COVES AND THE UNDERWORLD COVES NEED A LIMESTONE COAST: THE BALEARIC ISLANDS AS AN EXAMPLE

Size: px
Start display at page:

Download "COVES AND THE UNDERWORLD COVES NEED A LIMESTONE COAST: THE BALEARIC ISLANDS AS AN EXAMPLE"

Transcription

1 COVES AND THE UNDERWORLD COVES NEED A LIMESTONE COAST: THE BALEARIC ISLANDS AS AN EXAMPLE JOAN J. FORNÓS Coves are complex littoral geoforms, worked upon by the convergence of numerous processes that interact in a variety of ways. Karst processes, driven by the dissolution of limestone and responsible for the formation of most coves, is one of the most prominent. Coastlines undergo constant evolution and change as a result of the interaction between the solid medium, namely the land, the liquid medium, in other words the sea and fresh water, and the gaseous medium, that is the atmosphere. The dynamics affecting each of the three, along with the time variable, mean that the different processes occurring or which have already taken place are mirrored in coastal morphology. Coves are one of the most attractive coastal accidents. A cove is a complex landform resulting from the convergence of several key and highly variable factors that participate in its genesis. The first most important and most basic factor is the change in sea level, which is more or less uniform worldwide, caused by fluctuations in the ice in the continental and polar regions, or by changes in the capacity of marine and ocean basins. In cold periods, when the sea level drops because there are large accumulations of ice in inland areas, the base level that determines the rivers also drops and therefore the rivers tend to cut into the valleys to accommodate the new situation. Similarly, if there are holes or cavities that have formed inside geological formations, the loss of hydrostatic support when the water table drops can cause them to collapse. By contrast, in warm periods continental ice melts and water runs back to the ocean, then the corresponding rise in sea level floods the lower parts of river valleys, which in the long term though not always can fill up with sedimentary deposits that can be continental, transition or inland deposits. «COVES ARE ONE OF THE MOST ATTRACTIVE COASTAL ACCIDENTS, A COMPLEX LANDFORM RESULTING FROM THE CONVERGENCE OF SEVERAL KEY FACTORS IN ITS GENESIS» The second factor favouring the development of a river is the fluvial component. Although the processes linked to river flow in the Balearic Islands are barely visible nowadays, at some point they may have exerted a role in establishing a short now relict drainage network, which can be identified, but which never acquired the characteristics typical of an estuary. The tectonic structure is the third factor and exerts a basic influence on the lines of weakness, exploited by all erosion-based processes, which end up shaping the landscape. Weakness results in the breakdown of rocks, formation of fractures or faults, due to mechanical stresses occurring at the Earth s crust (tectonic processes), and on having a directional component, its role will result in the linearity of the resulting forms. In coves, box canyons often intersect at various angles, showing a characteristic grid formation. Having discussed these aspects, we can say that coves have traditionally been associated with fluvial incision that occurred during the last glacial stage finishing around 100,000 years ago, which, with the subsequent rise in sea level, created an estuary environment surrounded by cliffs. Nevertheless, if we look closely, the morphological variability of coves would indicate that the linearity of the river courses and the coastline (conditioned by fracture) do not fully fit in with most coves layout nor that of many rivers; therefore, we have to postulate other processes that may have contributed to the development and evolution of these landforms. Accordingly, there is a new model to explain the On the left, Anna Sanchis. series, Clay, plaster and acrylic on wood, 21 x 28 cm MÈTODE Annual Review 91

