Solving the Navier-Stokes Equations

Size: px
Start display at page:

Download "Solving the Navier-Stokes Equations"

Transcription

1 FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation o the FVM numerics and algorithms used in the simulation o incompressible and compressible luid lows, along with a detailed examination o the components needed or the development o a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The irst is ufvm, a three-dimensional unstructured pressure-based inite volume academic CFD code, implemented within Matlab. The second is OpenFOAM, an open source ramework used in the development o a range o CFD programs or the simulation o industrial scale low problems. Moukalled Mangani Darwish Fluid Mechanics and Its Applications 3 Series Editor: A. Thess The Finite Volume Method in Computational Fluid Dynamics With over 220 igures, numerous examples and more than one hundred exercises on FVM numerics, programming, and applications, this textbook is suitable or use in an introductory course on the FVM, in an advanced course on CFD algorithms, and as a reerence or CFD programmers and researchers. Fluid Mechanics and Its Applications F. Moukalled L. Mangani M. Darwish The Finite Volume Method in Computational Fluid Dynamics The Finite Volume Method in Computational Fluid Dynamics An Advanced Introduction with OpenFOAM and Matlab Engineering ISBN Solving the Navier-Stokes Equations Chapter 6

2 Pressure Equation or Compressible Flow

3 Compressible Flow ρ t + ρv = 0 ( ρv) + ( ρvv) = τ p + B t ρ = C ρ p ρ = ρ ( P + P ) = ρ ( P) + ρ P p ρ P p = C ρ p p = p (n) + p ρ = ρ (n) + ρ v = v * +

4 Discretized Equations ρ t + ρv = 0 Incompressible ( m + m ) = 0 = nb(p ) Compressible (n) ( ρ P + ρ P ρ P ) V P + (!m +!m ) = 0 =nb(p)!m = ρ ( v + ) S = ρ v S " $ # %$ + ρ v " $ # S %$!m!m v +!m = ρ (n) + ρ S = ρ (n) v S " $ # %$ + ρ (n) S + ρ v S + ρ S " $$$$ $ # $$$$$$ %!m!m

5 Velocity Correction ρ (n) v S " $ # %$ + ρ (n) S + ρ v S + ρ S " $$$$ $ # $$$$$$ %!m! m!m = ρ (n) v S ρ (n) D ( p (n) (n) p ) S (n) m! = ρ S ρ (n) D ( p p ) S " $$$$$$ # $$$$$$ % +!m ρ S (n) C ρ, p () " $ $ # $$$ % (2)

6 Pressure Equation (n) ( ρ C + ρ C ρ C ) + (!m +!m ) = 0 =nb(c ) V P C!m ρ p C + ρ (n) D p S + (n) ρ C p ρ = =nb(p) ρ (n) o C ρ C + =nb(c )!m S ρ (n) v =nb(c ) =nb(c ) ρ S ( ρ + D p ) S = H [ ] S = 0.5 ( H C + H N ) S =nb(c ) =nb(p) =nb(c ) = 0.5 =nb(c ) a NBP NBP a P + NBP(C ) NB(F ) a NBF a F v NBF S

7 Pressure Equation C ρ!# " $# p C transient like term %m + C ρ (n) ρ p + ρ (n) D ( p ) S =nb(c ) =nb(c )!### "### $!####" #### $ convection like term diusion like term ρ (n) & C ρ C = + %m =nb(c )!##### "##### $ source like term =nb(p) a C = C ρ + ρ (n) D p C ρ,!m (n) ρ,0 + ρ (n) D =nb(c ) =nb(c ) S =!m C ρ (n) ρ p =!m,0 C ρ, =nb(c ) =nb(p) ρ (n) D p p (n) C!m,0 C ρ, (n) ρ ρ E + T p F = ρ (n) D p F p C =nb(p) D = d u E x, + d v E y, d PF a F =!m,0 C ρ, ρ (n) (n) D ρ b C = ρ (n) " ( C ρ C ) + =nb(c )!m + =nb(c ) ρ (n) ( D p ) T

