HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS

Size: px
Start display at page:

Download "HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS"

Transcription

1 ABSTRACT Of The Thesis Entitled HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS Submitted To The University of Delhi In Partial Fulfillment For The Award of The Degree of DOCTOR OF PHILOSOPHY (MATHEMATICS) By DEEPIKA DHALL DEPARTMENT OF MATHEMATICS UNIVERSITY OF DELHI DELHI INDIA MARCH, 202

2 ABSTRACT Title of the thesis: High Accuracy Numerical Methods for the Solution of Non-linear Boundary Value Problems In current times, nonlinear differential equations have a lot of attention, because many physical problems in science and engineering are described mathematically by nonlinear differential equations in one or more than one dependent/ independent variables. The closed form solution of these differential equations often arising in applications cannot be obtained although the existence and uniqueness of the solution is easier to establish. Consequently, one is obliged to devise appropriate stable numerical techniques for determination of approximate solutions using modern day computers. Two-point nonlinear singular boundary value problems occur in a number of areas of applied mathematics and engineering, such as in beam theory, electric circuit analysis etc. Elliptic equations typically model steady-state or equilibrium phenomena, and so there is no temporal dependence. Elliptic equations may also arise in solving time-dependent problems if we are modelling some phenomena that are always in local equilibrium and equilibrate on time scales that are much faster than the time scale being modelled. Elliptic equations give boundary value problems where the solutions at all points must be simultaneously determined based on the boundary conditions all around the domain. High-order accurate finite difference schemes are important in scientific computation because they offer a means to obtain accurate solutions with less work than may be required for methods of lower accuracy. Elliptic problems, common in engineering applications can be solved to second order using simple (or central) finite difference schemes that are mostly compact. Fourth order finite difference schemes have become quite popular as against the other lower order accurate schemes which require high mesh refinement and hence are computationally inefficient. On the other hand, the higher order accuracy of the fourth order compact methods combined with the compactness of the difference stencil yields highly accurate numerical solutions on relatively coarser grids with greater computational efficiency. The high order compact method which we consider here is different in that the governing differential equation is used to approximate the lower order derivative terms with the imbedding technique. The scheme is difficult to develop due to the need of extensive algebraic manipulation, especially for non-linear problems. However, once high order method developed, it can be incorporated easily in application. A number of approaches to derive suitable digital computer algorithms have been developed. Finite Difference Methods are one means of obtaining approximate solutions to ordinary or partial differential equations. Other methods include finite elements, finite volumes, spectral methods, various spline approximations etc. Finite difference methods are attractive because of the relative ease of implementation and flexibility. The advances in computer technology and the introduction of numerical computing applications like MATLAB, Mathematica has led to improvements in the numerical methods that are used. Consequently, many recalcitrant scientific and engineering problems that involve linear and nonlinear singular ordinary and partial differential equations that were previously unsolved can now be resolved by using Page 2

