The Relationship between Discrete Calculus Methods and other Mimetic Approaches

Size: px
Start display at page:

Download "The Relationship between Discrete Calculus Methods and other Mimetic Approaches"

Transcription

1 The Relationship between Discrete Calculus Methods and other Mimetic Approaches Blair Perot Theoretical and Computational Fluid Dynamics Laboratory Woudschoten Conerence Oct October 7, 2011

2 Background Hardware: GPUs, FPGAs, HPC, Algorithms Numerical Methods: Unstructured Staggered mesh methods, Fractional step methods, Discrete Calculus Methods. Turbulence Modeling: Turbulent Potentials, Eddy Collision Model Applications: Wind Turbines, DNS, Super-hydrophobic suraces, droplets. 2

3 Mimetic Methods FE: Raviart-Thomas/Nedelec/Whitney Algebraic Topology Electromagnetics FV: Staggered Mesh Methods Many local conservation properties Fluid Dynamics FD: Keller Box Multi-symplectic Wave Eqns FD: SOM Box Robust Heat Eqn NN: Non-Sibsonian Meshless methods Time-dependent domains Solid mechanics 3

4 Numerical Methods Mimetic Methods Finite Dierence SOM Edge/Face Finite Element Finite Volume Staggered Natural Neighbors Meshless All Consistent Numerical Methods 4

5 Question Is there any relationships between the various mimetic methods? (1) Yes many (all?) can be derived as discrete calculus methods. (2) Yes they tend to use the same basis unctions. 5

6 Incompressible Fluid Dynamics n1 t n 1 n ( F) l G e e n t c DU n 1 0 u u dt d p U Need to relate these two u e U un da ue u dl

7 FE Basis Functions Heat Flux Magnetic Flux Velocity Flux Face Elements Nedelec/RT/Whitney un da Constant normal velocity on each ace h u ( x) u x 0 D n Interpolant with continuity o the normal lux h 0 D n L u n u n Constant divergence u h D 7

8 FE Hodge 2-orms to 1 -orms h u ( x) u x Find the constants given the data (4x4) u 1 Evaluate the integral The basis unction determines the relationship between the two velocities 0 D n 0 1 L n D 1 n A ue u h dl 1 U 1 8

9 StagMesh Interpolation ( u x u ) dv ( u x ) dv ( x ) u n da i, i j j i j, i j i i U un da Gauss Theorem (Again) Assume constant lux on ace Assume constant divergence SM = implicit basis unctions u V U ( x cg x cg ) c c aces u c 1 RU V c 9

10 StagMesh Hodge 2-orms to 1 -orms Average Cell velocity u c 1 RU V c u e T Ru c or incompressible u e T 1 V ( R R) c U Explicit Formula or the same matrix relationship (Hodge*) as FE Symmetric Generalizable to polyhedra The intermediate is a (cell average) velocity vector. (Momentum, KE) 10

11 FD Interpolation SOM unda Use 3 ace values at each vertex Average vectors to center Works on (almost) any polygon Assumes constant on ace Assumes constant divergence CoVolume Use Least Squares Nu c 1 A U Also same cell velocity 11

12 FE Basis Functions 1-orms u Temperature Gradient Electric Field Velocity dl Edge Elements Nedelec/RT/Witney h 0 1 n1 u ( x) u wx Interpolant with continuity o the tangential components Constant tangential velocity on each edge u h t e u 0 1 ( w L e ) t e n1 Constant vorticity u h w 12

13 StagMesh Interpolation ( ax) u ( un xw n) da xu dl ue udl SM = Rampant use o Stokes Theorem Stokes Theorem Assume constant along edge Assume constant vorticity u cg n A u ( x cg x cg ) e e edges uxdv unda 13

14 Summary: Basis Functions FE uses Explicit Basis Functions SM uses Stokes Theorem This approach can be applied to arbitrary polygons. SOM uses Discrete Inner Products highly discontinuous/anisotropic materials and arbitrary polygons Many approaches to achieving the same underlying interpolation (Hodge *). 14

15 Test Functions Median Dual Voronoi Dual Dual mesh is not unique. FV = top hat FE = tent unctions (unique or Galerkin) 15

