Fast solvers for steady incompressible flow

Size: px
Start display at page:

Download "Fast solvers for steady incompressible flow"

Transcription

1 ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University Joint work with: Howard Elman (University of Maryland, USA) David Silvester (University of Manchester, UK) Acknowledgements: EPSRC, British Energy

2 ICFD 25 p.2/21 Steady Incompressible Navier-Stokes: ν 2 u + u. u + p = f u = 0 mixed finite element approximation (or other approx eg. MAC scheme): u u h = u i φ i X h (H 1 ) d p p h = p k ψ k M h L 2 Galerkin F(u) B T u p f 0 B 0 = u: velocity coefficients, p: pressure coefficients

3 ICFD 25 p.3/21 Steady Incompressible Navier-Stokes: ν 2 u + u. u + p = f u = 0 F(u) B T u p f 0 Approximation B 0 = u: velocity coefficients, p: pressure coefficients B/B T : discrete divergence/gradient F(u) = νa + N(u): discrete advection diffusion operator A: discrete (vector) Laplacian, N: advection

4 ICFD 25 p.4/21 Linearisation: Slow flow Stokes νa B T B 0 u p = f 0

5 ICFD 25 p.4/21 Linearisation: Slow flow Stokes νa B T u p f 0 B 0 = Picard (simple fixed point) Oseen νa + N(u k ) B T u (k+1) f 0 B 0 p (k+1) =

6 ICFD 25 p.4/21 Linearisation: Slow flow Stokes νa B T u p f 0 B 0 = Picard (simple fixed point) Oseen νa + N(u k ) B T u (k+1) f 0 B 0 p (k+1) = Newton F(u k ) + M(u k ) B T δu (k+1) B 0 δp (k+1) = residual M(u) = F u (u).u: zeroth order term

7 ICFD 25 p.5/21 Fast solution of these linearised INDEFINITE systems: Direct (elimination) methods: dimensions 10 4, 10 5 Multigrid: effective smoothers Krylov subspace methods (Conjugate Gradients, MINRES, GMRES,...): PRECONDITIONING

8 An observation (Murphy, Golub, W) H B T preconditioned by H 0 0 S H B T 0 S B 0 has 3 distinct eigenvalues has 2 distinct eigenvalues where S = BH 1 B T (Schur Complement) MINRES /GMRES terminates in 3 / 2 iterations want approximations Ĥ, Ŝ 3 / 2 clusters fast convergence ICFD 25 p.6/21

9 Ĥ: ICFD 25 p.7/21

10 ICFD 25 p.7/21 Ĥ: for Stokes: H = νa is just discrete Laplacian use multigrid

11 ICFD 25 p.7/21 Ĥ: for Stokes: H = νa is just discrete Laplacian use multigrid for Oseen: H = F(u k ) = νa + N(u k ) is discrete advection-diffusion use multigrid

12 ICFD 25 p.7/21 Ĥ: for Stokes: H = νa is just discrete Laplacian use multigrid for Oseen: H = F(u k ) = νa + N(u k ) is discrete advection-diffusion use multigrid for Newton: H = F(u k ) + M(u k ) is discrete 2nd order operator use multigrid?

13 Ŝ? (Schur Complement Approximation) ICFD 25 p.8/21

14 ICFD 25 p.8/21 Ŝ? (Schur Complement Approximation) Stokes: directly use div-stabilty γ p sup u (p, u) u in matrix form: γ(p T Qp) 1/2 max u = max w=a 1/2 u p T Bu (u T Au) 1/2 p T BA 1/2 w (w T w) 1/2 = (p T BA 1 B T p) 1/2

15 ICFD 25 p.8/21 Ŝ? (Schur Complement Approximation) Stokes: directly use div-stabilty and boundedness γ p sup u (p, u) u Γ p in matrix form: γ(p T Qp) 1/2 max u = max w=a 1/2 u p T Bu (u T Au) 1/2 p T BA 1/2 w (w T w) 1/2 = (p T BA 1 B T p) 1/2 Γ(p T Qp) 1/2 shows Q, the pressure mass matrix, is (spectrally) equivalent to the Schur complement BA 1 B T use Ŝ = Q (or diag(q) or diag scaled Chebyshev for Q)