8 Pressure Equation C ρ ( p C )+ C ρ U p + ρ D ( p p )!###" ### $ Rhie-Chow interpolation S = ρ % ( C ρ C ) &m ρ S =nb( C) =nb( C) C ρ ( p C )+ C ρ U P =nb( C) High Resolution ρ D ( p ) S =nb( C) = ρ! ( C ρ C ) ρ * * ( U ) ρ v S ρ + D P =nb C =nb C =nb C Neglect S C ρ ( p C!m )+ C ρ =nb( C) ρ p a C p C + a F F=NB(C ) ( ρ D ( p ) S ) =nb( C) p F = b C = Ω ρ o ( P ρ P )+!m =nb( C) " $$$$ # $$$$ % p,v,!m Residual SIMPLE SIMPLEC SIMPLER SIMPLEST SIMPLE-M PISO treatment leads to variety o schemes

9 All-Speed Flow Algorithms Transient-like Term ΩC ρ * ( P P ) + ( C ρ U P ) ( ρ * D ( P ) S ) Advection-like Term account or compressibility eects = Ω ρ * o P ρ P + ρ * * ( U ) ( ρ v S ) ρ * H v ( [ ] S )

10 Multigrid Acceleration M. DARWISH ET AL M. DARWISH ET AL Figure 6. (a) Pressure contours and (b) Mach number distributions along the upper and lower walls or transonic low over a bump (Minlet ¼ 0.675). Convergence history plots o the various algorithms using the (c) single-grid, (d ) prolongation grid, and (e) multigrid methodologies or transonic low over a bump (Minlet ¼ 0.675). Figure 7. (a) Pressure contours and (b) Mach number distributions along the upper and lower walls or supersonic lo history plots o the various algorithms using the (c) single-grid, (d ) prolongation grid, and (e) multigrid methodologies o ersonic low over a bump (Minlet ¼.4). Convergence ologies or supersonic low over a bump (Minlet ¼.4). Figure 6. (a) Pressure contours and (b) Mach number distributions along the upper and lower walls or transonic low over a bump (Minlet ¼ 0.675). Conver Figure (a) (e) Pressure contours and (b) Mach number distributions along (M the upper history plots o the various algorithms using the (c) single-grid, (d ) prolongation grid,7.and multigrid methodologies or transonic low over a bump inlet ¼ 0 history plots o the various algorithms using the (c) single-grid, (d ) prolongation grid,

11 Problem - Staggered Grid Use the SIMPLE procedure to compute p2, ub, and uc rom the ollowing data: As an initial guess, set u B uc 2 3

Transient, Source Terms and Relaxation

Transient, Source Terms and Relaxation F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational

More information

The Finite Volume Method in

The Finite Volume Method in FMIA F Moukalled L Mangani M Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in omputational

More information

The Finite Volume Mesh

The Finite Volume Mesh FMIA F Moukalled L Mangani M Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational

More information

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M. FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

The Discretization Process

The Discretization Process FMIA F Moukalled L Mangan M Darwsh An Advanced Introducton wth OpenFOAM and Matlab Ths textbook explores both the theoretcal foundaton of the Fnte Volume Method (FVM) and ts applcatons n Computatonal Flud

More information

Coupled calculations in OpenFOAM -

Coupled calculations in OpenFOAM - Coupled calculations in OpenFOAM - Multiphysics handling, structures and solvers, Gothenburg Region OpenFOAM User Group Meeting Klas Jareteg Chalmers University of Technology November 14, 2012 Outline

More information

Development and Testing of a Robust Free-Surface Finite Volume Method. Marwan Darwish, Ph.D.

Development and Testing of a Robust Free-Surface Finite Volume Method. Marwan Darwish, Ph.D. Development and Testing o a Robust Free-Surace Finite Volume Method Marwan Darwish, Ph.D. Faculty o Engineering and Architecture, American University o Beirut July 2003 Summary A robust numerical technique

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

A hybrid pressure density-based algorithm for the Euler equations at all Mach number regimes

A hybrid pressure density-based algorithm for the Euler equations at all Mach number regimes INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2012; 70:961 976 Published online 4 Nov 2011 in Wiley Online Library (wileyonlinelibrary.com/journal/nmf)..2722 A hybrid

More information

Development of unsteady algorithms for pressurebased unstructured solver for two-dimensional incompressible flows