3 appropriate numerical methods. In this thesis, an attempt has been made to develop third order discretizations for the solution of nonlinear two point boundary value problems using variable mesh, when the forcing function is in integral form. We also devote our attention on the application of iterative algorithms, Two-Parameter Alternating Group Explicit (TAGE) method and Newton TAGE iterative method to a class of singular differential equations. These methods being explicit in nature and coupled compactly are suited for use on parallel architectures. We have also developed some new efficient high order accurate methods based on cubic spline approximations for the solution of two spatial dimensions nonlinear second order elliptic partial differential equations. The thesis is set up into seven chapters followed by the list of references useful for the development and application of the methods discussed in the thesis. Each chapter contains a set of example problems solved to validate the developed methods. A brief description of the contents of each chapter is as follows. The first chapter is an introductory chapter which presents some formal mathematical concepts needed to develop highly accurate numerical schemes for solutions of boundary value problems. We review important concepts of linear matrix algebra which plays a crucial role in setting up and in analyzing the convergence properties of the numerical methods. Various iterative methods along with its convergence for the solution of linear and nonlinear system of equations are studied. It is known that the main problem which arises in the solutions of elliptic problems is the solution of large sparse sets of algebraic equations. The principal weapon in the solution of these equations is the iterative solution. A brief introduction of the Alternating Group Explicit (AGE) iterative method and the Newton-AGE iterative method for the solution of two point boundary value problems are given in this chapter. This chapter also presents a summary of the work done in the thesis. In the second chapter, using three grid points, on a variable mesh we derive a third order accurate numerical method based on Numerov type discretization for the solution of second order nonlinear two-point boundary value problem with integral homogeneous functions 0 y f ( x, y, y) K x, s ds, 0 x, 0 s subject to natural boundary conditions y 0 A, y B where A and B are finite constants. We assume that the conditions required for the above boundary value problem to have a unique solution are satisfied. These equations arise naturally in different fields of physics, fluid dynamics, biological models, chemical kinetics such as electric circuit analysis, scattering theory, colloidal dispersion and many body problems. For the numerical solution of the given two-point BVP, we discretize the solution region with the non-uniform mesh such that 0 x0 x... xn. Our method consists of three grid points xl, xl and xl, where xl xl hl and x l xl hl. The mesh ratio is l hl hl. For l, it reduces to the constant mesh case. The standard 5- point discretization of integro-differential equation under consideration is obtained using Page 3

4 third order variable mesh approximations for y and y. This requires the use of fictitious points outside the solution region. However, the third order variable mesh method, which we present in this chapter, requires no fictitious points for incorporating the boundary conditions. Throughout our discussion, we have considered N as odd, that is the proposed method is applicable only when the internal grid points of the solution space are odd in number. It is observed that the proposed technique is not directly applicable in case of equations with a singularity present in the solution domain. In that case, we have modified our method in such a way that the solutions retain their order and accuracy everywhere in the solution region including the vicinity of the singularity. We also discuss the application of Two Parameter Alternating Group Explicit (TAGE) and Newton-TAGE iteration methods along with its convergence to solve both linear and nonlinear variable mesh difference equations. The application of TAGE and Newton-TAGE methods confirm the superiority over the corresponding SOR and Newton-SOR methods in terms of number of iterations. Furthermore, it is evident from the numerical results that the order of the method for constant mesh case is nearly equal to four. During last four decades, there has been growing interest in developing and using highly accurate numerical methods based on cubic spline approximations for the solution of nonlinear differential equations. In third chapter, we report an efficient high order numerical method on a non-uniform mesh based on cubic spline approximation and application of TAGE and Newton-TAGE iterative methods for the solution of two-point nonlinear boundary value problems, whose forcing functions are in integral form 0 u ( x, u, u) K x, s ds, 0 x, s The two point Dirichlet type boundary conditions are given by u 0, u 0 where 0, are finite constants. The method is applicable when the internal grid points of solution interval are odd in number. This cubic spline based method is applicable to integrodifferential equations, both linear and nonlinear, having singularities. We also discuss the application of TAGE and Newton-TAGE iterative methods and error analysis of the method in details. The proposed TAGE and Newton-TAGE iteration methods show superiority over the corresponding successive over relaxation (SOR) iteration methods in terms of number of iterations. However, for k = the proposed method reduces to a constant mesh method of accuracy of order four. In Chapter 4, using three variable mesh points, we discuss a new numerical method of 3 accuracy of Oh ( k ) based on arithmetic average discretizations for the solution of the second order nonlinear boundary value problem with source function in integral form 0 u F( x, u, u) K x, s ds, 0 x, s The two point boundary conditions associated are given by: Page 4

