Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Size: px
Start display at page:

Download "Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory"

Transcription

1 TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University

2 Classical Electrodynamics A main physics discovery of the last half of the 2 th century is that electrodynamics is a part of an overarching quantum theory of nature called the standard model In the standard model, electromagnetism is closely linked with the weak interaction force, through the so-called electroweak unification, in a non-abelian gauge theory that relies on and utilizes the usual phase invariance of quantum mechanics As part of the standard model, electromagnetic forces are distinguished in that they couple to electric charge, and they are long (?) range because to the best of present knowledge, the photon (EM force carrier) is (nearly?) massless This fact explains their prevalence in our day-to-day life

3 Range of Validity of Classical Description Large numbers of quanta (quantum mechanical fluctuations are relatively small, leading to classical results) Low photon energy N photons >> E = ω ω << m c photons photons electron Higher energies can lead to (quantum mechanical) effects like Compton Effect. Not sufficient (photoelectric effect!) Macroscopic charge, i. e., large numbers of individual electrons. Electron discreteness not important. Does not work for atoms and new nano-scale devices. Need Quantum Mechanics for them! 1 2

4 Line and Surface Integrals Line integral b dl ( τ ) V dl V ( L ( τ ) ) dτ dτ L a for any parameterization of L (invariant to choice!) Surface (Flux) integral ( ( )) S S V nda V S, ( S (, )) d d σ τ S S S (, ) (, ) (, ) lim S σ + δσ τ S σ τ σ τ σ δσ δσ again independent of parameters up to sign (Jacobian!). Can usually integrate easily in high-symmetry situations. σ τ σ τ σ τ

5 Line and Surface Integrals Line integral parametrization invariant b b ( ( )) τ ( ) ( τ ( ) ) dl s dl ( ( s) ) d τ V dl V ( L( s )) ds = V ( L ( s) ) τ τ ds ds dτ ds L a a ( b ) τ dl ( τ ) = V ( L( τ )) dτ by change of variables formula dτ τ ( a ) Surface (Flux) integral parametrization invariant S S V nda V ( S ( σ ( σ, τ ), τ ( σ, τ ))) ( S ( σ ( σ, τ ), τ ( σ, τ ))) dσ dτ σ τ S P S S S σ S τ S σ S τ S S σ / σ τ / σ = + + = σ τ σ σ τ σ σ τ τ τ σ τ σ / τ τ / τ S S V nda V ( S ( σ, τ) ) ( S ( σ, τ) ) dσ dτ by 2-D change of variables σ τ S P When evaluating flux integrals, normal must be chosen. You choose correct vector order in product to get normal.

6 Flux for a Radial Field V x y z f r r (,, ) = ( ) ˆ xxˆ + yyˆ + zzˆ r = x + y + z rˆ = r Φ = V nda = V nda + V nda + V + S S S a V nda = f ( a) dxdy = f ( a) 2π a a x y 2 2 V nda = f a 2 π a Φ = f a 4π a S x y a S ( ) ( ) V 2

7 Stokes Theorem Vector Calculus Theorems A nda = A dl S L= S Divergence Theorem AdV = A nda V S= V

8 Electromagnetic Quantities Charge [C], Charge Density [C/m 3 ] q ρ x, t Electric Field Vector [V/m] E ( x, t) Electric Displacement Vector [C/m 2 ] D x, t Magnetic Field Vector [A/m] H ( ) ( x, t ) ( ) Magnetic Induction Vector [V sec/m 2 ] B x, t ( )

9 Maxwell s Equations D = ρ B E = t B = D H = J + t Electric charge generates electric displacement Faraday s Law No magnetic charges Magnetic field generated by real or displacement current density Maxwell s Equations are linear in the source terms ρ and J. In general will generate linear (partial) differential equations to solve. Superposition valid!