2 evolution of coves, where karst-related processes take on an important role. KARST AND ROCK INFLUENCE The word karst comes from karra, which has a pre- Indo-European origin and means anything related to stone. Much of current western Slovenia and Trieste in Italy have a rocky landscape, sterile and without surface runoff, which bestows very specific characteristics. From the toponym of this region, in the late eighteenth century the term was Germanised and internationalised from a scientific viewpoint by the Viennese School of Geography and Geology. Thus the landscape features of the Karst (or Kras) region, served scientists to name karstic phenomena and, from then on, the word spread wherever this geomorphology was to be found, namely, the carbonate landscapes affected by the porosity and solubility of the rock. By karst, we understand a whole set of processes that result from these distinctive hydrological features and give rise to a landscape resulting from the combination of high rock solubility and well-developed secondary porosity (due to rock breakage). The fact there is high porosity (void space within the rock) implies that water seeps into the ground quickly, and thus surface runoff disappears. In turn, this infiltration increases potential water contact with the rock, which, on having high solubility, dissolves. Consequently, the rock is hollowed out and takes on very characteristic shapes. In turn, this further increases porosity (the hollows become larger) and we could say that the process feeds on itself. All rocks are soluble in varying degrees, but only a few are capable of feeding karst. These phenomena are all the more remarkable when other physical geomorphic processes, both hydrodynamic and aerodynamic (such as those affecting fluvial, glacial or aeolian modelling) are lower in intensity. Among the most soluble rocks, evaporites (salts and gypsum) and especially calcareous rocks provide the most spectacular examples. Sinkholes are quintessential karst forms generated in these rocks (a kind of closed funnel-shaped circular depression, known as foies in Valencia, comes in the Balearic Islands), caves (or underground cavities) and grooved forms (karren or lapiaz) observed in rocky outcrops. «CALCAREOUS ROCKS ARE RESISTANT TO EROSION, INDICATING THAT ON THE COAST, CLIFFS ARE THE MOST CHARACTERISTIC FORM» Miocene carbonate cliffs in the Balearic Islands are the fundamental meeting point of karst and coves. Any geomorphic process requires a substrate material, so the chemical properties and, above all, the texture of the rock affect the resulting forms. To this, we should add rock breakage, creating weak areas easily attacked by the physical processes of erosion, and ultimately this also determines the action of karst or dissolution processes, as they act on these planes which fracture, favouring water conduits. Thus, by exercising its task of dissolution, water widens fractures to form ducts and cavities, thereby weakening the overall structure of a geological formation. In the Balearic Islands, limestone rocks are everywhere. We are in a temperate climate zone where seasonal rainfall is more or less regular, so it is easy to imagine that karst is one of the most important processes affecting the moulding of the islands. Calcareous rocks might be considered hard, that is, they are resistant to erosion by physical processes. It would seem to follow, then, that cliffs are the most characteristic coastal form. The variability we find in these, results from geological aspects, including those of a tectonic or structural nature, mainly due to deformation and rupture processes undergone during geological epochs. Another factor concerns chemical processes. 92 Annual Review MÈTODE 2013

3 The greatest development undergone by coves in the Balearic Islands is mainly associated with carbonate materials from the Upper Miocene (from 11.6 to 5.3 million years). These deposits form rocky outcrops that are widespread in southern Menorca and in the south and east of Mallorca, forming what are called les marines. They correspond to a structural relief comprising a series of well stratified calcarenite and limestone formations on a horizontal tabular relief that, on reaching the coastline, are cut Karstic groundwater ducts at the foot of the cliffs (arrows) related to the fracture (dotted lines) favour marine erosion. The fracture marks the weak points in the rock, which affect both the processes of dissolution by groundwater and the mechanical breakdown of the rock, leading to collapse and landslides by vertical walls. These materials settled in a shallow marine shelf environment with the development of coral reefs and a much warmer climate than ours today. THE ROLE PLAYED BY STRUCTURE AND FRACTURE Materials dating from the Upper Miocene, as indicated by their structure, are post-orogenic, meaning that they have not undergone any major compressive deformation as affects older materials common in the Balearic Islands (caused by the collision between the African and Europe plates during the Alpine Orogeny), giving rise to the most important reliefs. These materials, however, are affected by tectonic relaxation produced after compression. The result is a set of fractures and joints (rupture without vertical movement) with highly consistent orientation, according to the stress field that caused them. Several intersecting directions can be discerned, making a kind of lattice on the surface. One of these directions coincides with the predominant coastal line and is responsible for cliff formation and erosion, assisted by marine dynamics. The other directions, at a more or less regular angle to the coastline, tend to create squared forms, which are noticeable along most of the coast. As already mentioned, water penetration is favoured by fractures and, therefore, it here that rock dissolution is concentrated. For the same reason, where fracture movement occurs, penetration and thus dissolution are increased. This becomes the most common place for the formation of potholes, ponors and closed depressions or sinkholes. Some paradigmatic examples of coves are to be found on the island of Menorca, where we can observe the various stages of development, from inception, as is the case of Cala Sant Llorenç, to the more developed stages of the well known Cala Galdana. In the first case, a steep ravine and short meandering stretch is surrounded by large cliffs, whose linearity depends on fracture directions, which have a sharp concave shape. These cavities show signs of recent gravitational dismantling with the marks of delapsional processes and block accumulation at the base. The observation of groundwater ducts, linked to the current sea level and opening out onto the seafront, which coincide with the points of structural weakness, can be related to the formation of sinkholes. These along with underlying cavities are reached by the sea, causing the wall to collapse, which is favoured by vertical cracks, resulting in concave forms and leading to a repetitive and coalescing 2013 MÈTODE Annual Review 93