5 u 0, u 0 where 0, are finite constants. Many authors have discussed various techniques for numerical integration and methods for approximate solution of two point boundary value problems and their applications to various physical models. The presented variable mesh approximation is directly applicable to the integro-differential equations with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of difference scheme for the diffusion convection equation is discussed in details. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the methods discussed in Chapters 2, 3 in which the internal grid points are strictly odd in number. Although the proposed variable mesh method involves more algebra and hence greater computational time is involved, but applicable to the solution space having both odd and even number of internal grid points. The numerical results indicate that the proposed method is computationally nearly equal to the method discussed in Chapter 2 and is applicable to the solution space with all internal grid points. Some examples of the application to problems with Dirichlet boundary conditions are presented and results obtained are compared with another new variable mesh method of lower order accuracy described in this chapter for the given integro-differential equation. In Chapter 5, we report a new nine-point compact discretization of order two in y- and order four in x-directions, based on cubic spline approximation, for the solution of two dimensional quasi-linear elliptic partial differential equations of the form defined in the domain with boundary, where and in. The corresponding Dirichlet boundary conditions are prescribed by, The main spline relations are presented and incorporated into solution procedures for elliptic partial differential equations. Available numerical methods based on cubic spline approximations for the numerical solution of quasi-linear elliptic equations are of 2 2 O( y x ) accurate. Although 9-point finite difference approximations of O( y y x x ) accurate for the solution of nonlinear and quasi-linear elliptic differential equations have been discussed in past, but these methods require five evaluations of the function f. In this chapter, using the same number of grid points and three evaluations of the function f, we have derived a new stable cubic spline method of O( y y x x ) accuracy for the solution of given quasi-linear elliptic equation. However, for a fixed parameter, the proposed method behaves like a fourth order method. The accuracy of the proposed method is exhibited from the computed results. The Page 5

6 proposed method is applicable to Poisson s equation in polar coordinates and two dimensional Burgers equation, which is main highlight of the work. The convergence analysis of the proposed cubic spline approximation for the nonlinear elliptic equation is discussed in details and we have shown under appropriate conditions the proposed method converges. In Chapter 6, using nine-point compact stencil, we discuss a new Numerov type stable method of order two in y- and order three in x-directions on a variable mesh based on cubic spline approximations for the solution of two-dimensional nonlinear elliptic boundary value problems The corresponding Dirichlet boundary conditions are prescribed by, We use cubic spline approximations in -direction and second order finite difference approximations in -direction. It has been experienced in the past that for problems in polar coordinates the solution for high order methods usually deteriorates in the vicinity of the singularities. We have overcome this difficulty by modifying our method in such a way that the solution retains its order and accuracy everywhere in the solution region even in the vicinity of the singularity. Convergence analysis of the method is briefly discussed. The available numerical methods for the solution of two dimensional nonlinear elliptic boundary value problems on a non-uniform mesh are of first order accurate only and from application point of view in most cases the method is unstable. In this chapter, we have developed a new stable high order nine point compact scheme of ( l l ) O k k h h based on cubic spline approximations for the solution of two dimensional nonlinear elliptic boundary value problems. The method is successfully applied to Poisson s equation in cylindrical polar coordinates and two-dimensional Burgers equation with high Reynolds number. The numerical results confirm that the proposed method produces oscillation free solutions for high Reynolds number, whereas the corresponding lower method becomes unstable. The last chapter presents conclusions of the results presented in the thesis and few problems for future research work. Page 6

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Research Article Cubic Spline Iterative Method for Poisson s Equation in Cylindrical Polar Coordinates

Research Article Cubic Spline Iterative Method for Poisson s Equation in Cylindrical Polar Coordinates International Scolarly Researc Network ISRN Matematical Pysics Volume 202, Article ID 2456, pages doi:0.5402/202/2456 Researc Article Cubic Spline Iterative Metod for Poisson s Equation in Cylindrical

More information

Some notes about PDEs. -Bill Green Nov. 2015

Some notes about PDEs. -Bill Green Nov. 2015 Some notes about PDEs -Bill Green Nov. 2015 Partial differential equations (PDEs) are all BVPs, with the same issues about specifying boundary conditions etc. Because they are multi-dimensional, they can

More information

PHYS 410/555 Computational Physics Solution of Non Linear Equations (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.