16 FE / FV relationship FV = one CV FE = weighted average o CV Mattiussi C, 1997, An analysis o inite volume, inite element, and inite dierence methods using some concepts rom algebraic topology, J. Computational Physics, 133:

17 FE Discrete Calculus Weighted Exact Discretization w( u) dv wu nda ( w) udv u( w) dv Smeared Flux U D w U aces w Compare D udv unda U aces aces 17

18 FE Exact Discretization udv unda aces ( v) nda vdl T dl T T 2 1 edges w udv u( w) dv cells ( v) ( w) dv v( nw) da aces T ( nw) da T( w) dl edges 18

19 Higher-Order Exact Gradient edge edge T d T T l n2 n1 n2 n2 n1 n1 e n2 xt dl ( x T x T ) t Tdl n1 T n Td n2 n1 Tdl n2 x Td l 1 n ntda ntda t ace e Tdl edges 20 outputs / tet 10 inputs / tet Tdl edge T G 0 n Tn [2] x T dl G Gxn tei edge Tdl Tdl edge 0 T edge ntda ace 19

20 Higher-Order Exact Curl ( v) nda vdl edges Note: Mimetic x( v) nda xv dl n vda edges vdv n vda aces [2] [2] C G 0 15 outputs / tet a v vdv 20 inputs / tet ( v) nda v dl ace edge [2] x( v) nda C xv dl ace edge ( v) dv n vda cell ace x( v) nda ( v) nda n2 v d l 1 n2 xv d l n1 n vda n 20

21 Review FE: Explicit basis unctions Fixed geometry precise proos Implicit dual mesh Semi-implicit Hodge* StagMesh: Implicit basis unctions Arbitrary polygons. Explicit dual mesh Explicit Factored Hodge* 21

22 Summary Underlying assumptions about the solution (basis unctions) are oten the same. The Test Functions are dierent. Test unctions aect the metric (geom). Higher Order is achieved by noticing that you can exactly discretize dierent ways and with dierent moments Anyone can do it. 22

An Approach to Higher- Order Mimetic Finite Volume Schemes

An Approach to Higher- Order Mimetic Finite Volume Schemes An Approach to Higher- Order Mimetic Finite Volume Schemes Blair Perot Context Mimetic Methods Finite Dierence Mimetic SOM Finite Element Edge/Face Staggered Finite Volume Meshless Natural Neighbors DC

More information

Mimetic Methods and why they are better

Mimetic Methods and why they are better Mimetic Methods and why they are better Blair Perot Theoretical and Computational Fluid Dynamics Laboratory February 25, 2015 Numerical Methods: Are more than Mathematics Math: Accuracy Stability Convergence

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics for Geophysical Fluid Dynamics Dave Lee Los Alamos National Laboratory Outline Connection of finite volumes to differential forms Key ideas of differential forms Differential forms for discrete data Construction

More information

SOE3213/4: CFD Lecture 1

SOE3213/4: CFD Lecture 1 What is CFD SOE3213/4: CFD Lecture 1 3d 3d Computational Fluid Dynamics { use of computers to study uid dynamics. Solve the Navier-Stokes Equations (NSE) : r:u = 0 Du Dt = rp + r 2 u + F 4 s for 4 unknowns,

More information

Mimetic Finite Difference methods

Mimetic Finite Difference methods Mimetic Finite Difference methods An introduction Andrea Cangiani Università di Roma La Sapienza Seminario di Modellistica Differenziale Numerica 2 dicembre 2008 Andrea Cangiani (IAC CNR) mimetic finite

More information

Finite element exterior calculus framework for geophysical fluid dynamics

Finite element exterior calculus framework for geophysical fluid dynamics Finite element exterior calculus framework for geophysical fluid dynamics Colin Cotter Department of Aeronautics Imperial College London Part of ongoing work on UK Gung-Ho Dynamical Core Project funded

More information

A Discrete Vector Calculus in Tensor Grids

A Discrete Vector Calculus in Tensor Grids COMPUTATIONAL METHODS IN APPLIED MATHEMATICS Vol. (00,, pp. 44 c 00 Institute of Mathematics, National Academy of Sciences A Discrete Vector Calculus in Tensor Grids Nicolas Robidoux Stanly Steinberg Abstract