16 Preconditioner for Stokes: AMG 0 0 Q = Ĥ 0 0 Ŝ Theory (Silvester and W): Convergence (in right norm) independent of h Practice: number of MINRES iterations for 10 6 residual reduction (CPU time) A MG : 1 V-cycle Ŝ: 4 diag scaled Conj Grad iterations Driven Cavity flow Mixed Element Grid Q 1 P 0 Q 2 Q 1 Q 2 P 1 Q 2 P 0 direct (6) 31 (5) 29 (5) 25 (5) (.3) (8) 33 (10) 31 (7) 25 (6) (3) (21) 31 (21) 31 (19) 27 (16) (31) (76) 31 (74) 29 (69) 27 (59) (221) (313) 29 (309) 29 (305) 27 (267) (8961) ICFD 25 p.9/21

17 ICFD 25 p.10/21 Results from Rene Schneider (Leeds/Chemnitz): P 2 P 1 on 1 processor of a cluster of Sun Fire 6800 with UltraSPARC II Cu 900MHz processors CPU time degrees of freedom iterations for solution for setup e-2 1.5e e-1 5.0e e e+1 5.9e e e+2 1.0e e+3 4.2e e+3 1.7e e+4 6.8e+2

18 Ŝ? (Schur Complement Approximation) Oseen: non-symmetric S = BF 1 B T, F = νa + N, advection-diffusion Note: BB T QA p : discrete Laplacian on pressure space If F p is similarly an advection-diffusion operator on the pressure space, can expect FB T B T F p BB T BF 1 B T F p = SF p S 1 F p (BB T ) 1 F p A 1 p Q 1 Outcome: choose Ŝ 1 = F p A 1 p Q 1 (Kay & Loghin) with A 1 p MG cycle and Q 1 diag scaled Conj Grad ICFD 25 p.11/21

19 ICFD 25 p.12/21 FMG B Oseen preconditioner: T, 0 Ŝ Ŝ 1 = F p A 1 p Q 1 This is the Pressure Convection-Diffusion Preconditioner Theory (Krzyzanowski, Loghin, Elman, Silvester & W): Eigenvalues bounded independent of h ( GMRES convergence bounded independent of h?) Mild dependence on ν Practice: number of GMRES iterations for Oseen solve (zero initial vector), driven cavity flow Q 2 Q 1 Q 1 P 0 Grid ν =1/10 1/100 1/1000 1/10 1/100 1/

20 ICFD 25 p.13/21 3-D Driven Cavity flow, u top = (1/ 3, 2/ 3, 0) Maximum number of GMRES iterations for each Picard iteration (Oseen solve) Q 2 Q 1 element ν = 1/Re degees of freedom 1/20 1/40 1/80 1/ (results from David Kay)

21 ICFD 25 p.14/21 3-D Driven Cavity flow, u top = (1/ 3, 2/ 3, 0) Maximum number of GMRES iterations for each Picard iteration (Oseen solve) Q 2 Q 1 element, degees of freedom: element aspect ratio: maximum edge length/minimum edge length ν = 1/Re element aspect ratio 1/50 1/100 1/

22 Comment: alternative derivation (using Greens tensors) and analysis of ν-dependence: Kay, Loghin & W, Elman, Silvester & W,Loghin & W ICFD 25 p.15/21

23 ICFD 25 p.15/21 Comment: alternative derivation (using Greens tensors) and analysis of ν-dependence: Kay, Loghin & W, Elman, Silvester & W,Loghin & W Also alternative component preconditioning blocks can easily be used: Results from Vicki Howle (Sandia National Lab, USA) using (Smoothed Aggregation) Algebraic Multigrid ν = 1/Re Grid 1 1/10 1/20 1/

24 ICFD 25 p.16/21 Preconditioner for Newton: as M(u k ) is zeroth order, use F 1 (u k ) + M 1,1 (u k ) M 1,2 (u k ) 0 F 2 (u k ) + M 2,2 (u k ) 0 Ŝ B T with Ŝ 1 = F p A 1 p Q 1 (as before for Oseen) Theory: eigenvalues bounded and bounded away from 0 independently of h (Elman, Loghin & W) Practice: needs approximations to F i (u k ) + M i,i (u k ) as well as multigrid cycles for A p, Conj Grad for Q and construction of F p (multiply).