Development of unsteady algorithms for pressurebased unstructured solver for two-dimensional incompressible flows Graduate Theses and Dissertations Graduate College 2009 Development of unsteady algorithms for pressurebased unstructured solver for two-dimensional incompressible flows Angela Dwi Lestari Iowa State University

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

IMPLEMENTATION OF A PARALLEL AMG SOLVER

IMPLEMENTATION OF A PARALLEL AMG SOLVER IMPLEMENTATION OF A PARALLEL AMG SOLVER Tony Saad May 2005 http://tsaad.utsi.edu - tsaad@utsi.edu PLAN INTRODUCTION 2 min. MULTIGRID METHODS.. 3 min. PARALLEL IMPLEMENTATION PARTITIONING. 1 min. RENUMBERING...

More information

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods International Scholarly Research Network ISRN Computational Mathematics Volume 212, Article ID 172687, 5 pages doi:1.542/212/172687 Research Article Evaluation of the Capability of the Multigrid Method

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS (Adopted on 4 June 203) (Adopted on 4 June 203) ANNEX 8 (Adopted on 4 June 203) MSC 92/26/Add. Annex 8, page THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) o the Convention on the International

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch Transport equation cavitation models in an unstructured flow solver Kilian Claramunt, Charles Hirsch SHF Conference on hydraulic machines and cavitation / air in water pipes June 5-6, 2013, Grenoble, France

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings

Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Beirut, Riad El Solh, Beirut, Lebanon Published online: 21 Aug 2007.

Beirut, Riad El Solh, Beirut, Lebanon Published online: 21 Aug 2007. This article was downloaded by: [Orta Dogu Teknik Universitesi] On: 01 October 2014, At: 12:50 ublisher: Taylor & rancis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Natural Convection in Parabolic Enclosure Heated from Below

Natural Convection in Parabolic Enclosure Heated from Below www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 3; June 011 Natural Convection in Parabolic Enclosure Heated from Below Dr. Ahmed W. Mustafa (Corresponding auther) University of Tikrit, College

More information

Fluid Thermal Interaction of High Speed Compressible Viscous Flow Past Uncooled and Cooled Structures by Adaptive Mesh

Fluid Thermal Interaction of High Speed Compressible Viscous Flow Past Uncooled and Cooled Structures by Adaptive Mesh The 20th Conference of echanical Engineering Network of Thailand 18-20 October 2006, Nakhon Ratchasima, Thailand luid Thermal nteraction of High peed Compressible Viscous low Past Uncooled and Cooled tructures

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544 MULTIGRID CALCULATIONS FOB. CASCADES Antony Jameson and Feng Liu Princeton University, Princeton, NJ 0544 1. Introduction Development of numerical methods for internal flows such as the flow in gas turbines

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL M. SADEGHI AND F. LIU Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975,

More information

The investigation on SIMPLE and SIMPLER algorithm through lid driven cavity

The investigation on SIMPLE and SIMPLER algorithm through lid driven cavity 29, Issue 1 (2017) 10-23 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 The investigation on SIMPLE and SIMPLER

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux Introduction to Finite Volume projection methods On Interfaces with non-zero mass flux Rupert Klein Mathematik & Informatik, Freie Universität Berlin Summerschool SPP 1506 Darmstadt, July 09, 2010 Introduction

More information

A Critical Investigation of High-Order Flux Limiters In Multiphase Flow Problems

A Critical Investigation of High-Order Flux Limiters In Multiphase Flow Problems A Critical Investigation o High-Order Flux Limiters In Multiphase Flow Problems Chris Guenther Fluent In., 3647 Collins Ferry Rd., Morgantown, WV 26505, USA cpg@luent.com ABSTRACT. In recent years inite

More information

Nonlinear shape evolution of immiscible two-phase interface

Nonlinear shape evolution of immiscible two-phase interface Nonlinear shape evolution of immiscible two-phase interface Francesco Capuano 1,2,*, Gennaro Coppola 1, Luigi de Luca 1 1 Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II,

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

Rhie-Chow interpolation in OpenFOAM 1

Rhie-Chow interpolation in OpenFOAM 1 Rhie-Chow interpolation in OpenFOAM 1 Fabian Peng Kärrholm Department of Applied Mechanics Chalmers Univesity of Technology Göteborg, Sweden, 2006 1 Appendix from Numerical Modelling of Diesel Spray Injection

