Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State

Size: px
Start display at page:

Download "Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State"

Transcription

1 Conservation of Energy for a Closed System First Law of Thermodynamics Dr. Md. Zahurul Haq rofessor Department of Mechanical Engineering Bangladesh University of Engineering & Technology BUET Dhaka-000, Bangladesh First Law of Thermodynamics When a system undergoes a cyclic change, the net heat to or from the system is equal to the net work from or to the system. J = δw zahurul@me.buet.ac.bd ME 20: Basic Thermodynamics Mechanical equivalent of heat, J = { kj/kcal.0 in SI unit c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 First Law of Thermodynamics for a Change in State T363 δw = J = δw [J =.0 in SI unit] A + 2 C = δw A + 2 δw C B + 2 C = δw B + 2 δw 2 C 2 : A B = δw A δw B A δw A = B δw A = δw B = δw B δw is independent of the path and dependent only on the initial and final states; hence, it has the characteristics of a property and this property is denoted by energy, E. δw = de Q 2 W 2 = E c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 hysical significance of the property E: it represents all the energy of the system in the given state. This energy might be present in a variety of forms, such as: Kinetic Energy KE: energy of a system associated with motion. otential Energy E: energy associated with a mass that is located at a specified position in a force field. Internal Energy U: some forms of energy, e.g., chemical, nuclear, magnetic, electrical, and thermal depend in some way on the molecular structure of the substance that is being considered, and these energies are grouped as the internal energy of a system, U. KE & E are external forms of energy as these are independent of the molecular structure of matter. These are associated with the selected coordinate frame and can be specified by the macroscopic parameters of mass, velocity & elevation. Internal energy, like kinetic and potential energy, has no natural zero value. Therefore, it is necessary to arbitrarily define the specific internal energy of a substance to be zero at some state that is referred to as the reference state. c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9

2 Internal Energy U: A Thermodynamic roperty E = U + KE + E + δw = du + dke+de+ δw = du + dke + de + = decm de cm = Q W du = du = U 2 U = mu 2 u dke = mvdv = dke = 2 mv2 2 V2 de = mgdz = de = mgz 2 Z = mgh T33 T34 Q 2 W 2 = [ U 2 U + 2 mv2 2 V2 +mgz 2 Z ] Various forms of microscopic energies that make up sensible energy. Internal energy of a system is the sum of all forms of the microscopic energies. c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 q 2 w 2 = [ u 2 u + 2 V2 2 V2 +gz 2 Z ] u 2 u c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 Enthalpy H: A Thermodynamic roperty H U + V h u + v Q 2 W 2 = E T29 Q 2 W 2 = U if KE 0, E 0 W 2 = dv = V Q 2 = U 2 U + V Q 2 = U U + V T7 Q 2 = H 2 H The heat transfer in a constant-pressure quasi-equilibrium process is equal to the change in enthalpy, which includes both the change in internal energy and the work for this particular process. T30 T3 T32 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9

3 Joule s Free Expansion Experiment Specific Heats C m C V m V C m T39 Valve is opened and allowed to equilibrate. No change in water temperature. So, no heat transfer takes place. st Law: Q 2 = 0, W 2 = 0, = U = 0. & V changed during this process, but without any change in U. So, U f,v = U = ft for ideal gas. h = u + v = u + RT H = ft for ideal gas. = du +δw = du + dv c V = δu V + dv = c V V = du dt = δu V = δu + dv V + 0 as u = ft for ideal gas = du +δw = dh v+dv = dh vd = δh v d c = δh v d = δh 0 = c as h = ft for ideal gas = dh dt h = u+dv = u+rt dh = du+rdt c dt = c V dt+rdt Specific heat ratio, k c c V = c c V = R c V = R k c = kr k c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 Ideal gas models: R = Ru M c T c V T = R c V T = R kt : kt = c T c V T du = c V dt u 2 u = c VTdT dh = c dt h 2 h = c TdT T28 T5 First Law of Thermodynamics for closed system T26 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics T27 ME / 9 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9