PHYS 410/555 Computational Physics Solution of Non Linear Equations (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9. PHYS 410/555 Computational Physics Solution of Non Linear Equations (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.4) We will consider two cases 1. f(x) = 0 1-dimensional 2. f(x) = 0 d-dimensional

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation

A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation Majid Nabavi, M. H. Kamran Siddiqui, Javad Dargahi Department of Mechanical and Industrial Engineering, Concordia

More information

THE SECANT METHOD. q(x) = a 0 + a 1 x. with

THE SECANT METHOD. q(x) = a 0 + a 1 x. with THE SECANT METHOD Newton s method was based on using the line tangent to the curve of y = f (x), with the point of tangency (x 0, f (x 0 )). When x 0 α, the graph of the tangent line is approximately the

More information

Additive Manufacturing Module 8

Additive Manufacturing Module 8 Additive Manufacturing Module 8 Spring 2015 Wenchao Zhou zhouw@uark.edu (479) 575-7250 The Department of Mechanical Engineering University of Arkansas, Fayetteville 1 Evaluating design https://www.youtube.com/watch?v=p

More information

NumAn2014 Conference Proceedings

NumAn2014 Conference Proceedings OpenAccess Proceedings of the 6th International Conference on Numerical Analysis, pp 198-03 Contents lists available at AMCL s Digital Library. NumAn014 Conference Proceedings Digital Library Triton :

More information

Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods Stig Larsson Vidar Thomée Partial Differential Equations with Numerical Methods May 2, 2003 Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo Preface Our purpose in this

More information

Solving Poisson s Equations Using Buffered Fourier Spectral Method

Solving Poisson s Equations Using Buffered Fourier Spectral Method Solving Poisson s Equations Using Buffered Fourier Spectral Method Yinlin Dong Hassan Abd Salman Al-Dujaly Chaoqun Liu Technical Report 2015-12 http://www.uta.edu/math/preprint/ Solving Poisson s Equations

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Second Order Iterative Techniques for Boundary Value Problems and Fredholm Integral Equations

Second Order Iterative Techniques for Boundary Value Problems and Fredholm Integral Equations Computational and Applied Mathematics Journal 2017; 3(3): 13-21 http://www.aascit.org/journal/camj ISSN: 2381-1218 (Print); ISSN: 2381-1226 (Online) Second Order Iterative Techniques for Boundary Value

More information

Iterated Defect Correction with B-Splines for a Class of Strongly Nonlinear Two-Point Boundary Value Problems

Iterated Defect Correction with B-Splines for a Class of Strongly Nonlinear Two-Point Boundary Value Problems American Review of Mathematics and Statistics June 2016, Vol. 4, No. 1, pp. 31-44 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright The Author(s). All Rights Reserved. Published by American Research

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

SOLVING ELLIPTIC PDES

SOLVING ELLIPTIC PDES university-logo SOLVING ELLIPTIC PDES School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 POISSON S EQUATION Equation and Boundary Conditions Solving the Model Problem 3 THE LINEAR ALGEBRA PROBLEM

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

Numerical Solution of partial differential equations

Numerical Solution of partial differential equations G. D. SMITH Brunei University Numerical Solution of partial differential equations FINITE DIFFERENCE METHODS THIRD EDITION CLARENDON PRESS OXFORD Contents NOTATION 1. INTRODUCTION AND FINITE-DIFFERENCE

More information

Follow links Class Use and other Permissions. For more information, send to:

Follow links Class Use and other Permissions. For more information, send  to: COPYRIGHT NOTICE: Stephen L. Campbell & Richard Haberman: Introduction to Differential Equations with Dynamical Systems is published by Princeton University Press and copyrighted, 2008, by Princeton University

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Chapter 2 Finite-Difference Discretization of the Advection-Diffusion Equation

Chapter 2 Finite-Difference Discretization of the Advection-Diffusion Equation Chapter Finite-Difference Discretization of the Advection-Diffusion Equation. Introduction Finite-difference methods are numerical methods that find solutions to differential equations using approximate