More information

Comparison of some approximation schemes for convective terms for solving gas flow past a square in a micorchannel

Comparison of some approximation schemes for convective terms for solving gas flow past a square in a micorchannel Comparison of some approximation schemes for convective terms for solving gas flow past a square in a micorchannel Kiril S. Shterev and Sofiya Ivanovska Institute of Mechanics, Bulgarian Academy of Sciences,

More information

Numerical Solution of Partial Differential Equations governing compressible flows

Numerical Solution of Partial Differential Equations governing compressible flows Numerical Solution of Partial Differential Equations governing compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Simulation and improvement of the ventilation of a welding workshop using a Finite volume scheme code

Simulation and improvement of the ventilation of a welding workshop using a Finite volume scheme code 1 st. Annual (National) Conference on Industrial Ventilation-IVC2010 Feb 24-25, 2010, Sharif University of Technology, Tehran, Iran IVC2010 Simulation and improvement of the ventilation of a welding workshop

More information

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods Homework 4 in 5C11; Part A: Incompressible Navier- Stokes, Finite Volume Methods Consider the incompressible Navier Stokes in two dimensions u x + v y = 0 u t + (u ) x + (uv) y + p x = 1 Re u + f (1) v

More information

Large Scale Simulations of Turbulent Flows for Industrial Applications. Lakhdar Remaki BCAM- Basque Centre for Applied Mathematics

Large Scale Simulations of Turbulent Flows for Industrial Applications. Lakhdar Remaki BCAM- Basque Centre for Applied Mathematics Large Scale Simulations o Turbulent Flows or Industrial Alications Lakhdar Remaki BCAM- Basque Centre or Alied Mathematics Outline Flow Motion Simulation Physical Model Finite-Volume Numerical Method CFD

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

IMPLEMENTATION OF A 3D COMPRESSIBLE MHD SOLVER ABLE TO MODEL TRANSONIC FLOWS

IMPLEMENTATION OF A 3D COMPRESSIBLE MHD SOLVER ABLE TO MODEL TRANSONIC FLOWS V European Conference on Computational Fluid Dynamics ECCOMAS CFD 21 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal,14-17 June 21 IMPLEMENTATION OF A 3D COMPRESSIBLE MHD SOLVER ABLE TO MODEL TRANSONIC

More information

CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM

CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM Suheni and Syamsuri Department of Mechanical Engineering, Adhi Tama Institute of Technology Surabaya, Indonesia E-Mail:

More information

Solving Partial Differential Equations Numerically. Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah

Solving Partial Differential Equations Numerically. Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah Solving Partial Dierential Equations Numerically Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah Overview What are partial dierential equations? How do we solve them? (Example)

More information

Immersed boundary technique for compressible flow simulations on semi-structured meshes

Immersed boundary technique for compressible flow simulations on semi-structured meshes Center for Turbulence Research Annual Research Briefs 2005 71 Immersed boundary technique for compressible flow simulations on semi-structured meshes By M. de Tullio AND G. Iaccarino 1. Motivation and

More information

Introduction to numerical simulation of fluid flows

Introduction to numerical simulation of fluid flows Introduction to numerical simulation of fluid flows Mónica de Mier Torrecilla Technical University of Munich Winterschool April 2004, St. Petersburg (Russia) 1 Introduction The central task in natural

More information

Compressible Duct Flow with Friction

Compressible Duct Flow with Friction Compressible Duct Flow with Friction We treat only the effect of friction, neglecting area change and heat transfer. The basic assumptions are 1. Steady one-dimensional adiabatic flow 2. Perfect gas with

More information

ScienceDirect. Heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system with local thermal non-equilibrium model

ScienceDirect. Heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system with local thermal non-equilibrium model Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 7644 7650 GHGT-12 Heat transer and luid transport o supercritical CO 2 in enhanced geothermal system with local thermal

More information

Development, validation and verification of the Momentum Source Model for discrete rotor blades

Development, validation and verification of the Momentum Source Model for discrete rotor blades Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Development, validation and verification of the Momentum Source Model for discrete rotor blades Kanchan