4 Open CV System Open CV System Mass Continuity Equation T23 V avg = A c A c V n da c T443 m cv t+m i = m cv t + t+m e T444 m cv t + t m cv t = m i m e mcvt+ t mcvt t if t 0 : dmcv = m i m e t = m i m e T22 δ m = ρv n da c T24 m = A ρv nda : m = ρav = AV v for d flow = i m i e m e c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 Open CV System [Moran Ex. 4.]: Feedwater heater at steady-state. Determine m 2 &. Assume, v 2 v f T 2. Open CV System Conservation of Energy for CV System = i / = 0 m i e m e i m i = m + m 2 e m e = m 3 m = ρav m 3 = ρ 3 AV 3 T25 ρ 2 = ρt = T 2, = 2 ρ 3 = ρx = 0.0, = 3 = m 2 = 4.5 kg/s, = 5.7 m/s. c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 T099 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9

5 Open CV System Open CV System First Law of Thermodynamics FLT for CV System T00 = Q W cv + i m i h i + V2 i 2 + gz i e m e h e + V2 e = Q W + m i e i m e e e = Q W + m i u i + V2 i 2 + gz i = Q W cv + m i h i + V2 i 2 + gz i m e u e + V2 e m e h e + V2 e Closed System: m i = m e = 0. = Q W net Steady-State-Steady Flow SSSF System: = 0 = i m i = e m e : = 0 W = W s + W b + W f = W cv + W f W f = V i V e = m i v i m e v e h u + v One-inlet, One-exit & Steady-state: m i = m e = m. [ ] 0 = Q W cv + m h h gz z 2 Open CV System c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9 Bernoulli s Equation h = u + v dh = du + dv + vd, so for isothermal process and incompressible fluid, dh = vd h h 2 = 2 ρ For a steady state flow device if E 0, KE 0, W cv = 0 and Q cv = 0: [ ] 0 = 0 0+ m h h gz z 2 ρg 2g z : pressure head : velocity head : elevation head ρg + V2 2g + z = 2 ρg + V2 2 2g + z 2 c Dr. Md. Zahurul Haq BUET First Law of Thermodynamics ME / 9

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26 Conservation of Energy for a Closed System Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-, Bangladesh zahurul@me.buet.ac.bd

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory Week 5. Energy Analysis of Closed Systems Objectives 1. Examine the moving boundary work or PdV work commonly encountered in reciprocating devices such as automotive engines and compressors 2. Identify

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037 onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

T104. c Dr. Md. Zahurul Haq (BUET) Second Law of Thermodynamics ME 201 (2015) 2 / 23 T136

T104. c Dr. Md. Zahurul Haq (BUET) Second Law of Thermodynamics ME 201 (2015) 2 / 23 T136 Some Observations in Work & Heat Conversions & Second Law of Thermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000,

More information

Isentropic Efficiency in Engineering Thermodynamics

Isentropic Efficiency in Engineering Thermodynamics June 21, 2010 Isentropic Efficiency in Engineering Thermodynamics Introduction This article is a summary of selected parts of chapters 4, 5 and 6 in the textbook by Moran and Shapiro (2008. The intent

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

Thermodynamics ENGR360-MEP112 LECTURE 3

Thermodynamics ENGR360-MEP112 LECTURE 3 Thermodynamics ENGR360-MEP11 LECTURE 3 ENERGY, ENERGY TRANSFER, AND ENERGY ANALYSIS Objectives: 1. Introduce the concept of energy and define its various forms.. Discuss the nature of internal energy.

More information

- Apply closed system energy balances, observe sign convention for work and heat transfer.

- Apply closed system energy balances, observe sign convention for work and heat transfer. CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives: - In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes: - Demonstrate

More information

3. First Law of Thermodynamics and Energy Equation

3. First Law of Thermodynamics and Energy Equation 3. First Law of Thermodynamics and Energy Equation 3. The First Law of Thermodynamics for a ontrol Mass Undergoing a ycle The first law for a control mass undergoing a cycle can be written as Q W Q net(cycle)

More information

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014) PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Chapter 5: Mass, Bernoulli, and Energy Equations

Chapter 5: Mass, Bernoulli, and Energy Equations Chapter 5: Mass, Bernoulli, and Energy Equations Introduction This chapter deals with 3 equations commonly used in fluid mechanics The mass equation is an expression of the conservation of mass principle.