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

Variational Integrators for Maxwell s Equations with Sources

Variational Integrators for Maxwell s Equations with Sources PIERS ONLINE, VOL. 4, NO. 7, 2008 711 Variational Integrators for Maxwell s Equations with Sources A. Stern 1, Y. Tong 1, 2, M. Desbrun 1, and J. E. Marsden 1 1 California Institute of Technology, USA

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

Towards Discrete Exterior Calculus and Discrete Mechanics for Numerical Relativity

Towards Discrete Exterior Calculus and Discrete Mechanics for Numerical Relativity Towards Discrete Exterior Calculus and Discrete Mechanics for Numerical Relativity Melvin Leok Mathematics, University of Michigan, Ann Arbor. Joint work with Mathieu Desbrun, Anil Hirani, and Jerrold

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

arxiv: v1 [math-ph] 25 Apr 2013

arxiv: v1 [math-ph] 25 Apr 2013 Higher-order compatible discretization on hexahedrals Jasper Kreeft and Marc Gerritsma arxiv:1304.7018v1 [math-ph] 5 Apr 013 Abstract We derive a compatible discretization method that relies heavily on

More information

Physics-Based Animation

Physics-Based Animation CSCI 5980/8980: Special Topics in Computer Science Physics-Based Animation 13 Fluid simulation with grids October 20, 2015 Today Presentation schedule Fluid simulation with grids Course feedback survey

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Weak Galerkin Finite Element Scheme and Its Applications

Weak Galerkin Finite Element Scheme and Its Applications Weak Galerkin Finite Element Scheme and Its Applications Ran Zhang Department of Mathematics Jilin University, China IMS, Singapore February 6, 2015 Talk Outline Motivation WG FEMs: Weak Operators + Stabilizer

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

General solution of the Inhomogeneous Div-Curl system and Consequences

General solution of the Inhomogeneous Div-Curl system and Consequences General solution o the Inhomogeneous Div-Curl system and Consequences Briceyda Berenice Delgado López Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional March 07 2017 CINVESTAV

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance.

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance. Vector field and Inductance Earth s Magnetic Field Earth s field looks similar to what we d expect if 11.5 there were a giant bar magnet imbedded inside it, but the dipole axis of this magnet is offset

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework Simulating Interfacial Tension of a Falling Drop in a Moving Mesh Framework Anja R. Paschedag a,, Blair Perot b a TU Berlin, Institute of Chemical Engineering, 10623 Berlin, Germany b University of Massachusetts,

More information

A THREE DIMENSIONAL, FINITE VOLUME METHOD FOR INCOMPRESSIBLE NAVIER STOKES EQUATIONS ON UNSTRUCTURED, STAGGERED GRIDS

A THREE DIMENSIONAL, FINITE VOLUME METHOD FOR INCOMPRESSIBLE NAVIER STOKES EQUATIONS ON UNSTRUCTURED, STAGGERED GRIDS European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 A THREE DIMENSIONAL, FINITE VOLUME METHOD FOR INCOMPRESSIBLE

More information

Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State

Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State Conservation of Energy for a Closed System First Law of Thermodynamics Dr. Md. Zahurul Haq rofessor Department of Mechanical Engineering Bangladesh University of Engineering & Technology BUET Dhaka-000,

More information

SOE3213/4: CFD Lecture 3

SOE3213/4: CFD Lecture 3 CFD { SOE323/4: CFD Lecture 3 @u x @t @u y @t @u z @t r:u = 0 () + r:(uu x ) = + r:(uu y ) = + r:(uu z ) = @x @y @z + r 2 u x (2) + r 2 u y (3) + r 2 u z (4) Transport equation form, with source @x Two

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Construction of Mimetic Numerical Methods

Construction of Mimetic Numerical Methods Construction of Mimtic Numrical Mthods Blair Prot Thortical and Computational Fluid Dynamics Laboratory Dltars July 17, 013 Numrical Mthods Th Foundation on which CFD rsts. Rvolution Math: Accuracy Stability

More information

First, Second, and Third Order Finite-Volume Schemes for Diffusion

First, Second, and Third Order Finite-Volume Schemes for Diffusion First, Second, and Third Order Finite-Volume Schemes for Diffusion Hiro Nishikawa 51st AIAA Aerospace Sciences Meeting, January 10, 2013 Supported by ARO (PM: Dr. Frederick Ferguson), NASA, Software Cradle.