More information

3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

More information

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Thomas Gallinger * Alexander Kupzok Roland Wüchner Kai-Uwe Bletzinger Lehrstuhl für Statik Technische Universität München

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics Dr.Eng. Reima Iwatsu Phone: 0355 69 4875 e-mail: iwatsu@las.tu-cottbus.de NACO Building Room 53-107 Time Summer Term Lecture: Tuesday 7:30-9:00 (every two weeks) LG4/310 Exercise:

More information

A numerical investigation of tip clearance flow in Kaplan water turbines

A numerical investigation of tip clearance flow in Kaplan water turbines Published in the proceedings of HYDROPOWER INTO THE NEXT CENTURY - III, 1999. ISBN 9522642 9 A numerical investigation of tip clearance flow in Kaplan water turbines M.Sc. H. Nilsson Chalmers University

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer SIMPLE Algorithm for Two-Dimensional Channel Flow Fluid Flow and Heat Transfer by Professor Jung-Yang San Mechanical Engineering Department National Chung Hsing University Two-dimensional, transient, incompressible

More information

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Prediction of CO Burnout using a CHEMKIN based Network Tool

Prediction of CO Burnout using a CHEMKIN based Network Tool Prediction of CO Burnout using a CHEMKIN based Network Tool Engler-Bunte-Institut / Bereich Verbrennungstechnik Universität Karlsruhe Contents Complex reaction schemes vs. complex transport models. Complex

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications HEFAT27 5 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 1-4 July 27, Sun City, South Arica Paper number: KS2 The Eect o Internal Obstructions in Naturally Ventilated Greenhouse

More information

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime.

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime. Metallurgical and Materials Engineering Association o Metallurgical Engineers o Serbia AMES Scientiic paper UDC: 669.245 NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER AROUND A CIRCULAR CYLINDER

More information

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA)

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) Title 3 Column (full page) 2 Column What is Finite Element Analysis? 1 Column Half page The Finite Element Method The Finite Element Method (FEM)

More information

Benchmark solutions for the natural convective heat transfer problem in a square cavity

Benchmark solutions for the natural convective heat transfer problem in a square cavity Benchmark solutions for the natural convective heat transfer problem in a square cavity J. Vierendeels', B.Merci' &L E. Dick' 'Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium.

More information

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations NASA/CR-1998-208741 ICASE Report No. 98-51 Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations David L. Darmofal Massachusetts Institute of Technology, Cambridge,

More information

1 General description of the OpenFOAM suite

1 General description of the OpenFOAM suite Santiago Márquez Damián-Final Work-Computational Fluid Dynamics Description and utilization o interfoam multiphase solver 1 General description o the OpenFOAM suite OpenFOAM Open Field Operation and Manipulation

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Solution to Final Examination Date: May 4, 2011 1:00 3:00 PM Instructor: J. Murthy Open Book, Open Notes Total: 100 points Use the finite volume

More information

Cavitation Induction by Projectile Impacting on a Water Jet

Cavitation Induction by Projectile Impacting on a Water Jet Cavitation Induction by Projectile Impacting on a Water Jet 1 E. Stavropoulos Vasilakis*; 1 P. Koukouvinis; 2 M. Farhat; 1 M. Gavaises; 1 School of Mathematics, Computer Science and Engineering, CITY,

More information

Validation of assumptions on the endolymph motion inside the semicircular canals of the inner ear

Validation of assumptions on the endolymph motion inside the semicircular canals of the inner ear Research Collection Report Validation of assumptions on the endolymph motion inside the semicircular canals of the inner ear Author(s): Grieser, Bernhard; Obrist, Dominik; Kleiser, Leonhard Publication

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

Stagnation-Point Pressure Distribution and Wall Shear Stress: Numerical Simulation and Similarity Solution

Stagnation-Point Pressure Distribution and Wall Shear Stress: Numerical Simulation and Similarity Solution Stagnation-Point Pressure Distribution and Wall Shear Stress: Numerical Simulation and Similarity Solution Vai Kuong Sin and Tai Yin Tong Abstract Two-dimensional stagnation-point flow in three different