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2 Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x Frictionless surface M dv v dt M dv dt v F F F ; v mass velocity in x direction

More information

Where does Bernoulli's Equation come from?

Where does Bernoulli's Equation come from? Where does Bernoulli's Equation come from? Introduction By now, you have seen the following equation many times, using it to solve simple fluid problems. P ρ + v + gz = constant (along a streamline) This

More information

Week 2. Energy, Energy Transfer, And General Energy Analysis

Week 2. Energy, Energy Transfer, And General Energy Analysis Week 2. Energy, Energy Transfer, And General Energy Analysis Objectives 1. Introduce the concept of energy and define its various forms 2. Discuss the nature of internal energy 3. Define the concept of

More information

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics.

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics. Eng3901 - Thermodynamics I 1 1 Introduction 1.1 Thermodynamics Thermodynamics is the study of the relationships between heat transfer, work interactions, kinetic and potential energies, and the properties

More information

ENERGY ANALYSIS OF CLOSED SYSTEMS

ENERGY ANALYSIS OF CLOSED SYSTEMS Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS Mehmet Kanoglu University of Gaziantep

More information

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process Outline roperty diagrams involving entropy What is entropy? T-ds relations Entropy change of substances ure substances (near wet dome) Solids and liquids Ideal gases roperty diagrams involving entropy

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Chapter 5: Mass, Bernoulli, and

Chapter 5: Mass, Bernoulli, and and Energy Equations 5-1 Introduction 5-2 Conservation of Mass 5-3 Mechanical Energy 5-4 General Energy Equation 5-5 Energy Analysis of Steady Flows 5-6 The Bernoulli Equation 5-1 Introduction This chapter

More information

Thermodynamics part III.

Thermodynamics part III. Thermodynamics part III. a.) Fenomenological thermodynamics macroscopic description b.) Molecular thermodynamics microscopic description b1.) kinetical gas theory b2.) statistical thermodynamics Laws of

More information

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max Heat Exchangers: Rating & Performance Parameters Dr. Md. Zahurul Haq HTX Rating is concerned with the determination of the heat transfer rate, fluid outlet temperatures, and the pressure drop for an existing

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface Introduction to Thermodynamics, Lecture 3-5 Prof. G. Ciccarelli (0) Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x FRICTIONLESS

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.

More information

ESO201A: Thermodynamics

ESO201A: Thermodynamics ESO201A: Thermodynamics First Semester 2015-2016 Mid-Semester Examination Instructor: Sameer Khandekar Time: 120 mins Marks: 250 Solve sub-parts of a question serially. Question #1 (60 marks): One kmol

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power THERMODYNAMICS INTRODUCTION The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power Together the spell heat power which fits the time when the forefathers

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Chapter 4. Energy Analysis of Closed Systems

Chapter 4. Energy Analysis of Closed Systems Chapter 4 Energy Analysis of Closed Systems The first law of thermodynamics is an expression of the conservation of energy principle. Energy can cross the boundaries of a closed system in the form of heat

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

T222 T194. c Dr. Md. Zahurul Haq (BUET) Gas Power Cycles ME 6101 (2017) 2 / 20 T225 T226

T222 T194. c Dr. Md. Zahurul Haq (BUET) Gas Power Cycles ME 6101 (2017) 2 / 20 T225 T226 The Carnot Gas Power Cycle Gas Power Cycles 1 2 : Reversible, isothermal expansion at T H 2 3 : Reversible, adiabatic expansion from T H to T L 3 4 : Reversible, isothermal compression at T L Dr. Md. Zahurul

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Chapter 1: Basic Concepts of Thermodynamics. Thermodynamics and Energy. Dimensions and Units

Chapter 1: Basic Concepts of Thermodynamics. Thermodynamics and Energy. Dimensions and Units Chapter 1: Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and

More information

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666 Heat Exchanger: Rating & Sizing Heat Exchangers: Rating & Sizing - I Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000,

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

CHAPTER. The First Law of Thermodynamics: Closed Systems

CHAPTER. The First Law of Thermodynamics: Closed Systems CHAPTER 3 The First Law of Thermodynamics: Closed Systems Closed system Energy can cross the boundary of a closed system in two forms: Heat and work FIGURE 3-1 Specifying the directions of heat and work.