25 ICFD 25 p.17/21 Driven cavity: number of GMRES iterations for first Newton iteration Q 2 Q 1 Q 1 P 0 Grid ν =1/10 1/100 1/1000 1/10 1/100 1/ >

26 ICFD 25 p.18/21 Alternative algebraic preconditioner for Oseen/ Newton (Elman): instead of FB T B T F p start from so BFB T BB T F p (BB T ) 1 BFB T A 1 p Q 1 F p A 1 p Q 1 (BB T ) 1 BFB T (BB T ) 1 S 1 and (BB T ) 1 ( ) 1 use (Laplace) multigrid!

27 ICFD 25 p.18/21 Alternative algebraic preconditioner for Oseen/ Newton (Elman): instead of FB T B T F p start from BFB T BB T F p (BB T ) 1 BFB T A 1 p Q 1 F p A 1 p Q 1 In fact with the correct mesh scaling: Ŝ 1 = (BD 1 B T ) 1 BD 1 FD 1 B T (BD 1 B T ) 1 S 1 where D is diagonal of velocity mass matrix D. This is the Least-Squares Commutator Preconditioner

28 ICFD 25 p.19/21 Ŝ 1 = (BD 1 B T ) 1 BD 1 FD 1 B T (BD 1 B T ) 1 S 1 Note again only multiply by advection-diffusion operator F and multigrid cycles for Laplacian, but mild mesh-dependence of convergence for this algebraic preconditioner Practice: number of GMRES iterations for Oseen solve (zero initial vector), driven cavity flow, Q 2 Q 1 mixed element Oseen Newton Grid ν =1/10 1/100 1/1000 1/10 1/100 1/

29 ICFD 25 p.20/21 Important points: need only approximate solvers/preconditioners for Laplacian and advection-diffusion simple multigrid for such scalar problems can be applied any (stable or stabilised) discretisation need advection-diffusion operator for pressure space

30 ICFD 25 p.21/21 Main Reference Elman, H.C., Silvester, D.J. & Wathen, A.J., 2005, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005 and associated matlab software: IFISS freely downloadable from

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1)

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1) University of Maryland Department of Computer Science TR-C4930 University of Maryland Institute for Advanced Computer Studies TR-009-0 BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR

More information

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS BIT Numerical Mathematics 43: 961 974, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 961 PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-10 Comparison of some preconditioners for the incompressible Navier-Stokes equations X. He and C. Vuik ISSN 1389-6520 Reports of the Delft Institute of Applied

More information

Fast Solvers for Unsteady Incompressible Flow

Fast Solvers for Unsteady Incompressible Flow ICFD25 Workshop p. 1/39 Fast Solvers for Unsteady Incompressible Flow David Silvester University of Manchester http://www.maths.manchester.ac.uk/~djs/ ICFD25 Workshop p. 2/39 Outline Semi-Discrete Navier-Stokes

More information

Chebyshev semi-iteration in Preconditioning

Chebyshev semi-iteration in Preconditioning Report no. 08/14 Chebyshev semi-iteration in Preconditioning Andrew J. Wathen Oxford University Computing Laboratory Tyrone Rees Oxford University Computing Laboratory Dedicated to Victor Pereyra on his

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2002) 90: 665 688 Digital Object Identifier (DOI) 10.1007/s002110100300 Numerische Mathematik Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes

More information

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS ON THE ROLE OF COUTATOR ARGUENTS IN THE DEVELOPENT OF PARAETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLES JOHN W. PEARSON Abstract. The development of preconditioners for PDE-constrained optimization

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 35, pp. 57-80, 009. Copyright 009,. ISSN 1068-9613. ETNA BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS

More information

ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS MICHELE BENZI AND ZHEN WANG Abstract. We analyze a class of modified augmented Lagrangian-based

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

Uncertainty Quantification: Does it need efficient linear algebra?