4 Evolutionary model of the sedimentary silting of Algendar Canyon (Cala Galdana). 0 m Edaphic land 14,000 BP CURRENT 5 m Marine influence 10 m 100 m 400 m Upper Miocene Holocene Filling 15 m Above, the block diagram represents the situation during the last glacial stage, 14,000 years BP (before 1950) and nowadays, with Holocene sedimentary filling (stratigraphic column on the right), showing the composition of the filling materials silty (striped), sandy (dotted) lagoon matter, as well as the periods of marine influence ( ). 20 m 25 m BP 40 o E Ciutadella 4 o E Menorca Maó m Thousands of years Metres above sea level 30 m 35 m Miocene calcareous MÈTODE The graph shows the sea level oscillation curve in the Balearic Islands, dating from the last interglacial stage, namely during the last 150,000 years. retreat of the cliff. The fluvial process would be more likely to start its incision here. A fully developed case is Cala Galdana. This cove is linked to a perennial watercourse, presenting a clear river mouth, but one with a flat bottom due to sediment clogging from the last rise in sea level. The shape of the cove is typically circular, bounded by vertical cliffs showing continuous concave shapes, both in the final stretch of the gorge and upstream, where they are highlighted by the meandering course of the stream. The concave shapes coincide with points of structural weakness in the walls (vertical fractures), exploited by karst-like sinking. The collapse or subsidence is caused by sinkholes with vertical ducts, favoured by fracturing, and which are intersected by horizontal ones, situated at sea level. HOW COVES EVOLVE We could say that a creek represents the total interaction between fluvial modelling, the geological structure, marine dynamics and karst processes. In the littoral zone, karst cavities abound. There are known to be a whole series of ducts and cavities, in different stages of development, following a path parallel to the coast, as well as channels running along the beds of watercourses and gorges. This situation is explained by the hydrological phenomenon that occurs in these situations, with the mixture of sea water penetrating inland due to porosity and rainwater infiltration feeding groundwater aquifers. The meeting of these waters having different chemical composition makes them more aggressive and leads to further corrosion of the limestone, causing the formation of large voids. Consequently, a string of cavities and ducts form around the point of contact between the seawater and the freshwater aquifer. The specific features and layout of this intrusion will obviously depend on groundwater and river flow and the degree of rock porosity. Meanwhile, karstic processes also relate to distension fractures which preferably channel the flow of water through the fracture-related discontinuities. This mechanism causes the cavities to branch out and promotes marine erosion as the sea tends to capture (or 94 Annual Review MÈTODE 2013

5 intercept) the cavities and ducts, leading to the onset of marine inputs (inlets) that could end up as coves. At this point we must take into account the variability in sea level during the Quaternary. Major development of cavities and ducts occurs at times of marine stabilisation, when dissolution would lead to the development of hollows associated with the corresponding sea level. Variation in sea level due to glacio-eustatic factors may explain the overlapping of dissolution layers at different levels, which would probably favour the formation of sinkholes and their subsequent collapse due to the loss of hydraulic support in times of falling sea levels (glacial or regressive periods). This is indicated by the final shape of coves, which are circular or elliptical and bordered by vertical walls, and a large portion of the route of ravines, especially in the last stretches. In short, falling sea levels would induce collapse and acceleration of the dismantling process of cavities and ducts, while periods of high sea level would cause the sea to invade the areas excavated during box canyon formation, as well as the tendency of these to become clogged by sediments. «VARIATION IN SEA LEVEL DUE TO GLACIO-EUSTATIC FACTORS MAY EXPLAIN THE OVERLAPPING OF DISSOLUTION LAYERS AT DIFFERENT LEVELS, WHICH WOULD PROBABLY FAVOUR THE FORMATION OF SINKHOLES» Detailed analysis of the Balearic Islands coves shows us that most of them have a lot to do with karstic ducts and cavities. It does not mean that the formation mechanism is uniquely and exclusively due to karst phenomena, but rather that the interaction of different processes, including fluvial processes, would give rise to a cove and an associated ravine. The great diversity observed in cove morphometry is the result of interplay with other factors, such as marine dynamics, geological structure, lithological variation of carbonate rocks and, finally, the trends in sea level during the Quaternary. BIBLIOGRAPHY FORD, D. and P. WILLIAMS, Karst Hydrology and Geomorphology. Wiley. Chichester. FORNÓS, J. J. et al., Història natural del Migjorn de Menorca. El medi físic i l infl ux humà. Societat d Història Natural de les Balears. Palma FORNÓS, J. J. et al., Geomorfologia litoral. Migjorn i Llevant de Mallorca. Societat d Història Natural de les Balears. Palma ROSSELLÓ, V. M., «Cala, una mesoforma litoral: concepte, models i aproximació morfomètrica». Cuadernos de Geografía, 77: Joan J. Fornós. Professor and Researcher. Research group studying karst and coastal geomorphology. University of the Balearic Islands (Spain). A A MÈTODE C B B Aerial view of Cala Galdana (Menorca) with associated karstic features. (A) fracture-dependent groundwater duct (B) sinkhole collapse related to groundwater ducts, (C) incidence of fracture in karst process localisation MÈTODE Annual Review 95