More information

Past, present and space-time

Past, present and space-time Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, 12.11.2015 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 1 / 20 Outline Past. Past

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2b-22 Ver 1.1: Ling KV, October 22, 2006 Ver 1.0: Ling KV, Jul 2005 EE2007/Ling KV/Aug 2006 EE2007:

More information

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev Implementation of 3D Incompressible N-S Equations Mikhail Sekachev Navier-Stokes Equations The motion of a viscous incompressible fluid is governed by the Navier-Stokes equations u + t u = ( u ) 0 Quick

More information

Categories and Natural Transformations

Categories and Natural Transformations Categories and Natural Transormations Ethan Jerzak 17 August 2007 1 Introduction The motivation or studying Category Theory is to ormalise the underlying similarities between a broad range o mathematical

More information

Divergence-free or curl-free finite elements for solving the curl-div system

Divergence-free or curl-free finite elements for solving the curl-div system Divergence-free or curl-free finite elements for solving the curl-div system Alberto Valli Dipartimento di Matematica, Università di Trento, Italy Joint papers with: Ana Alonso Rodríguez Dipartimento di

More information

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3.

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3. MATH 6B pring 2017 Vector Calculus II tudy Guide Final Exam Chapters 8, 9, and ections 11.1, 11.2, 11.7, 12.2, 12.3. Before starting with the summary of the main concepts covered in the quarter, here there

More information

Heat-fluid Coupling Simulation of Wet Friction Clutch

Heat-fluid Coupling Simulation of Wet Friction Clutch 3rd International Conerence on Mechatronics, Robotics and Automation (ICMRA 2015) Heat-luid Coupling Simulation o Wet Friction Clutch Tengjiao Lin 1,a *, Qing Wang 1, b, Quancheng Peng 1,c and Yan Xie

More information

Study Guide for Exam #2

Study Guide for Exam #2 Physical Mechanics METR103 November, 000 Study Guide for Exam # The information even below is meant to serve as a guide to help you to prepare for the second hour exam. The absence of a topic or point

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

2 GOVERNING EQUATIONS

2 GOVERNING EQUATIONS 2 GOVERNING EQUATIONS 9 2 GOVERNING EQUATIONS For completeness we will take a brief moment to review the governing equations for a turbulent uid. We will present them both in physical space coordinates

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7 Numerical Fluid Mechanics Fall 2011 Lecture 7 REVIEW of Lecture 6 Material covered in class: Differential forms of conservation laws Material Derivative (substantial/total derivative) Conservation of Mass

More information

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance Global Weak Solution o Planetary Geostrophic Equations with Inviscid Geostrophic Balance Jian-Guo Liu 1, Roger Samelson 2, Cheng Wang 3 Communicated by R. Temam) Abstract. A reormulation o the planetary

More information

Introduction to numerical simulation of fluid flows

Introduction to numerical simulation of fluid flows Introduction to numerical simulation of fluid flows Mónica de Mier Torrecilla Technical University of Munich Winterschool April 2004, St. Petersburg (Russia) 1 Introduction The central task in natural

More information

GAME PHYSICS SECOND EDITION. дяййтаййг 1 *

GAME PHYSICS SECOND EDITION. дяййтаййг 1 * GAME PHYSICS SECOND EDITION DAVID H. EBERLY дяййтаййг 1 * К AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO MORGAN ELSEVIER Morgan Kaufmann Publishers

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

Convergence of the MAC scheme for incompressible flows

Convergence of the MAC scheme for incompressible flows Convergence of the MAC scheme for incompressible flows T. Galloue t?, R. Herbin?, J.-C. Latche??, K. Mallem????????? Aix-Marseille Universite I.R.S.N. Cadarache Universite d Annaba Calanque de Cortiou

More information

MECH 5810 Module 3: Conservation of Linear Momentum

MECH 5810 Module 3: Conservation of Linear Momentum MECH 5810 Module 3: Conservation of Linear Momentum D.J. Willis Department of Mechanical Engineering University of Massachusetts, Lowell MECH 5810 Advanced Fluid Dynamics Fall 2017 Outline 1 Announcements