Uncertainty Quantification: Does it need efficient linear algebra? USA trip October 2014 p. 1/62 Uncertainty Quantification: Does it need efficient linear algebra? David Silvester University of Manchester, UK Catherine Powell University of Manchester,UK Yes. USA trip

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

A parallel block multi-level preconditioner for the 3D incompressible Navier Stokes equations

A parallel block multi-level preconditioner for the 3D incompressible Navier Stokes equations Journal of Computational Physics 187 (2003) 504 523 www.elsevier.com/locate/jcp A parallel block multi-level preconditioner for the 3D incompressible Navier Stokes equations Howard C. Elman a,1, Victoria

More information

Theoretical advances. To illustrate our approach, consider the scalar ODE model,

Theoretical advances. To illustrate our approach, consider the scalar ODE model, Final Report GR/R69/ : Analysis of Numerical Methods for Incompressible Fluid Dynamics Personnel supported: Professor Philip Gresho (nominated Visiting Fellow; visited UK: 7/6/ 5//). Dr David Kay (visited

More information

Preconditioning for Nonsymmetry and Time-dependence

Preconditioning for Nonsymmetry and Time-dependence Preconditioning for Nonsymmetry and Time-dependence Andy Wathen Oxford University, UK joint work with Jen Pestana and Elle McDonald Jeju, Korea, 2015 p.1/24 Iterative methods For self-adjoint problems/symmetric

More information

A TAXONOMY AND COMPARISON OF PARALLEL BLOCK MULTI-LEVEL PRECONDITIONERS FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

A TAXONOMY AND COMPARISON OF PARALLEL BLOCK MULTI-LEVEL PRECONDITIONERS FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS University of Maryland Department of Computer Science R-4867 University of Maryland Institute for Advanced Computer Studies R-2007-20 A AXONOMY AND COMPARISON OF PARALLEL BLOCK MULI-LEVEL PRECONDIIONERS

More information

Algebraic Multigrid Methods for the Oseen Problem

Algebraic Multigrid Methods for the Oseen Problem Algebraic Multigrid Methods for the Oseen Problem Markus Wabro Joint work with: Walter Zulehner, Linz www.numa.uni-linz.ac.at This work has been supported by the Austrian Science Foundation Fonds zur Förderung

More information

The Mixed Finite Element Multigrid Preconditioned Minimum Residual Method for Stokes Equations

The Mixed Finite Element Multigrid Preconditioned Minimum Residual Method for Stokes Equations The Mixed Finite Element Multigrid Preconditioned Minimum Residual Method for Stokes Equations K. Muzhinji, S. Shateyi, and S, S. Motsa 2 University of Venda, Department of Mathematics, P Bag X5050, Thohoyandou

More information

Combination Preconditioning of saddle-point systems for positive definiteness

Combination Preconditioning of saddle-point systems for positive definiteness Combination Preconditioning of saddle-point systems for positive definiteness Andy Wathen Oxford University, UK joint work with Jen Pestana Eindhoven, 2012 p.1/30 compute iterates with residuals Krylov

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000 UNIVERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES DEPARTMENT OF COMPUTER SCIENCE PERFORMANCE AND ANALYSIS OF SADDLE POINT PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS

More information

A Review of Solution Techniques for Unsteady Incompressible Flow

A Review of Solution Techniques for Unsteady Incompressible Flow Zeist 2009 p. 1/57 A Review of Solution Techniques for Unsteady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/57 PDEs Review : 1966 1999 Update : 2000

More information

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

An advanced ILU preconditioner for the incompressible Navier-Stokes equations An advanced ILU preconditioner for the incompressible Navier-Stokes equations M. ur Rehman C. Vuik A. Segal Delft Institute of Applied Mathematics, TU delft The Netherlands Computational Methods with Applications,

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 27, No. 5, pp. 1651 1668 c 2006 Society for Industrial and Applied Mathematics BLOCK PRECONDITIONERS BASED ON APPROXIMATE COMMUTATORS HOWARD ELMAN, VICTORIA E. HOWLE, JOHN SHADID,

More information

A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations

A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations SANDIA REPORT SAND2007-2761 Unlimited Release Printed May 2007 A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations Howard Elman, Victoria