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Compact Local Stencils Employed With Integrated RBFs For Fourth-Order Differential Problems

Compact Local Stencils Employed With Integrated RBFs For Fourth-Order Differential Problems Copyright 2011 Tech Science Press SL, vol.6, no.2, pp.93-107, 2011 Compact Local Stencils Employed With Integrated RBFs For Fourth-Order Differential Problems T.-T. Hoang-Trieu 1, N. Mai-Duy 1 and T. Tran-Cong

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation with Inconsistent Initial and Boundary Conditions

Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation with Inconsistent Initial and Boundary Conditions International Mathematics and Mathematical Sciences Volume 212, Article ID 82197, 13 pages doi:1.1155/212/82197 Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation

More information

Solution of Fourth Order Boundary Value Problems by Numerical Algorithms Based on Nonpolynomial Quintic Splines

Solution of Fourth Order Boundary Value Problems by Numerical Algorithms Based on Nonpolynomial Quintic Splines Journal of Numerical Mathematics and Stochastics, 4(1) : 13-25, 2012 http://www.jnmas.org/jnmas4-2.pdf JNM@S Euclidean Press, LLC Online: ISSN 2151-2302 Solution of Fourth Order Boundary Value Problems

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

Boundary value problems on triangular domains and MKSOR methods

Boundary value problems on triangular domains and MKSOR methods Applied and Computational Mathematics 2014; 3(3): 90-99 Published online June 30 2014 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.1164/j.acm.20140303.14 Boundary value problems on triangular

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

Chapter 9 Implicit Methods for Linear and Nonlinear Systems of ODEs

Chapter 9 Implicit Methods for Linear and Nonlinear Systems of ODEs Chapter 9 Implicit Methods for Linear and Nonlinear Systems of ODEs In the previous chapter, we investigated stiffness in ODEs. Recall that an ODE is stiff if it exhibits behavior on widelyvarying timescales.

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary David Chopp and John A. Velling December 1, 2003 Abstract Let γ be a Jordan curve in S 2, considered as the ideal

More information

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow Fluid Structure Interaction VII 147 Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow H. G. Sung 1, H. Baek 2, S. Hong 1 & J.-S. Choi 1 1 Maritime and Ocean

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 02 Plasma Response to Fields: Fluid Equations Well, friends today I am going

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

High-order ADI schemes for convection-diffusion equations with mixed derivative terms

High-order ADI schemes for convection-diffusion equations with mixed derivative terms High-order ADI schemes for convection-diffusion equations with mixed derivative terms B. Düring, M. Fournié and A. Rigal Abstract We consider new high-order Alternating Direction Implicit ADI) schemes

More information

Discretization of Convection Diffusion type equation

Discretization of Convection Diffusion type equation Discretization of Convection Diffusion type equation 10 th Indo German Winter Academy 2011 By, Rajesh Sridhar, Indian Institute of Technology Madras Guides: Prof. Vivek V. Buwa Prof. Suman Chakraborty

More information

A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems

A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems electronics Article A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems Qingshan Xu 1, Yuqi Wang 1, * ID, Minjian Cao 1 and Jiaqi Zheng 2 1 School

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics AML2506 Biomechanics and Flow Simulation Day Introduction to Computational Fluid Dynamics Session Speaker Dr. M. D. Deshpande M.S. Ramaiah School of Advanced Studies - Bangalore 1 Session Objectives At

More information

Part 1. The diffusion equation

Part 1. The diffusion equation Differential Equations FMNN10 Graded Project #3 c G Söderlind 2016 2017 Published 2017-11-27. Instruction in computer lab 2017-11-30/2017-12-06/07. Project due date: Monday 2017-12-11 at 12:00:00. Goals.