10 Constitutive Relations Relationships between electric quantities D = ε E Relationships between magnetic quantities B = µ H For most of course assume purely linear relationship exists. As you go on, you ll find there are non-linear dependences and other complications Better approximation for static phenomena In vacuum D = ε E B = µ H C ε µ π Nt m Nt sec C = =

11 Lorentz Force Force on a (quantized) charge q F = q E + v B ( ) From dimensions, see that force is coupled to magnetic induction, not magnetic field As will see later, valid at relativistic energies too when interpret force as change of relativistic momentum with time d ( γ mv ) q( = E + v B) dt

12 Maxwell Equations (Integral Form) Applying Divergence and Stokes Theorems D = ρ D n da = ρ dv B B E = E dl = n da t t L S B = B n da = S S D D H = J + H dl n da J n da t t = V L S S

13 Boundary Conditions Gaussian Pillbox Argument, σ is surface charge D n da D D nˆ A = σ A D D nˆ = ( ) ( ) G G II I S II I S B nda = B B n A = B n B n ( ) ˆ ˆ ˆ II I S II S I S Discontinuity of normal component of D given by surface charge and no change in the normal component of B A DII, BII G D I, B I ˆ n S σ

14 Gaussian Loop Argument, K is surface current [A/m] B E dl = n da E II dl E I dl = t S D H dl n da= J n da H ˆ II l H I l = K n S l t Discontinuity of tangential component of H given by surface current and no change in the tangential component of E l E II, H II L E, H L L S S I I

15 Maxwell Equations plus the boundary conditions provide a complete description of all classical electromagnetic phenomena Given source functions and constitutive relations these equations have unique solutions A wide variety of numerical solutions exist; we want you to be able to understand the solutions that you derive from codes in your future working life!

16 Electrostatics Maxwell Equations simplify enormously if the fields and sources do not depend on time Electric field of a static charge q 1 at location x given by 1 Coulomb slaw E q x x 4 πε x x 1 1 ( x) = 1 3

17 Notation Coulomb Interaction v v + v + v x y z x x = x x1 + y y1 + z z1 Force on test particle with charge q at location x qq1 x x1 F ( x ) = qe ( x ) = 4πε x x + y y + z z (( ) ( ) ( ) ) 3/2 ( ( ) 2 ( ) 2 ( ) 2 ) 3/ Dependence on the distance between charges F = qq 1 1 4πε + + r ( x x1 ) ( y y1 ) ( z z1 )

18 Gauss s Law Easy proof: x x 1 x x = x x x x x x 3 ( ) ( y y ) ( z z ) x 5 3 = 5 x x x x x x x x 3 Evaluate ( x x ) / x x nda on a sphere surrounding x x x 1 2 nda = R d cosθ dφ = 4π 3 2 x x R S x Independent of R! Gauss s Law follows from this!

19 Formal Statement Gauss s Law: for an arbitrary surface S (doesn t need to be a sphere!) E nda = S q inside Pf: If a charge is outside, calculation 1 shows it doesn t contribute to the integral. If a charge is inside, calculation 2 shows it contributes to the integral as given. For any V and S = V q inside 1 Edxdydz = E nda = = ρ x dxdydz V S V E = ρ ε ε ε ε ( ) 1st Maxwell Eqn. in vacuum

20 Magnetostatics: Ampere s Law In conventional vector notation is H dl = I L where I is the total current enclosed by the current loop. Define current density vector, and current density J = J, J, J ( ) x y z For time-independent independent charge density ρ J = =. tt Integrating over a surface bounded by L H dl = H nda = J nda = I L= S S S

21 Electromagnetic Potentials Poincare s lemma plus Div B = implies there is a vector A so that B = A This defines the usual vector potential. Poincare s lemma plus the Faraday s Law imply there is a scalar potential (sign chosen using traditional definition with E as the negative gradient) A A E E φ t = t = φ

22 Gauge Invariance Considerable flexibility/latitude in choosing potentials. If redefine them by A = A + dλ φ new new old Λ = φold t for an arbitrary space-time function, then the electric field and magnetic field will be identical when computed with the new potentials. In other words, the transformation from the old to new descriptions will leave the electromagnetic field invariant. One makes various choices on the gauge, for convenience of calculation.

23 Equations for the Potentials D ρ D D D x y z x y z = + + = D = ε ( ) E + + φ + A = x y z t and, by sorting the individual components D B H = J, H = t µ m ε ijk ε klm + ε µ φ + A j l i 2 i = µ Ji jlm,, = 1 x x t x t ρ A A ( A) φ = µ J x y z c t c t ρ ε

24 Lorenz Gauge Lorenz Gauge condition is 1 φ A + = c 2 t Applying this condition yields the following, very symmetrical version of the potential equations ρ + + φ = x y z c t ε A = µ J x y z c t

25 Energy/Power considerations Units of electric field, electric displacement, and current density Nt C C E = J D C = = sec m m J J E J = E D = 3 3 sec m m 2 2 Power delivered from electromagnetic field to a current element per unit volume involves E and J. Power delivered dto a current tin a small volume dv must be = E J dv ( ) Use Maxwell Equations to derive general result

