numerical simulation of interfacial instability in gas-liquid flows

Direct numerical simulation of interfacial instability in gas-liquid flows Direct numerical simulation of interfacial instability in gas-liquid flows Iain Bethune 1, Lennon Ó Náraigh 2, David Scott 1, Peter Spelt 3,4, Prashant Valluri 5, Zlatko Solomenko 3 1 Edinburgh Parallel

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

arxiv: v1 [math.na] 6 Nov 2017

arxiv: v1 [math.na] 6 Nov 2017 Efficient boundary corrected Strang splitting Lukas Einkemmer Martina Moccaldi Alexander Ostermann arxiv:1711.02193v1 [math.na] 6 Nov 2017 Version of November 6, 2017 Abstract Strang splitting is a well

More information

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

An advanced ILU preconditioner for the incompressible Navier-Stokes equations An advanced ILU preconditioner for the incompressible Navier-Stokes equations M. ur Rehman C. Vuik A. Segal Delft Institute of Applied Mathematics, TU delft The Netherlands Computational Methods with Applications,

More information

Splitting Iteration Methods for Positive Definite Linear Systems

Splitting Iteration Methods for Positive Definite Linear Systems Splitting Iteration Methods for Positive Definite Linear Systems Zhong-Zhi Bai a State Key Lab. of Sci./Engrg. Computing Inst. of Comput. Math. & Sci./Engrg. Computing Academy of Mathematics and System

More information

Optimizing Runge-Kutta smoothers for unsteady flow problems

Optimizing Runge-Kutta smoothers for unsteady flow problems Optimizing Runge-Kutta smoothers for unsteady flow problems Philipp Birken 1 November 24, 2011 1 Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany. email:

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Introduction to numerical simulation of fluid flows

Introduction to numerical simulation of fluid flows Introduction to numerical simulation of fluid flows Mónica de Mier Torrecilla Technical University of Munich Winterschool April 2004, St. Petersburg (Russia) 1 Introduction The central task in natural

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

High Performance Multigrid Software

High Performance Multigrid Software High Performance Multigrid Software Ulrike Meier Yang This work was performed under the auspices of the U.S. Department of Energy by under Contract DE-AC52-07NA27344. Lawrence Livermore National Security,

More information

Bootstrap AMG. Kailai Xu. July 12, Stanford University

Bootstrap AMG. Kailai Xu. July 12, Stanford University Bootstrap AMG Kailai Xu Stanford University July 12, 2017 AMG Components A general AMG algorithm consists of the following components. A hierarchy of levels. A smoother. A prolongation. A restriction.

More information

A Numerical Study of Some Parallel Algebraic Preconditioners

A Numerical Study of Some Parallel Algebraic Preconditioners A Numerical Study of Some Parallel Algebraic Preconditioners Xing Cai Simula Research Laboratory & University of Oslo PO Box 1080, Blindern, 0316 Oslo, Norway xingca@simulano Masha Sosonkina University

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW VAN EMDEN HENSON CENTER FOR APPLIED SCIENTIFIC COMPUTING LAWRENCE LIVERMORE NATIONAL LABORATORY Abstract Since their early application to elliptic

More information

High performance mantle convection modeling

High performance mantle convection modeling High performance mantle convection modeling Jens Weismüller, Björn Gmeiner, Siavash Ghelichkhan, Markus Huber, Lorenz John, Barbara Wohlmuth, Ulrich Rüde and Hans-Peter Bunge Geophysics Department of Earth-

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

A Multilevel Method for Solution Verification

A Multilevel Method for Solution Verification A Multilevel Method for Solution Verification Marc Garbey and Christophe Picard University of Houston, Computer Science (http://www.cs.uh.edu/~garbey/) Summary. This paper addresses the challenge of solution

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

Approach Curve COMSOL Report File

Approach Curve COMSOL Report File Approach Curve COMSOL Report File Contents 1. Global Definitions 1.1. Parameters 1 2. Model 1 (mod1) 2.1. Definitions 2.2. Geometry 1 2.3. Transport of Diluted Species (chds) 2.4. Mesh 1 3. Study 1 3.1.

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

Solving PDEs with CUDA Jonathan Cohen

Solving PDEs with CUDA Jonathan Cohen Solving PDEs with CUDA Jonathan Cohen jocohen@nvidia.com NVIDIA Research PDEs (Partial Differential Equations) Big topic Some common strategies Focus on one type of PDE in this talk Poisson Equation Linear

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information