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

On the Solution of the Elliptic Interface Problems by Difference Potentials Method

On the Solution of the Elliptic Interface Problems by Difference Potentials Method On the Solution of the Elliptic Interface Problems by Difference Potentials Method Yekaterina Epshteyn and Michael Medvinsky Abstract Designing numerical methods with high-order accuracy for problems in

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Week 01 : Introduction. A usually formal statement of the equality or equivalence of mathematical or logical expressions

Week 01 : Introduction. A usually formal statement of the equality or equivalence of mathematical or logical expressions 1. What are partial differential equations. An equation: Week 01 : Introduction Marriam-Webster Online: A usually formal statement of the equality or equivalence of mathematical or logical expressions

More information

1 Introduction IPICSE-2016

1 Introduction IPICSE-2016 (06) DOI: 0.05/ matecconf/06860006 IPICSE-06 Numerical algorithm for solving of nonlinear problems of structural mechanics based on the continuation method in combination with the dynamic relaxation method

More information

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations MATEMATIKA, 2011, Volume 27, Number 2, 199 208 c Department of Mathematical Sciences, UTM Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations 1 E. Aruchunan

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method

Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method 2014 (2014) 1-8 Available online at www.ispacs.com/iasc Volume 2014, Year 2014 Article ID iasc-00042, 8 Pages doi:10.5899/2014/iasc-00042 Research Article Numerical Solution of One-dimensional Telegraph

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Chapter 1. Introduction and Background. 1.1 Introduction

Chapter 1. Introduction and Background. 1.1 Introduction Chapter 1 Introduction and Background 1.1 Introduction Over the past several years the numerical approximation of partial differential equations (PDEs) has made important progress because of the rapid

More information

MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF THE KINETIC EQUATIONS IN CONDENSING FLOWS SIMON GLAZENBORG

MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF THE KINETIC EQUATIONS IN CONDENSING FLOWS SIMON GLAZENBORG MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF THE KINETIC EQUATIONS IN CONDENSING FLOWS SIMON GLAZENBORG CONTENTS Introduction Theory Test case: Nucleation pulse Conclusions & recommendations 2 WHAT IS CONDENSATION

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS PREFACE i Preface If an application of mathematics has a component that varies continuously as a function of time, then it probably involves a differential equation. For this reason, ordinary differential

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method

Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method Applied Mathematics Volume 2012, Article ID 605741, 10 pages doi:10.1155/2012/605741 Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method M. Zarebnia

More information

Von Neumann Analysis of Jacobi and Gauss-Seidel Iterations

Von Neumann Analysis of Jacobi and Gauss-Seidel Iterations Von Neumann Analysis of Jacobi and Gauss-Seidel Iterations We consider the FDA to the 1D Poisson equation on a grid x covering [0,1] with uniform spacing h, h (u +1 u + u 1 ) = f whose exact solution (to

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Numerical Methods for Partial Differential Equations: an Overview.

Numerical Methods for Partial Differential Equations: an Overview. Numerical Methods for Partial Differential Equations: an Overview math652_spring2009@colorstate PDEs are mathematical models of physical phenomena Heat conduction Wave motion PDEs are mathematical models

More information

Finite Difference Methods (FDMs) 2

Finite Difference Methods (FDMs) 2 Finite Difference Methods (FDMs) 2 Time- dependent PDEs A partial differential equation of the form (15.1) where A, B, and C are constants, is called quasilinear. There are three types of quasilinear equations:

More information

THE problem of phase noise and its influence on oscillators

THE problem of phase noise and its influence on oscillators IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 5, MAY 2007 435 Phase Diffusion Coefficient for Oscillators Perturbed by Colored Noise Fergal O Doherty and James P. Gleeson Abstract

More information

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae)

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae) Benha University Faculty of Science Department of Mathematics (Curriculum Vitae) (1) General *Name : Mohamed Meabed Bayuomi Khader *Date of Birth : 24 May 1973 *Marital Status: Married *Nationality : Egyptian

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Analytic Benchmarking of the 2DX eigenvalue code