26 Energy Conservation Energy/volume involves multiplication of E and D. The exact formula comes from the Maxwell Equations: 3 3 E Jd x = E H D / t d x V V 3 H E B / t d x V E D H B = E H d x d x t 2 V The RHS terms define the [1] Poynting (Energy Flux) Vector (J/sec m 2 ) S = E H V

27 Field Energy Evolution Equation For linear materials have [2] energy density (J/m 3 ) u E D H B ε E E µ H H = + = Field Energy Evolution u + S = J E t

28 Momentum Conservation Momentum is a vector quantity. Mechanical momentum delivered to a load by an electromagnetic field is dp mech dt = ρ E J B + dxdydx V Define the vector force density to be ρ E + J B Momentum Flux density must have nine components [ ] k l eˆ T ε dx dx = eˆ T dy dz + T dz dx + T dx dy i ij jkl i i1 i2 i3

29 In free space 1 E ρ = ε E J = B ε µ t then ( ) 2 E E + c B( B) ρ E + J B = ε ε E B ( ) ( ) 2 E E c B B t Momentum change equation dp mech dp + field = dt dt 2 2 ε E ( E ) c B ( B) E ( E ) c B ( B) + dxdydz V ( )

30 Momentum in field Maxwell Stress Tensor Stress Tensor 1 p field = E Hdxdydz 2 c V Tij = ε EiE j + c BiB j ( E E + c B B) δ ij = ExEx + c BxBx ExE y + c BxBy ExEz + c BxB z ε E E + ε E yex + c ByBx E yey + c ByBy E yez + c ByBz c B B EE z x + cbb z x EE z y + cbb z y EE z z + cbb z z 1

Time-Varying Systems; Maxwell s Equations

Time-Varying Systems; Maxwell s Equations Time-Varying Systems; Maxwell s Equations 1. Faraday s law in differential form 2. Scalar and vector potentials; the Lorenz condition 3. Ampere s law with displacement current 4. Maxwell s equations 5.

More information

Introduction and Review Lecture 1

Introduction and Review Lecture 1 Introduction and Review Lecture 1 1 Fields 1.1 Introduction This class deals with classical electrodynamics. Classical electrodynamics is the exposition of electromagnetic interactions between the develoment

More information

Today in Physics 217: begin electrostatics

Today in Physics 217: begin electrostatics Today in Physics 217: begin electrostatics Fields and potentials, and the Helmholtz theorem The empirical basis of electrostatics Coulomb s Law At right: the classic hand-to-thevan-de-graaf experiment.

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

Today in Physics 218: the Maxwell equations

Today in Physics 218: the Maxwell equations Today in Physics 218: the Maxwell equations Beyond magnetoquasistatics Displacement current, and Maxwell s repair of Ampère s Law The Maxwell equations Symmetry of the equations: magnetic monopoles? Rainbow

More information

Review of Electrostatics

Review of Electrostatics Review of Electrostatics 1 Gradient Define the gradient operation on a field F = F(x, y, z) by; F = ˆx F x + ŷ F y + ẑ F z This operation forms a vector as may be shown by its transformation properties

More information

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations Electromagnetic Theory PHYS 4 Electrodynamics Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations 1 7.1.1 Ohms Law For the EM force Usually v is small so J = J = σ Current density

More information

Electromagnetism and Maxwell s Equations

Electromagnetism and Maxwell s Equations Chapter 4. Electromagnetism and Maxwell s Equations Notes: Most of the material presented in this chapter is taken from Jackson Chap. 6. 4.1 Maxwell s Displacement Current Of the four equations derived

More information

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector. Lecture 3: Vectors Any set of numbers that transform under a rotation the same way that a point in space does is called a vector i.e., A = λ A i ij j j In earlier courses, you may have learned that a vector

More information

Review of Electrostatics. Define the gradient operation on a field F = F(x, y, z) by;

Review of Electrostatics. Define the gradient operation on a field F = F(x, y, z) by; Review of Electrostatics 1 Gradient Define the gradient operation on a field F = F(x, y, z) by; F = ˆx F x + ŷ F y + ẑ F z This operation forms a vector as may be shown by its transformation properties

More information

Summary of time independent electrodynamics

Summary of time independent electrodynamics hapter 10 Summary of time independent electrodynamics 10.1 Electrostatics Physical law oulomb s law charges as origin of electric field Superposition principle ector of the electric field E(x) in vacuum