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

WHAT IS THE EARTH MADE OF? LITHOSPHERE AND HYDROSPHERE

WHAT IS THE EARTH MADE OF? LITHOSPHERE AND HYDROSPHERE UNIT 8 WHAT IS THE EARTH MADE OF? LITHOSPHERE AND HYDROSPHERE TABLE OF CONTENTS 1 THE STRUCTURE OF THE EARTH... 2 2 THE FORMATION OF THE RELIEF: INTERNAL AND EXTERNAL FORCES.... 2 2.1 Internal forces:

More information

RIVERS, GROUNDWATER, AND GLACIERS

RIVERS, GROUNDWATER, AND GLACIERS RIVERS, GROUNDWATER, AND GLACIERS Delta A fan-shaped deposit that forms when a river flows into a quiet or large body of water, such as a lake, an ocean, or an inland sea. Alluvial Fan A sloping triangle

More information

6.1 Water. The Water Cycle

6.1 Water. The Water Cycle 6.1 Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This unending circulation of Earth s water supply is the water cycle. The Water Cycle

More information

Karst found mostly in limestone (rock with at least 50% carbonate minerals), depends on 1) permeability & porosity

Karst found mostly in limestone (rock with at least 50% carbonate minerals), depends on 1) permeability & porosity KARST LANDFORMS produced by weathering & erosion in regions of carbonate rocks and evaporites processes called karstification mainly below ground surface predominantly underground drainage poorly-developed

More information

PALEOGEOGRAPHY of NYS. Definitions GEOLOGIC PROCESSES. Faulting. Folding 9/6/2012. TOPOGRAPHIC RELIEF MAP of NYS GRADATIONAL TECTONIC

PALEOGEOGRAPHY of NYS. Definitions GEOLOGIC PROCESSES. Faulting. Folding 9/6/2012. TOPOGRAPHIC RELIEF MAP of NYS GRADATIONAL TECTONIC TOPOGRAPHIC RELIEF MAP of NYS PALEOGEOGRAPHY of NYS Prof. Anthony Grande AFG 2012 Definitions GEOLOGIC PROCESSES Geography: study of people living on the surface of the earth. Geology: the scientific study

More information

10/27/2014. Surface Processes. Surface Processes. Surface Processes. Surface Processes. Surface Processes

10/27/2014. Surface Processes. Surface Processes. Surface Processes. Surface Processes. Surface Processes Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 25 Surface or surficial processes originate at Earth's surface and reshape its contours. Surface processes include: Weathering Erosion Deposition

More information

Reading Material. See class website. Sediments, from Oceanography M.G. Gross, Prentice-Hall

Reading Material. See class website. Sediments, from Oceanography M.G. Gross, Prentice-Hall Reading Material See class website Sediments, from Oceanography M.G. Gross, Prentice-Hall Materials filling ocean basins Dissolved chemicals especially from rivers and mid-ocean ridges (volcanic eruptions)

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Running Water and Groundwater Running Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This

More information

Chapter 14: Groundwater. Fig 14.5b

Chapter 14: Groundwater. Fig 14.5b Chapter 14: Groundwater Fig 14.5b OBJECTIVES Recognize that groundwater is a vital source of accessible freshwater. Describe how groundwater forms below the water table. Explain the origin of aquifers,

More information

8UNIT. External dynamics of the Earth. What do you remember? Key language. Content objectives

8UNIT. External dynamics of the Earth. What do you remember? Key language. Content objectives 8UNIT External dynamics of the Earth What do you remember? Can you name the solids in the photograph? nd the liquid? Is the liquid moving? How does it move? What is the name of this formation of water?

More information

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life Landforms Landscape evolution A Natural landscape is the original landscape that exists before it is acted upon by human culture. An Anthropic landscape is the landscape modified by humans for their activities

More information

The Geology of Sebago Lake State Park

The Geology of Sebago Lake State Park Maine Geologic Facts and Localities September, 2002 43 55 17.46 N, 70 34 13.07 W Text by Robert Johnston, Department of Agriculture, Conservation & Forestry 1 Map by Robert Johnston Introduction Sebago

More information

THE EARTH S RELIEF SOCIAL SCIENCES 1º ESO

THE EARTH S RELIEF SOCIAL SCIENCES 1º ESO THE EARTH S RELIEF SOCIAL SCIENCES 1º ESO 1. THE STRUCTURE OF THE EARTH The Earth is divided into layers: The crust is the surface layer. It is a thin, solid layer made of rock. The Earth s crust has a

More information

UNIT 4: Earth Science Chapter 21: Earth s Changing Surface (pages )

UNIT 4: Earth Science Chapter 21: Earth s Changing Surface (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years?