Analytic Benchmarking of the 2DX eigenvalue code Analytic Benchmarking of the 2DX eigenvalue code D. A. Baver, J. R. Myra Lodestar Research Corporation M. Umansky Lawrence Livermore National Laboratory Analytic benchmarking of the 2DX eigenvalue code

More information

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value Numerical Analysis of Differential Equations 188 5 Numerical Solution of Elliptic Boundary Value Problems 5 Numerical Solution of Elliptic Boundary Value Problems TU Bergakademie Freiberg, SS 2012 Numerical

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 Finite Difference Method for PDE Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 1 Classification of the Partial Differential Equations Consider a scalar second order partial

More information

Solution Methods. Steady convection-diffusion equation. Lecture 05

Solution Methods. Steady convection-diffusion equation. Lecture 05 Solution Methods Steady convection-diffusion equation Lecture 05 1 Navier-Stokes equation Suggested reading: Gauss divergence theorem Integral form The key step of the finite volume method is to integrate

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations We call Ordinary Differential Equation (ODE) of nth order in the variable x, a relation of the kind: where L is an operator. If it is a linear operator, we call the equation

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

Lecture 6: Introduction to Partial Differential Equations

Lecture 6: Introduction to Partial Differential Equations Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 6: Introduction

More information

Adaptive Time Space Discretization for Combustion Problems

Adaptive Time Space Discretization for Combustion Problems Konrad-Zuse-Zentrum fu r Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany JENS LANG 1,BODO ERDMANN,RAINER ROITZSCH Adaptive Time Space Discretization for Combustion Problems 1 Talk

More information

Numerical Analysis and Methods for PDE I

Numerical Analysis and Methods for PDE I Numerical Analysis and Methods for PDE I A. J. Meir Department of Mathematics and Statistics Auburn University US-Africa Advanced Study Institute on Analysis, Dynamical Systems, and Mathematical Modeling

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi 1, Paul F. Fischer 2 and C. Ross Ethier 1 1 University of Toronto and 2 Argonne National

More information

Hybrid Analog-Digital Solution of Nonlinear Partial Differential Equations

Hybrid Analog-Digital Solution of Nonlinear Partial Differential Equations Hybrid Analog-Digital Solution of Nonlinear Partial Differential Equations Yipeng Huang, Ning Guo, Kyle Mandli, Mingoo Seok, Yannis Tsividis, Simha Sethumadhavan Columbia University Hybrid Analog-Digital

More information

cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO

cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO ROOTS OF EQUATIONS PT2.1 MOTIVATION Years ago, you learned to use the quadratic formula x = b ± b 2 4ac 2a to solve f(x) = ax 2 + bx + c = 0 (PT2.1) (PT2.2)

More information

Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom. Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom

Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom. Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom MultiScience - XXX. microcad International Multidisciplinary Scientific Conference University of Miskolc, Hungary, 21-22 April 2016, ISBN 978-963-358-113-1 NUMERICAL INVESTIGATION OF AN INCOMPRESSIBLE

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

MATHEMATICAL MODELLING OF DISPERSION OF AIR POLLUTANTS IN LOW WIND CONDITIONS

MATHEMATICAL MODELLING OF DISPERSION OF AIR POLLUTANTS IN LOW WIND CONDITIONS MATHEMATICAL MODELLING OF DISPERSION OF AIR POLLUTANTS IN LOW WIND CONDITIONS by ANIL KUMAR YADAV Thesis submitted to the Indian Institute of Technology, Delhi for the award of the degree of DOCTOR OF

More information

The family of Runge Kutta methods with two intermediate evaluations is defined by

The family of Runge Kutta methods with two intermediate evaluations is defined by AM 205: lecture 13 Last time: Numerical solution of ordinary differential equations Today: Additional ODE methods, boundary value problems Thursday s lecture will be given by Thomas Fai Assignment 3 will

More information

16. Solution of elliptic partial differential equation

16. Solution of elliptic partial differential equation 16. Solution of elliptic partial differential equation Recall in the first lecture of this course. Assume you know how to use a computer to compute; but have not done any serious numerical computations

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information