More information

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK)

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK) CHATER ENERGY INTERACTION (HEAT AND WORK) Energy can cross the boundary of a closed system in two ways: Heat and Work. WORK The work is done by a force as it acts upon a body moving in direction of force.

More information

Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS

Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS Copyright The McGraw-Hill Companies,

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

More information

Unit B-1: List of Subjects

Unit B-1: List of Subjects ES31 Energy Transfer Fundamentals Unit B: The First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793 HX: Energy Balance and LMTD Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000, Bangladesh http://zahurul.buet.ac.bd/

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name: Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

Chapter 1: Basic Definitions, Terminologies and Concepts

Chapter 1: Basic Definitions, Terminologies and Concepts Chapter : Basic Definitions, Terminologies and Concepts ---------------------------------------. UThermodynamics:U It is a basic science that deals with: -. Energy transformation from one form to another..

More information

Energy Transport by. By: Yidnekachew Messele. Their sum constitutes the total energy E of a system.

Energy Transport by. By: Yidnekachew Messele. Their sum constitutes the total energy E of a system. Energy Transport y Heat, ork and Mass By: Yidnekachew Messele Energy of a System Energy can e viewed as the aility to cause change. Energy can exist in numerous forms such as thermal, mechanical, kinetic,

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Chapter 12 PROPERTY RELATIONS. Department of Mechanical Engineering

Chapter 12 PROPERTY RELATIONS. Department of Mechanical Engineering Chapter 12 THERMODYNAMIC PROPERTY RELATIONS Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it Objectives Develop fundamental relations between commonly encountered thermodynamic

More information

PART 0 PRELUDE: REVIEW OF "UNIFIED ENGINEERING THERMODYNAMICS"

PART 0 PRELUDE: REVIEW OF UNIFIED ENGINEERING THERMODYNAMICS PART 0 PRELUDE: REVIEW OF "UNIFIED ENGINEERING THERMODYNAMICS" PART 0 - PRELUDE: REVIEW OF UNIFIED ENGINEERING THERMODYNAMICS [IAW pp -, 3-41 (see IAW for detailed SB&VW references); VN Chapter 1] 01 What

More information

Chapter 3 First Law of Thermodynamics and Energy Equation

Chapter 3 First Law of Thermodynamics and Energy Equation Fundamentals of Thermodynamics Chapter 3 First Law of Thermodynamics and Energy Equation Prof. Siyoung Jeong Thermodynamics I MEE0-0 Spring 04 Thermal Engineering Lab. 3. The energy equation Thermal Engineering

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics COMPENDIUM OF EQUAIONS Unified Engineering hermodynamics Note: It is with some reseration that I suly this comendium of equations. One of the common itfalls for engineering students is that they sole roblems

More information

First Law of Thermodynamics Closed Systems

First Law of Thermodynamics Closed Systems First Law of Thermodynamics Closed Systems Content The First Law of Thermodynamics Energy Balance Energy Change of a System Mechanisms of Energy Transfer First Law of Thermodynamics in Closed Systems Moving

More information

(Refer Slide Time: 0:15)

(Refer Slide Time: 0:15) (Refer Slide Time: 0:15) Engineering Thermodynamics Professor Jayant K Singh Department of Chemical Engineering Indian Institute of Technology Kanpur Lecture 18 Internal energy, enthalpy, and specific

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Introduction & Basic Concepts of Thermodynamics

Introduction & Basic Concepts of Thermodynamics Introduction & Basic Concepts of Thermodynamics Reading Problems 2-1 2-8 2-53, 2-67, 2-85, 2-96 Introduction to Thermal Sciences Thermodynamics Conservation of mass Conservation of energy Second law of