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Physics 451/551 Theoretical Mechanics G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Theoretical Mechanics Fall 018 Properties of Sound Sound Waves Requires medium for propagation Mainly

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

Exercises in field theory

Exercises in field theory Exercises in field theory Wolfgang Kastaun April 30, 2008 Faraday s law for a moving circuit Faradays law: S E d l = k d B d a dt S If St) is moving with constant velocity v, it can be written as St) E

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 2, 2014 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

Electromagnetic Fields. Lecture 2. Fundamental Laws

Electromagnetic Fields. Lecture 2. Fundamental Laws Electromagnetic Fields Lecture 2 Fundamental Laws Laws of what? Electric field... is a phenomena that surrounds electrically charged objects or that which is in the presence of a time-varying magnetic

More information

Maxwell's Equations and Conservation Laws

Maxwell's Equations and Conservation Laws Maxwell's Equations and Conservation Laws 1 Reading: Jackson 6.1 through 6.4, 6.7 Ampère's Law, since identically. Although for magnetostatics, generally Maxwell suggested: Use Gauss's Law to rewrite continuity

More information

Electromagnetic Field Theory 1 (fundamental relations and definitions)

Electromagnetic Field Theory 1 (fundamental relations and definitions) (fundamental relations and definitions) Lukas Jelinek lukas.jelinek@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague Czech Republic Ver. 216/12/14 Fundamental Question

More information

Lecture Notes on ELECTROMAGNETIC FIELDS AND WAVES

Lecture Notes on ELECTROMAGNETIC FIELDS AND WAVES Lecture Notes on ELECTROMAGNETIC FIELDS AND WAVES (227-0052-10L) Prof. Dr. Lukas Novotny ETH Zürich, Photonics Laboratory January 12, 2018 Introduction The properties of electromagnetic fields and waves

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II Physics 704/804 Electromagnetic Theory II G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 04-13-10 4-Vectors and Proper Time Any set of four quantities that transform

More information

Problem Set #5: 5.7,5.9,5.13 (Due Monday, April 8th)

Problem Set #5: 5.7,5.9,5.13 (Due Monday, April 8th) Chapter 5 Magnetostatics Problem Set #5: 5.7,5.9,5.13 (Due Monday, April 8th) 5.1 Biot-Savart Law So far we were concerned with static configuration of charges known as electrostatics. We now switch to

More information

CHAPTER 8 CONSERVATION LAWS

CHAPTER 8 CONSERVATION LAWS CHAPTER 8 CONSERVATION LAWS Outlines 1. Charge and Energy 2. The Poynting s Theorem 3. Momentum 4. Angular Momentum 2 Conservation of charge and energy The net amount of charges in a volume V is given

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information

toroidal iron core compass switch battery secondary coil primary coil

toroidal iron core compass switch battery secondary coil primary coil Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler drb/teaching.

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler   drb/teaching. Electromagnetic Theory: PHA3201, Winter 2008 Preliminaries D. R. Bowler david.bowler@ucl.ac.uk http://www.cmmp.ucl.ac.uk/ drb/teaching.html 1 yllabus The course can be split into three main areas: electric

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

where the last equality follows from the divergence theorem. Now since we did this for an arbitrary volume τ, it must hold locally:

where the last equality follows from the divergence theorem. Now since we did this for an arbitrary volume τ, it must hold locally: 8 Electrodynamics Read: Boas Ch. 6, particularly sec. 10 and 11. 8.1 Maxwell equations Some of you may have seen Maxwell s equations on t-shirts or encountered them briefly in electromagnetism courses.

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 3, 2013 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object Magnetic Materials 1. Magnetization 2. Potential and field of a magnetized object 3. H-field 4. Susceptibility and permeability 5. Boundary conditions 6. Magnetic field energy and magnetic pressure 1 Magnetic

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Core Electrodynamics. Sandra C. Chapman. June 29, 2010 CORE ELECTRODYNAMICS COPYRIGHT SANDRA C CHAPMAN

Core Electrodynamics. Sandra C. Chapman. June 29, 2010 CORE ELECTRODYNAMICS COPYRIGHT SANDRA C CHAPMAN Core Electrodynamics Sandra C. Chapman June 29, 2010 Preface This monograph is based on a final year undergraduate course in Electrodynamics that I introduced at Warwick as part of the new four year physics