More information

Robert Shuttleworth Doctor of Philosophy, 2007

Robert Shuttleworth Doctor of Philosophy, 2007 ABSTRACT Title of dissertation: BLOCK PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS Robert Shuttleworth Doctor of Philosophy, 2007 Dissertation directed by: Professor Howard Elman Computer Science Department

More information

c 2011 Society for Industrial and Applied Mathematics

c 2011 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 33, No. 5, pp. 2761 2784 c 2011 Society for Industrial and Applied Mathematics ANALYSIS OF AUGMENTED LAGRANGIAN-BASED PRECONDITIONERS FOR THE STEADY INCOMPRESSIBLE NAVIER STOKES

More information

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations 2013 SIAM Conference On Computational Science and Engineering Boston, 27 th February 2013 PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations U. Villa,

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

A comparison of preconditioners for incompressible Navier Stokes solvers

A comparison of preconditioners for incompressible Navier Stokes solvers INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2007) Published online in Wiley InterScience (www.interscience.wiley.com)..1684 A comparison of preconditioners for incompressible

More information

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J.

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J. IFISS: A computational laboratory for investigating incompressible flow problems Elman, Howard C. and Ramage, Alison and Silvester, David J. 22 MIMS EPrint: 22.8 Manchester Institute for Mathematical Sciences

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

The Mixed Finite Element Multigrid Preconditioned MINRES Method for Stokes Equations

The Mixed Finite Element Multigrid Preconditioned MINRES Method for Stokes Equations Journal of Applied Fluid Mechanics, Vol. 9, No. 3, pp. 285-296, 206. Available online at www.jafmonline.net, ISSN 735-3572, EISSN 735-3645. DOI: 0.8869/acadpub.jafm.68.228.22805 The Mixed Finite Element

More information

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Journal of Computational Mathematics Vol.xx, No.x, 2x, 6. http://www.global-sci.org/jcm doi:?? ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Davod

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-07 On preconditioning incompressible non-newtonian flow problems Xin He, Maya Neytcheva and Cornelis Vuik ISSN 1389-6520 Reports of the Delft Institute of Applied

More information

Department of Computer Science, University of Illinois at Urbana-Champaign

Department of Computer Science, University of Illinois at Urbana-Champaign Department of Computer Science, University of Illinois at Urbana-Champaign Probing for Schur Complements and Preconditioning Generalized Saddle-Point Problems Eric de Sturler, sturler@cs.uiuc.edu, http://www-faculty.cs.uiuc.edu/~sturler

More information

Efficient iterative algorithms for linear stability analysis of incompressible flows

Efficient iterative algorithms for linear stability analysis of incompressible flows IMA Journal of Numerical Analysis Advance Access published February 27, 215 IMA Journal of Numerical Analysis (215) Page 1 of 21 doi:1.193/imanum/drv3 Efficient iterative algorithms for linear stability

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini Iterative solvers for saddle point algebraic linear systems: tools of the trade V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The problem

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

UNIVERSITY OF MARYLAND NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 OCTOBER 1999

UNIVERSITY OF MARYLAND NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 OCTOBER 1999 UNIVERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES DEPARTMENT OF COMPUTER SCIENCE EFFICIENT PRECONDITIONING OF THE LINEARIZED NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 DAVID SILVESTER

More information

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems NATURAL PRECONDITIONING AND ITERATIVE METHODS FOR SADDLE POINT SYSTEMS JENNIFER PESTANA AND ANDREW J. WATHEN Abstract. The solution of quadratic or locally quadratic extremum problems subject to linear(ized)

More information

Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems

Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems Zeng et al. Journal of Inequalities and Applications 205 205:355 DOI 0.86/s3660-05-0879-x RESEARCH Open Access Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization

More information

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation Mohamed S. Ebeida Carnegie Mellon University, Pittsburgh, PA 15213 Roger L. Davis and Roland W. Freund

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

X. He and M. Neytcheva. Preconditioning the incompressible Navier-Stokes equations with variable viscosity. J. Comput. Math., in press, 2012.