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years? Reading 5.2 Environmental Change Think about the area where you live. You may see changes in the landscape in that area over a year. Some of those changes are weather related. Others are due to how the

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Mammoth Cave National Park, Kentucky

Mammoth Cave National Park, Kentucky Mammoth Cave National Park, Kentucky Objectives of Today s Lecture Refresher on Sedimentary Depositional Systems and Rock Classifications Transgressive and Regressive Marine Environments Carbonate Depositional

More information

What we will cover. The Hydrologic Cycle. River systems. Floods. Groundwater. Caves and Karst Topography. Hot springs

What we will cover. The Hydrologic Cycle. River systems. Floods. Groundwater. Caves and Karst Topography. Hot springs Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs On a piece of paper, put these reservoirs of water in to order from largest to

More information

Florida s Karst Geology

Florida s Karst Geology Florida s Karst Geology Orange Creek Basin Interagency Working Group Public Workshop, November 5 th, 2015 Harley Means, P.G. Assistant State Geologist Florida Geological Survey Karst Karst a type of topography

More information

It usually refers to limestone terrain characteristically. possessing a patchy and thin soil cover, containing many enclosed depressions, and

It usually refers to limestone terrain characteristically. possessing a patchy and thin soil cover, containing many enclosed depressions, and Karst Landform karst is terrain in which soluble rocks are altered above and below ground by the dissolving action of water and that bears distinctive characteristics of relief and drainage (Jennings 1971,)

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

The Coast: Beaches and Shoreline Processes

The Coast: Beaches and Shoreline Processes 1 2 3 4 5 6 7 8 9 The Coast: es and Shoreline Processes Trujillo & Thurman, Chapter 10 Oceanography 101 Chapter Objectives Recognize the various landforms characteristic of beaches and coastal regions.

More information

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown. Name 1. In the cross section of the hill shown below, which rock units are probably most resistant to weathering? 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different

More information

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10 The Coast: es and Shoreline Processes Trujillo & Thurman, Chapter 10 Oceanography 101 Chapter Objectives Recognize the various landforms characteristic of beaches and coastal regions. Identify seasonal

More information

Holocene evolution of Dahab coastline Gulf of Aqaba, Sinai Peninsula, Egypt 1

Holocene evolution of Dahab coastline Gulf of Aqaba, Sinai Peninsula, Egypt 1 Holocene evolution of Dahab coastline Gulf of Aqaba, Sinai Peninsula, Egypt 1 Magdy Torab* 2 * Prof. of Geomorphology, Department of Geography, Damanhour University, Egypt 3 E-mail: magdytorab@hotmail.com.

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Ch 10 Deposition Practice Questions

Ch 10 Deposition Practice Questions 1. Base your answer to the following question on the data table below. Six identical cylinders, A through F, were filled with equal volumes of sorted spherical particles. The data table shows the particle

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information

STUDY GUIDE FOR CONTENT MASTERY. Movement and Storage of Groundwater

STUDY GUIDE FOR CONTENT MASTERY. Movement and Storage of Groundwater Groundwater SECTION 10.1 Movement and Storage of Groundwater In your textbook, read about the hydrosphere, precipitation and groundwater, and groundwater storage. Use the following terms to complete the

More information

Chapter 2. Denudation: Rivers and Ice

Chapter 2. Denudation: Rivers and Ice Chapter 2. Denudation: Rivers and Ice DENUDATION: process that lowers level of land - caused by rivers, glaciers, waves & wind - involves processes of WEATHERING & EROSION Weathering Def: breakdown of

More information

Weathering, Erosion, Deposition

Weathering, Erosion, Deposition Weathering, Erosion, Deposition The breakdown of rocks at or near the Earth s Surface. Physical Chemical - The breakdown of rock into smaller pieces without chemical change. - Dominant in moist /cold conditions

More information

Geol 117 Lecture 18 Beaches & Coastlines. I. Types of Coastlines A. Definition:

Geol 117 Lecture 18 Beaches & Coastlines. I. Types of Coastlines A. Definition: I. Types of Coastlines A. Definition: 1. Shore = narrow zone where ocean meets land (e.g. beach) 2. Coast is a broad area where both ocean and land processes act a. Includes onshore marshes, dunes, sea