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Classical Physics. SpaceTime Algebra

Classical Physics. SpaceTime Algebra Classical Physics with SpaceTime Algebra David Hestenes Arizona State University x x(τ ) x 0 Santalo 2016 Objectives of this talk To introduce SpaceTime Algebra (STA) as a unified, coordinate-free mathematical

More information

Chapter 1 Mathematical Foundations

Chapter 1 Mathematical Foundations Computational Electromagnetics; Chapter 1 1 Chapter 1 Mathematical Foundations 1.1 Maxwell s Equations Electromagnetic phenomena can be described by the electric field E, the electric induction D, the

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Physics 451/551 Theoretical Mechanics G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Theoretical Mechanics Fall 18 Properties of Sound Sound Waves Requires medium for propagation Mainly

More information

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance.

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance. Vector field and Inductance Earth s Magnetic Field Earth s field looks similar to what we d expect if 11.5 there were a giant bar magnet imbedded inside it, but the dipole axis of this magnet is offset

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

More information

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M.

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M. . Momentum Conservation.. Momentum in mechanics In classical mechanics p = m v and nd Newton s law d p F = dt If m is constant with time d v F = m = m a dt Now we will look at the &M force on moving charges

More information

Chapter 7. Time-Varying Fields and Maxwell s Equation

Chapter 7. Time-Varying Fields and Maxwell s Equation Chapter 7. Time-Varying Fields and Maxwell s Equation Electrostatic & Time Varying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are

More information

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions Maxwell s equations Physics /5/ Lecture XXIV Kyoto /5/ Lecture XXIV James Clerk Maxwell James Clerk Maxwell (83 879) Unification of electrical and magnetic interactions /5/ Lecture XXIV 3 Φ = da = Q ε

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form ections: 3.1, 3.2, 3.3 Homework: ee homework file Faraday s Experiment (1837), Electric Flux ΨΨ charge transfer from inner to outer sphere

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

Comment about Didactical formulation of the

Comment about Didactical formulation of the Comment about Didactical formulation of the Ampère law Hendrik van Hees Institute for Theoretical Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt, Germany Frankfurt Institute

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 17 p. 1/? EECS 117 Lecture 17: Magnetic Forces/Torque, Faraday s Law Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Chapter 7. Time-Varying Fields and Maxwell s Equations

Chapter 7. Time-Varying Fields and Maxwell s Equations Chapter 7. Time-arying Fields and Maxwell s Equations Electrostatic & Time arying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are not

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Class 3: Electromagnetism

Class 3: Electromagnetism Class 3: Electromagnetism In this class we will apply index notation to the familiar field of electromagnetism, and discuss its deep connection with relativity Class 3: Electromagnetism At the end of this

More information

Electromagnetic energy and momentum

Electromagnetic energy and momentum Electromagnetic energy and momentum Conservation of energy: the Poynting vector In previous chapters of Jackson we have seen that the energy density of the electric eq. 4.89 in Jackson and magnetic eq.

More information

Chapter 1. Maxwell s Equations

Chapter 1. Maxwell s Equations Chapter 1 Maxwell s Equations 11 Review of familiar basics Throughout this course on electrodynamics, we shall use cgs units, in which the electric field E and the magnetic field B, the two aspects of

More information

Review of Electrodynamics

Review of Electrodynamics Review of Electrodynamics VBS/MRC Review of Electrodynamics 0 First, the Questions What is light? How does a butterfly get its colours? How do we see them? VBS/MRC Review of Electrodynamics 1 Plan of Review

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Today in Physics 218: the classic conservation laws in electrodynamics

Today in Physics 218: the classic conservation laws in electrodynamics Today in Physics 28: the classic conservation laws in electrodynamics Poynting s theorem Energy conservation in electrodynamics The Maxwell stress tensor (which gets rather messy) Momentum conservation

More information

Electrodynamics Exam Solutions

Electrodynamics Exam Solutions Electrodynamics Exam Solutions Name: FS 215 Prof. C. Anastasiou Student number: Exercise 1 2 3 4 Total Max. points 15 15 15 15 6 Points Visum 1 Visum 2 The exam lasts 18 minutes. Start every new exercise

More information

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H =

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H = To review, in our original presentation of Maxwell s equations, ρ all J all represented all charges, both free bound. Upon separating them, free from bound, we have (dropping quadripole terms): For the