More information

Chapter 3: Newtonian Fluid Mechanics QUICK START W

Chapter 3: Newtonian Fluid Mechanics QUICK START W Chapter 3: Newtonian Fluid Mechanics TWO GOAL Derive governing equations (mass and momentum balances olve governing equations or velocity and stress ields QUICK TART W First, beore we get deep into derivation,

More information

송석호 ( 물리학과 )

송석호 ( 물리학과 ) http://optics.hanyang.ac.kr/~shsong 송석호 ( 물리학과 ) Field and Wave Electromagnetics, David K. Cheng Reviews on (Week 1). Vector Analysis 3. tatic Electric Fields (Week ) 4. olution of Electrostatic Problems

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

POTENTIAL TURBULENCE MODEL PREDICTIONS OF FLOW PAST A TRIANGULAR CYLINDER USING AN UNSTRUCTURED STAGGERED MESH METHOD

POTENTIAL TURBULENCE MODEL PREDICTIONS OF FLOW PAST A TRIANGULAR CYLINDER USING AN UNSTRUCTURED STAGGERED MESH METHOD POTENTIAL TURBULENCE MODEL PREDICTIONS OF FLOW PAST A TRIANGULAR CYLINDER USING AN UNSTRUCTURED STAGGERED MESH METHOD Xg Zhang Blair Perot Department of Mechanical and Industrial Engeerg, University of

More information

Multiplicable Discrete Operators In Finite Volume Solvers

Multiplicable Discrete Operators In Finite Volume Solvers Multiplicable Discrete Operators In Finite Volume Solvers DRAGAN VIDOVIĆ Institute For The Development Of Water Resources Jaroslav Černi Jaroslava Černog 80, 11226 Pinosava, Belgrade SERBIA draganvid@gmail.com

More information

Lecture 5. Labs this week: Please review ME3281 Systems materials! Viscosity and pressure drop analysis Fluid Bulk modulus Fluid Inertance

Lecture 5. Labs this week: Please review ME3281 Systems materials! Viscosity and pressure drop analysis Fluid Bulk modulus Fluid Inertance Labs this week: Lab 10: Sequencing circuit Lecture 5 Lab 11/12: Asynchronous/Synchronous and Parallel/Tandem Operations Please review ME3281 Systems materials! 132 Viscosity and pressure drop analysis

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

Electromagnetic Theory with Discrete Exterior Calculus

Electromagnetic Theory with Discrete Exterior Calculus Progress In Electromagnetics Research, Vol. 159, 59 78, 2017 Electromagnetic Theory with Discrete Exterior Calculus Shu C. Chen 1 and Weng C. Chew 2, * Abstract A self-contained electromagnetic theory

More information

Class 4 : Maxwell s Equations for Electrostatics

Class 4 : Maxwell s Equations for Electrostatics Class 4 : Maxwell s Equations for Electrostatics Concept of charge density Maxwell s 1 st and 2 nd Equations Physical interpretation of divergence and curl How do we check whether a given vector field

More information

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object Magnetic Materials 1. Magnetization 2. Potential and field of a magnetized object 3. H-field 4. Susceptibility and permeability 5. Boundary conditions 6. Magnetic field energy and magnetic pressure 1 Magnetic

More information

Incompressible MHD simulations

Incompressible MHD simulations Incompressible MHD simulations Felix Spanier 1 Lehrstuhl für Astronomie Universität Würzburg Simulation methods in astrophysics Felix Spanier (Uni Würzburg) Simulation methods in astrophysics 1 / 20 Outline

More information

Finite volume method on unstructured grids

Finite volume method on unstructured grids Finite volume method on unstructured grids Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Chapter 1. Vector Algebra and Vector Space

Chapter 1. Vector Algebra and Vector Space 1. Vector Algebra 1.1. Scalars and vectors Chapter 1. Vector Algebra and Vector Space The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

Least-Squares Finite Element Methods

Least-Squares Finite Element Methods Pavel В. Bochev Max D. Gunzburger Least-Squares Finite Element Methods Spri ringer Contents Part I Survey of Variational Principles and Associated Finite Element Methods 1 Classical Variational Methods

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Department of Atmospheric Science Colorado State University January 13th, 2015 Key Papers Introduction Arakawa and Lamb 1981 Salmon 2004

More information

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University email: bengt.sunden@energy.lth.se CFD? CFD = Computational Fluid Dynamics;