More information

Pre-Lab Reading Questions ES202

Pre-Lab Reading Questions ES202 ES202 The are designed to encourage students to read lab material prior to attending class during any given week. Reading the weekly lab prior to attending class will result in better grade performance

More information

Extra Credit Assignment (Chapters 4, 5, 6, and 10)

Extra Credit Assignment (Chapters 4, 5, 6, and 10) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Extra Credit Assignment (Chapters 4, 5, 6, and 10) For this assignment you will require: a calculator and metric ruler. Chapter 4 Objectives:

More information

Lab 7: Sedimentary Structures

Lab 7: Sedimentary Structures Name: Lab 7: Sedimentary Structures Sedimentary rocks account for a negligibly small fraction of Earth s mass, yet they are commonly encountered because the processes that form them are ubiquitous in the

More information

Geomorphology for Engineers

Geomorphology for Engineers Geomorphology for Engineers Edited by P. G. Fookes, E. M. Lee and G. Milligan Whittles Publishing CRC PRESS Contents Foreword Preface Dedication Biographies 1. Introduction to Engineering Geomorphology

More information

THE CHANGING SURFACE OF THE EARTH

THE CHANGING SURFACE OF THE EARTH THE CHANGING SURFACE OF THE EARTH Key words Drain geological agent weathering erosion Sediment deposition transport The landscape is a consequence of the action of two types of geological processes; internal

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Physical Geography A Living Planet

Physical Geography A Living Planet Physical Geography A Living Planet The geography and structure of the earth are continually being changed by internal forces, like plate tectonics, and external forces, like the weather. Iguaçu Falls at

More information

1. Erosion by Running Water Most powerful cause of erosion

1. Erosion by Running Water Most powerful cause of erosion I. Destructive Forces Notes: Destructive force: a process in which land is destroyed or changed such as weathering and erosion. All landforms are a result of a combination of constructive and destructive

More information

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom.

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom. 1. Sediment is deposited as a river enters a lake because the A) velocity of the river decreases B) force of gravity decreases C) volume of water increases D) slope of the river increases 2. Which diagram

More information

Name: Mid-Year Review #2 SAR

Name: Mid-Year Review #2 SAR Name: Mid-Year Review #2 SAR Base your answers to questions 1 through 3 on on the diagram below, which shows laboratory materials used for an investigation of the effects of sediment size on permeability,

More information

Terrain Units PALEOGEOGRAPHY: LANDFORM CREATION. Present Geology of NYS. Detailed Geologic Map of NYS

Terrain Units PALEOGEOGRAPHY: LANDFORM CREATION. Present Geology of NYS. Detailed Geologic Map of NYS NYS TOPOGRAPHY Why so? PALEOGEOGRAPHY: LANDFORM CREATION Prof. Anthony Grande AFG 014 Present Geology of NYS Detailed Geologic Map of NYS Generalized Geology Detailed Geology Hot links to the fold out

More information

Environmental Science Institute The University of Texas - Austin

Environmental Science Institute The University of Texas - Austin Environmental Science Institute The University of Texas - Austin Geologic Wonders of Central Texas Dr. Leon Long This file contains suggestions for how to incorporate the material from this CDROM into

More information

Page 1. Name:

Page 1. Name: Name: 1) Which property would best distinguish sediment deposited by a river from sediment deposited by a glacier? thickness of sediment layers age of fossils found in the sediment mineral composition

More information

HID 362 MESLEKİ İNGİLİZCE 2

HID 362 MESLEKİ İNGİLİZCE 2 HID 362 MESLEKİ İNGİLİZCE 2 Hafta 5 Prof. Dr. N. Nur ÖZYURT 2017-2018 Bahar Dönemi http://www.philippe-crochet.com/galerie/karst/details/18/lapiaz-et-sites-ruiniformes/236104/rr-14-0032-pic-saint-loupherault-figures-de-karstification-sur-la-crete-ouest

More information

HW #2 Landscape Travel from A to B 12,

HW #2 Landscape Travel from A to B 12, HW #2 Landscape 2016 Section: Name: ate: 1. ase your answer(s) to the following question(s) on the map below, which represents two bridges that cross the Green River. Letters,, and represent locations

More information

netw rks Guided Reading Activity Essential Question: How does geography influence the way people live? Earth's Physical Geography

netw rks Guided Reading Activity Essential Question: How does geography influence the way people live? Earth's Physical Geography Guided Reading Activity Lesson 1 Earth and the Sun Essential Question: How does geography influence the way people live? Looking at Earth Directions: What are the layers that make up Earth? Use your textbook