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

dv = adx, where a is the active area of the piston. In equilibrium, the external force F is related to pressure P as

dv = adx, where a is the active area of the piston. In equilibrium, the external force F is related to pressure P as Chapter 3 Work, heat and the first law of thermodynamics 3.1 Mechanical work Mechanical work is defined as an energy transfer to the system through the change of an external parameter. Work is the only

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

AE1104 Physics 1. List of equations. Made by: E. Bruins Slot

AE1104 Physics 1. List of equations. Made by: E. Bruins Slot i AE04 Physics List of equations Made by: E. Bruins Slot Chapter Introduction and basic concepts Newton s second law Weight F = M a (N) W = m g J = N m (N) Density Specific volume ρ = m V m 3 v = V m =

More information

Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic, Steady State Flow Process

Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic, Steady State Flow Process Undergraduate Journal of Mathematical Modeling: One + Two Volume 8 08 Spring 08 Issue Article Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic,

More information

Chapter 1: INTRODUCTION AND BASIC CONCEPTS. Thermodynamics = Greek words : therme(heat) + dynamis(force or power)

Chapter 1: INTRODUCTION AND BASIC CONCEPTS. Thermodynamics = Greek words : therme(heat) + dynamis(force or power) Chapter 1: INTRODUCTION AND BASIC CONCEPTS 1.1 Basic concepts and definitions Thermodynamics = Greek words : therme(heat) + dynamis(force or power) Note that, force x displacement = work; power = work/time

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

2. Describe the second law in terms of adiabatic and reversible processes.

2. Describe the second law in terms of adiabatic and reversible processes. Lecture #3 1 Lecture 3 Objectives: Students will be able to: 1. Describe the first law in terms of heat and work interactions.. Describe the second law in terms of adiabatic and reversible processes. 3.

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

Chapter 2: Energy and the 1 st Law of Thermodynamics. The Study of Energy in Closed Systems

Chapter 2: Energy and the 1 st Law of Thermodynamics. The Study of Energy in Closed Systems Chapter 2: Energy and the 1 st Law of Thermodynamics The Study of Energy in Closed Systems Topics 2.1 Mechanical Concepts of Energy 2.2 Broadening Understanding of Work 2.3 Broadening Understanding of

More information

Engineering Thermodynamics. Chapter 3. Energy Transport by Heat, Work and Mass

Engineering Thermodynamics. Chapter 3. Energy Transport by Heat, Work and Mass Chapter 3 Energy Transport y Heat, ork and Mass 3. Energy of a System Energy can e viewed as the aility to cause change. Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential,

More information

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory Week 8. Steady Flow Engineering Devices Objectives 1. Solve energy balance problems for common steady-flow devices such as nozzles, compressors, turbines, throttling valves, mixers, heaters, and heat exchangers

More information

Final Review Prof. WAN, Xin

Final Review Prof. WAN, Xin General Physics I Final Review Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ About the Final Exam Total 6 questions. 40% mechanics, 30% wave and relativity, 30% thermal physics. Pick

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

piston control surface

piston control surface Lecture Thermodynamics 4 Enthalpy Consider a quasistatic hydrostatic constant pressure (isobaric) process weights piston, p gas Q control surface fi, p gas U -U 1 = Q +W = Q - Ú pdv = Q - p + p fi (U +

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Fall 004 Unified Quiz: Thermodynamics November 1, 004 Calculators allowed. No books allowed. A list of equations is provided. Put your name on each page of the exam. Read all questions carefully. Do all

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Why do we need to study thermodynamics? Examples of practical thermodynamic devices:

Why do we need to study thermodynamics? Examples of practical thermodynamic devices: Why do we need to study thermodynamics? Knowledge of thermodynamics is required to design any device involving the interchange between heat and work, or the conversion of material to produce heat (combustion).

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Unified Quiz: Thermodynamics October 14, 2005 Calculators allowed. No books or notes allowed. A list of equations is provided. Put your ID number on each page of the exam. Read all questions carefully.

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information