X. He and M. Neytcheva. Preconditioning the incompressible Navier-Stokes equations with variable viscosity. J. Comput. Math., in press, 2012. List of papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I II III IV V VI M. Neytcheva, M. Do-Quang and X. He. Element-by-element Schur complement

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

Preconditioning Strategies for Models of Incompressible Flow

Preconditioning Strategies for Models of Incompressible Flow Journal of Sc&ntific Computing, Vol. 25, Nos. 1/2, November 2005 (9 2005) DOI: 10.1007/s 10915-004-4648-0 Preconditioning Strategies for Models of Incompressible Flow H. C. Elman 1 Received October 22,

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Adaptive preconditioners for nonlinear systems of equations

Adaptive preconditioners for nonlinear systems of equations Adaptive preconditioners for nonlinear systems of equations L. Loghin D. Ruiz A. Touhami CERFACS Technical Report TR/PA/04/42 Also ENSEEIHT-IRIT Technical Report RT/TLSE/04/02 Abstract The use of preconditioned

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

AN AUGMENTED LAGRANGIAN APPROACH TO LINEARIZED PROBLEMS IN HYDRODYNAMIC STABILITY

AN AUGMENTED LAGRANGIAN APPROACH TO LINEARIZED PROBLEMS IN HYDRODYNAMIC STABILITY AN AUGMENTED LAGRANGIAN APPROACH TO LINEARIZED PROBLEMS IN HYDRODYNAMIC STABILITY MAXIM A. OLSHANSKII AND MICHELE BENZI Abstract. The solution of linear systems arising from the linear stability analysis

More information

New multigrid smoothers for the Oseen problem

New multigrid smoothers for the Oseen problem NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. (2010) Published online in Wiley InterScience (www.interscience.wiley.com)..707 New multigrid smoothers for the Oseen problem Steven

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva July 2015 Joint work with Victorita Dolean, Walid Kheriji, Felix Kwok and Roland Masson (1845): First Idea of After preconditioning, it takes only three

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

EQUATIONS WITH LOW VISCOSITY HOWARD C. ELMAN UMIACS-TR November 1996

EQUATIONS WITH LOW VISCOSITY HOWARD C. ELMAN UMIACS-TR November 1996 PRECONDITIONING FOR THE STEADY-STATE NAVIER-STOKES EQUATIONS WITH LOW VISCOSITY HOWARD C. ELMAN Report CS-TR-372 UMIACS-TR-96-82 November 996 Abstract. We introduce a preconditioner for the linearized

More information

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices Journal of Computational Applied Mathematics 6 (009) 136 154 Contents lists available at ScienceDirect Journal of Computational Applied Mathematics journal homepage: wwwelseviercom/locate/cam Optimization

More information

Termination criteria for inexact fixed point methods

Termination criteria for inexact fixed point methods Termination criteria for inexact fixed point methods Philipp Birken 1 October 1, 2013 1 Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany Department of Mathematics/Computer

More information

Using Python to Solve the Navier-Stokes Equations - Applications in the Preconditioned Iterative Methods

Using Python to Solve the Navier-Stokes Equations - Applications in the Preconditioned Iterative Methods Journal of Scientific Research & Reports 7(3): 207-217 2015 Article no.jsrr.2015.202 ISSN: 2320-0227 SCIENCEDOMAIN international www.sciencedomain.org Using Python to Solve the Navier-Stokes Equations

More information

NAVIER-STOKES OPERATORS HOWARD C. ELMAN UMIACS-TR November Revised July 1996

NAVIER-STOKES OPERATORS HOWARD C. ELMAN UMIACS-TR November Revised July 1996 PERTURBATION OF EIGENVALUES OF PRECONDITIONED NAVIER-STOKES OPERATORS HOWARD C. ELMAN Report CS-TR-3559 UMIACS-TR-95- November 995 Revised July 996 Abstract. We study the sensitivity of algebraic eigenvalue

More information

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS U..B. Sci. Bull., Series A, Vol. 78, Iss. 4, 06 ISSN 3-707 ON A GENERAL CLASS OF RECONDIIONERS FOR NONSYMMERIC GENERALIZED SADDLE OIN ROBLE Fatemeh anjeh Ali BEIK his paper deals with applying a class