More information

Michigan s Geology and Groundwater

Michigan s Geology and Groundwater Michigan s Geology and Groundwater Ralph J. Haefner Deputy Director U.S. Geological Survey Michigan-Ohio Water Science Center Lansing, Michigan Outline About the USGS Geology 101 Michigan s geology Bedrock

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Erosion Sediment natural forces move rock/soil from one place to another. gravity, water, wind, glaciers, waves are causes material moved by erosion Deposition when erosion lays

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Coasts Key Word Glossary

Coasts Key Word Glossary Coasts Key Word Glossary Abrasion Also known as corrosion. It is the wearing away of the cliff by sand, fragments of rock and boulders that are being hurled at the cliff by the waves. It causes grinding

More information

EROSION AND DEPOSITION

EROSION AND DEPOSITION CHAPTER 8 EROSION AND DEPOSITION SECTION 8 1 Changing Earth s Surface (pages 252-255) This section explains how sediment is carried away and deposited elsewhere to wear down and build up Earth s surface.

More information

Depositional Environment

Depositional Environment Depositional Environment Sedimentary depositional environment describes the combination of physical, chemical and biological processes associated with the deposition of a particular type of sediment. Types

More information

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering Chapter 2 Wearing Down Landforms: Rivers and Ice Physical Weathering Weathering vs. Erosion Weathering is the breakdown of rock and minerals. Erosion is a two fold process that starts with 1) breakdown

More information

Weathering and Erosion

Weathering and Erosion Have you ever looked at the land around you and wondered how it was shaped? The geologic features that help define the world are still being shaped by the natural processes of weathering, erosion, and

More information

Chapter 5. The Sedimentary Archives

Chapter 5. The Sedimentary Archives Chapter 5 The Sedimentary Archives Factors affecting Sedimentary Characteristics 1. Tectonic setting 2. Physical, chemical, and biological processes in the depositional environment 3. Method of sediment

More information

Landslides and Ground Water Permeability with Respect to the. Contact Point of Glacial Lake Vermont and the Champlain Sea

Landslides and Ground Water Permeability with Respect to the. Contact Point of Glacial Lake Vermont and the Champlain Sea Landslides and Ground Water Permeability with Respect to the Contact Point of Glacial Lake Vermont and the Champlain Sea Sediments at Town Line Brook, Winooski, VT Michala Peabody Lara Vowles Abstract:

More information

The Marine Environment

The Marine Environment The Marine Environment SECTION 16.1 Shoreline Features In your textbook, read about erosional landforms, beaches, estuaries, longshore currents, and rip currents. For each statement below, write or. 1.

More information

What landforms make up Australia?!

What landforms make up Australia?! What landforms make up Australia? The tectonic forces of folding, faulting and volcanic activity have created many of Australia's major landforms. Other forces that work on the surface of Australia, and

More information

Chapter 3 Erosion and Deposition. The Big Question:

Chapter 3 Erosion and Deposition. The Big Question: Chapter 3 Erosion and Deposition The Big Question: 1 Design a way to represent and describe the 4 types of mass movement. You may use pictures, diagrams, list, web, chart, etc 2 Chapter 3: Erosion and

More information

Subsidence is the sinking or collapse of a portion of the land surface. The movement involved in subsidence is essentially vertical; little or no

Subsidence is the sinking or collapse of a portion of the land surface. The movement involved in subsidence is essentially vertical; little or no 1 Subsidence is the sinking or collapse of a portion of the land surface. The movement involved in subsidence is essentially vertical; little or no horizontal motion is involved. It may take the form of

More information

LBJWC - Sinkhole Lesson

LBJWC - Sinkhole Lesson LBJWC - Sinkhole Lesson Concept Caves and sinkholes are major openings in the ground that recharge water to the Edwards Aquifer. Objective - Students will: 1) identify a sinkhole, cave, fracture, fault,

More information

Oceanography is the scientific study of oceans Oceans make up over 70% of the Earth s surface

Oceanography is the scientific study of oceans Oceans make up over 70% of the Earth s surface Oceanography Oceanography is the scientific study of oceans Oceans make up over 70% of the Earth s surface An ocean must be large and have features which set it apart from other oceans (currents, water

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

3.1 GEOLOGY AND SOILS Introduction Definition of Resource

3.1 GEOLOGY AND SOILS Introduction Definition of Resource 3.1 GEOLOGY AND SOILS 3.1.1 Introduction 3.1.1.1 Definition of Resource The geologic resources of an area consist of all soil and bedrock materials. This includes sediments and rock outcroppings in the