More information

Numerical Modeling of Inclined Negatively Buoyant Jets

Numerical Modeling of Inclined Negatively Buoyant Jets Numerical Modeling of Inclined Negatively Buoyant Jets Presentation by: Hossein Kheirkhah Graduate Student in Civil Engineering Dep. of Civil Engineering University of Ottawa CANADA ICDEMOS April2014 Outline

More information

Application of Chimera Grids in Rotational Flow

Application of Chimera Grids in Rotational Flow CES Seminar Write-up Application of Chimera Grids in Rotational Flow Marc Schwalbach 292414 marc.schwalbach@rwth-aachen.de Supervisors: Dr. Anil Nemili & Emre Özkaya, M.Sc. MATHCCES RWTH Aachen University

More information

DEVELOPMENT AND VALIDATION OF A C++ OBJECT ORIENTED CFD CODE FOR HEAT TRANSFER ANALYSIS

DEVELOPMENT AND VALIDATION OF A C++ OBJECT ORIENTED CFD CODE FOR HEAT TRANSFER ANALYSIS ASME-JSME 2007 Thermal Engineering and Summer Heat Transfer Conference July, 08-12, 2007 - Vancouver, Canada AJ-1266 DEVELOPMENT AND VALIDATION OF A C++ OBJECT ORIENTED CFD CODE FOR HEAT TRANSFER ANALYSIS

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 10: Case Study Computational Fluid Dynamics Michael Bader Winter 2012/2013 Module 10: Case Study Computational Fluid Dynamics, Winter 2012/2013 1 Fluid mechanics as a Discipline

More information

DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS

DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS S Wasim Akram 1, S. Rajesh 2 1 M.Tech Student, Department of Mechanical Engineering, Krishna

More information

Flow field in the compressor blade cascade NACA

Flow field in the compressor blade cascade NACA Flow field in the compressor blade cascade NACA 65-100 Tomáš Turek Thesis Supervisor: Ing. Tomáš Hyhlík, Ph.D. Abstract An investigation is made into the effects of a flow field in the compressor blade

More information

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing Lakhdar Remaki Outline What we doing in CFD? CFD in Industry Shock-filter model for mesh adaptation

More information

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Appendices A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Eq.(3.11), can be found in the literature [9,172,173] and are therefore

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

arxiv: v1 [physics.comp-ph] 10 Aug 2015

arxiv: v1 [physics.comp-ph] 10 Aug 2015 Numerical experiments on the efficiency of local grid refinement based on truncation error estimates Alexandros Syrakos a,, Georgios Efthimiou a, John G. Bartzis a, Apostolos Goulas b arxiv:1508.02345v1

More information

Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach

Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach S. Arvidson 1,2, L. Davidson 1, S.-H. Peng 1,3 1 Chalmers University of Technology 2 SAAB AB, Aeronautics 3 FOI, Swedish Defence

More information

WALL RESOLUTION STUDY FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW USING A MULTIDOMAIN CHEBYSHEV GRID

WALL RESOLUTION STUDY FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW USING A MULTIDOMAIN CHEBYSHEV GRID WALL RESOLUTION STUDY FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW USING A MULTIDOMAIN CHEBYSHEV GRID Zia Ghiasi sghias@uic.edu Dongru Li dli@uic.edu Jonathan Komperda jonk@uic.edu Farzad

More information

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Thomas P. Forbes and Jason G. Kralj National Institute of Standards and Technology,

More information

Computation of NACA0012 Airfoil Transonic Buffet Phenomenon with Unsteady Navier-Stokes Equations

Computation of NACA0012 Airfoil Transonic Buffet Phenomenon with Unsteady Navier-Stokes Equations 5th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 9-2 January 22, Nashville, Tennessee AIAA 22-699 Computation of NACA2 Airfoil Transonic Buffet Phenomenon with

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

Parallel Computation of Forced Vibration for A Compressor Cascade

Parallel Computation of Forced Vibration for A Compressor Cascade 44th AIAA Aerospace Sciences Meeting and Exhibit 9-2 January 26, Reno, Nevada AIAA 26-628 AIAA Paper 26-628 Parallel Computation of Forced Vibration for A Compressor Cascade Zongjun Hu and Gecheng Zha

More information