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Graduate Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Course Outline Course Content Introduction to Accelerators and Short Historical Overview Basic Units and Definitions

More information

Electrodynamics Part 1 12 Lectures

Electrodynamics Part 1 12 Lectures NASSP Honour - Electrodynamic Firt Semeter 2014 Electrodynamic Part 1 12 Lecture Prof. J.P.S. Rah Univerity of KwaZulu-Natal rah@ukzn.ac.za 1 Coure Summary Aim: To provide a foundation in electrodynamic,

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

PART 2: INTRODUCTION TO CONTINUUM MECHANICS

PART 2: INTRODUCTION TO CONTINUUM MECHANICS 7 PART : INTRODUCTION TO CONTINUUM MECHANICS In the following sections we develop some applications of tensor calculus in the areas of dynamics, elasticity, fluids and electricity and magnetism. We begin

More information

Last time. Gauss' Law: Examples (Ampere's Law)

Last time. Gauss' Law: Examples (Ampere's Law) Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iot-savart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field

More information

Problem Set #5: 5.2, 5.4, 5.8, 5.12, 5.15, 5.19, 5.24, 5.27, 5.35 (Due Tuesday, April 8th)

Problem Set #5: 5.2, 5.4, 5.8, 5.12, 5.15, 5.19, 5.24, 5.27, 5.35 (Due Tuesday, April 8th) Chapter 5 Magnetostatics Problem Set #5: 5.2, 5.4, 5.8, 5.12, 5.15, 5.19, 5.24, 5.27, 5.35 (Due Tuesday, April 8th 5.1 Lorentz Force So far we were concerned with forces on test charges Q due to static

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Module - 4 Time Varying Field Lecture - 30 Maxwell s Equations In the last lecture we had introduced

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

Chapter 2 Basics of Electricity and Magnetism

Chapter 2 Basics of Electricity and Magnetism Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a

More information

송석호 ( 물리학과 )

송석호 ( 물리학과 ) http://optics.hanyang.ac.kr/~shsong 송석호 ( 물리학과 ) Introduction to Electrodynamics, David J. Griffiths Review: 1. Vector analysis 2. Electrostatics 3. Special techniques 4. Electric fields in mater 5. Magnetostatics

More information

6 Div, grad curl and all that

6 Div, grad curl and all that 6 Div, grad curl and all that 6.1 Fundamental theorems for gradient, divergence, and curl Figure 1: Fundamental theorem of calculus relates df/dx over[a, b] and f(a), f(b). You will recall the fundamental

More information

Magnetostatics Surface Current Density. Magnetostatics Surface Current Density

Magnetostatics Surface Current Density. Magnetostatics Surface Current Density Magnetostatics Surface Current Density A sheet current, K (A/m ) is considered to flow in an infinitesimally thin layer. Method 1: The surface charge problem can be treated as a sheet consisting of a continuous

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Chapter 5: Magnetostatics, Faraday s Law, Quasi-Static Fields 5.1 Introduction and Definitions We begin with the law of conservation of charge:

Chapter 5: Magnetostatics, Faraday s Law, Quasi-Static Fields 5.1 Introduction and Definitions We begin with the law of conservation of charge: Chapter 5: agnetostatics, Faraday s Law, Quasi-Static Fields 5. Introduction and Definitions We begin with the law of conservation of charge: v d d Q J J a v t t d J t conservation da (5.) of charge, J

More information

Caltech Ph106 Fall 2001

Caltech Ph106 Fall 2001 Caltech h106 Fall 2001 ath for physicists: differential forms Disclaimer: this is a first draft, so a few signs might be off. 1 Basic properties Differential forms come up in various parts of theoretical

More information

MUDRA PHYSICAL SCIENCES

MUDRA PHYSICAL SCIENCES MUDRA PHYSICAL SCIENCES VOLUME- PART B & C MODEL QUESTION BANK FOR THE TOPICS:. Electromagnetic Theory UNIT-I UNIT-II 7 4. Quantum Physics & Application UNIT-I 8 UNIT-II 97 (MCQs) Part B & C Vol- . Electromagnetic

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

An Undergraduate View of a Second Year Course in Physics

An Undergraduate View of a Second Year Course in Physics An Undergraduate View of a Second Year Course in Physics Josuan Calderon, Sruthi Narayanan, Farid Salazar, Pedro Soto November 1, 2015 Contents Foreword 4 Preface 7 1 Electromagnetism and the Wave Equation

More information