More information

Reynolds number scaling of inertial particle statistics in turbulent channel flows

Reynolds number scaling of inertial particle statistics in turbulent channel flows Reynolds number scaling of inertial particle statistics in turbulent channel flows Matteo Bernardini Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza Paolo Orlandi s 70th

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015 Jasmin Smajic, Christian Hafner 2, Jürg Leuthold 2, March 23, 205 Time Domain Finite Element Method (TD FEM): Continuous and Discontinuous Galerkin (DG-FEM) HSR - University of Applied Sciences of Eastern

More information

Discrete Differential Geometry. Peter Schröder with help from Eitan Grinspun, Mathieu Desbrun and the rest of the DDG crew.

Discrete Differential Geometry. Peter Schröder with help from Eitan Grinspun, Mathieu Desbrun and the rest of the DDG crew. Discrete Differential Geometry Peter Schröder with help from Eitan Grinspun, Mathieu Desbrun and the rest of the DDG crew ps@cs.caltech.edu A Bit of History Geometry is the key! studied for centuries Hermann

More information

ORE Open Research Exeter

ORE Open Research Exeter ORE Open Research Exeter TITLE A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C- grids AUTHORS Ringler, T.D.; Thuburn, John; Klemp, J.B.; et al. JOURNAL

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Department of Atmospheric Science Colorado State University May 7th, 2015 Intro Introduction Introduction Key Principles of Numerical Modeling

More information

F S (2) (3) D 2. 1 Stefan Sint, see also

F S (2) (3) D 2. 1 Stefan Sint, see also Note I.6 1 These are Conor Houghton s notes from 6 to whom many thanks! I have just edited a few minor things and corrected some typos. The pictures are in separate files and have also been drawn by Conor.

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

Time-Varying Systems; Maxwell s Equations

Time-Varying Systems; Maxwell s Equations Time-Varying Systems; Maxwell s Equations 1. Faraday s law in differential form 2. Scalar and vector potentials; the Lorenz condition 3. Ampere s law with displacement current 4. Maxwell s equations 5.

More information

Continuum Mechanics Lecture 5 Ideal fluids

Continuum Mechanics Lecture 5 Ideal fluids Continuum Mechanics Lecture 5 Ideal fluids Prof. http://www.itp.uzh.ch/~teyssier Outline - Helmholtz decomposition - Divergence and curl theorem - Kelvin s circulation theorem - The vorticity equation

More information

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams ICS RPORT 15-17 July 2015 A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams by Omar Al-Hinai, Mary F. Wheeler, Ivan Yotov The Institute for Computational ngineering

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 8-31-12 Classical Electrodynamics A main physics discovery of the last half of the 2 th

More information

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller Algebraic flux correction and its application to convection-dominated flow Matthias Möller matthias.moeller@math.uni-dortmund.de Institute of Applied Mathematics (LS III) University of Dortmund, Germany

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

A Simple Explanation of the Sobolev Gradient Method

A Simple Explanation of the Sobolev Gradient Method A Simple Explanation o the Sobolev Gradient Method R. J. Renka July 3, 2006 Abstract We have observed that the term Sobolev gradient is used more oten than it is understood. Also, the term is oten used

More information

Oct : Lecture 15: Surface Integrals and Some Related Theorems

Oct : Lecture 15: Surface Integrals and Some Related Theorems 90 MIT 3.016 Fall 2005 c W.C Carter Lecture 15 Oct. 21 2005: Lecture 15: Surface Integrals and Some Related Theorems Reading: Kreyszig Sections: 9.4 pp:485 90), 9.5 pp:491 495) 9.6 pp:496 505) 9.7 pp:505

More information

Available online at ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a

Available online at   ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 83 (205 ) 34 349 7th International Conerence on Sustainability in Energy and Buildings Numerical investigation o counter low plate

More information

Double Complexes and Local Cochain Projections

Double Complexes and Local Cochain Projections Double Complexes and Local Cochain Projections Richard S. Falk, 1 Ragnar Winther 2 1 Department o Mathematics, Rutgers University, Piscataway, New Jersey 08854 2 Centre o Mathematics or Applications and

More information

Day 24: Flow around objects

Day 24: Flow around objects Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS 1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow

More information