More information

Optimal solvers for PDE-Constrained Optimization

Optimal solvers for PDE-Constrained Optimization Report no. 8/ Optimal solvers for PDE-Constrained Optimization Tyrone Rees Oxford University Computing Laboratory H. Sue Dollar Rutherford Appleton Laboratory Andrew J. Wathen Oxford University Computing

More information

arxiv: v1 [math.na] 18 Dec 2017

arxiv: v1 [math.na] 18 Dec 2017 A Bramble-Pasciak conjugate gradient method for discrete Stokes problems with lognormal random viscosity arxiv:1712.06472v1 [math.na] 18 Dec 2017 Christopher Müller 1,2, Sebastian Ullmann 1,2, and Jens

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

The solution of the discretized incompressible Navier-Stokes equations with iterative methods The solution of the discretized incompressible Navier-Stokes equations with iterative methods Report 93-54 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische

More information

Regularized HSS iteration methods for saddle-point linear systems

Regularized HSS iteration methods for saddle-point linear systems BIT Numer Math DOI 10.1007/s10543-016-0636-7 Regularized HSS iteration methods for saddle-point linear systems Zhong-Zhi Bai 1 Michele Benzi 2 Received: 29 January 2016 / Accepted: 20 October 2016 Springer

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS M. ARIOLI 1,3 AND D. LOGHIN 2 Abstract. We study stopping criteria that are suitable in the solution by Krylov space based methods of linear and non

More information

Incompressible Flow & Iterative Solver Software (IFISS) Installation & Software Guide 1

Incompressible Flow & Iterative Solver Software (IFISS) Installation & Software Guide 1 Incompressible Flow & Iterative Solver Software (IFISS) Installation & Software Guide 1 David J Silvester 2 Howard C Elman 3 Alison Ramage 4 Version 35 released 22 September 2016 1 This project was supported

More information

Using PETSc Solvers in PyLith

Using PETSc Solvers in PyLith Using PETSc Solvers in PyLith Matthew Knepley, Brad Aagaard, and Charles Williams Computational and Applied Mathematics Rice University CIG All-Hands PyLith Tutorial 2016 UC Davis June 19, 2016 M. Knepley

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

Finite Elements for Magnetohydrodynamics and its Optimal Control

Finite Elements for Magnetohydrodynamics and its Optimal Control Finite Elements for Magnetohydrodynamics and its Karl Kunisch Marco Discacciati (RICAM) FEM Symposium Chemnitz September 25 27, 2006 Overview 1 2 3 What is Magnetohydrodynamics? Magnetohydrodynamics (MHD)

More information

arxiv: v3 [math.na] 9 May 2011

arxiv: v3 [math.na] 9 May 2011 Purely algebraic domain decomposition methods for the incompressible Navier-Stokes equations Pawan Kumar 1 Service de Métrologie Nucléaire Université libre de Bruxelles Bruxelles, Belgium pawan.kumar@u-psud.fr/kumar.lri@gmail.com

More information

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS Department of Mathematics University of Maryland, College Park Advisor: Dr. Howard Elman Department of Computer

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Structured Preconditioners for Saddle Point Problems

Structured Preconditioners for Saddle Point Problems Structured Preconditioners for Saddle Point Problems V. Simoncini Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it p. 1 Collaborators on this project Mario Arioli, RAL, UK Michele Benzi,

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 06-05 Solution of the incompressible Navier Stokes equations with preconditioned Krylov subspace methods M. ur Rehman, C. Vuik G. Segal ISSN 1389-6520 Reports of the

More information

OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION

OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION TYRONE REES, H. SUE DOLLAR, AND ANDREW J. WATHEN Abstract. Optimization problems with constraints which require the solution of a partial differential equation

More information

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control)

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control) PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control) Youngsoo Choi Introduction PDE-condstrained optimization has broad and important applications. It is in some sense an obvious consequence

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 18-05 Efficient and robust Schur complement approximations in the augmented Lagrangian preconditioner for high Reynolds number laminar flows X. He and C. Vuik ISSN

More information