More information

Page 1. Name:

Page 1. Name: Name: 1) Which event is the best example of erosion? dissolving of rock particles on a limestone gravestone by acid rain breaking apart of shale as a result of water freezing in a crack rolling of a pebble

More information

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Raymond C. Vaughan, Ph.D. What happens if you drop a

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

1- Water on Earth 2- Oceans and seas / continental waters 3- Uses, risks and problems of water

1- Water on Earth 2- Oceans and seas / continental waters 3- Uses, risks and problems of water Contents: I- Relief 1- Structure of the Earth and relief formation 2- Shaping of relief 3- Types of relief II- Water 1- Water on Earth 2- Oceans and seas / continental waters 3- Uses, risks and problems

More information

Tuesday, September 05, 2017 Planet Earth

Tuesday, September 05, 2017 Planet Earth Tuesday, September 05, 2017 Planet Earth Objective: Describe the solar system and Earth s location in it. Identify Earth s shape. Discuss Earth s structure. List Earth s landforms Do Now: What is a compass

More information

Read Across America. Listen as I read for facts about Volcanoes. In the Shadow of the Volcano

Read Across America. Listen as I read for facts about Volcanoes. In the Shadow of the Volcano Read Across America Listen as I read for facts about Volcanoes. In the Shadow of the Volcano Constructive & Destructive Processes Earth s surface is always changing. Blowing wind and flowing water causes

More information

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant?

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant? 1. In which type of climate does chemical weathering usually occur most rapidly? 1. hot and dry 3. cold and dry 2. hot and wet 4. cold and wet 2. Figure 1 The map shows the top view of a meandering stream

More information

WATER S EFFECT EARTH S 10.4

WATER S EFFECT EARTH S 10.4 WATER S EFFECT ON SHAPING EARTH S SURFACE 10.4 OBJECTIVES Water is always on the move through the water cycle Explain that no matter what form water is in, it has the ability to reshape the surface of

More information

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Gutta cavat lapidem (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Fixed channel boundaries (bedrock banks and bed) High transport

More information

Unit 4: Landscapes Practice Problems

Unit 4: Landscapes Practice Problems Name: Date: 1. Soil with the greatest porosity has particles that are A. poorly sorted and densely packed B. poorly sorted and loosely packed C. well sorted and densely packed D. well sorted and loosely

More information

GLOBAL WARMING: GLOBAL WARMING. landscape implications. Andrew Goudie St Cross College Oxford

GLOBAL WARMING: GLOBAL WARMING. landscape implications. Andrew Goudie St Cross College Oxford GLOBAL WARMING: GLOBAL WARMING landscape implications Andrew Goudie St Cross College Oxford THE PROCESS OF CHANGE HAS STARTED IPCC 2007 Increased Glacier retreat since the early 1990s Area of seasonally

More information

CAPE Unit 1 Module 2 & 3. Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments

CAPE Unit 1 Module 2 & 3. Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments # Week(s) Wks 1-3 CAPE Unit 1 Module 2 & 3 Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments Wave formation, structure, types Textbook

More information

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product Weathering 1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product End Result of physical weathering is increased surface area. 2. Physical

More information

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data*

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Yun Ling 1, Xiangyu Guo 1, Jixiang Lin 1, and Desheng Sun 1 Search and Discovery Article #20143 (2012) Posted April

More information

The Niagara Escarpment extends from western New York, through the GTA all the way up to Manitoulin Island and into Michigan and Wisconsin.

The Niagara Escarpment extends from western New York, through the GTA all the way up to Manitoulin Island and into Michigan and Wisconsin. is southern Ontario s most prominent topographic feature, extending more than 500 kilometres from western New York, through Niagara Falls and the western part of the Greater Toronto Area (GTA), and north

More information

24. Ocean Basins p

24. Ocean Basins p 24. Ocean Basins p. 350-372 Background The majority of the planet is covered by ocean- about %. So the majority of the Earth s crust is. This crust is hidden from view beneath the water so it is not as

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

Weathering, Erosion and Deposition

Weathering, Erosion and Deposition Weathering, Erosion and Deposition Shaping the Earth s Surface Weathering the process of breaking down rocks into smaller fragments Erosion the transport of rock fragments from one location to another

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

ARE YOU READY TO THINK? Look at the first slide THINK PAIR SHARE!

ARE YOU READY TO THINK? Look at the first slide THINK PAIR SHARE! ARE YOU READY TO THINK? Look at the first slide THINK PAIR SHARE! WHAT PROMINENT FEATURE CAN YOU IDENTIFY IN THIS PICTURE? What do you think the different colors represent? Who might find such a picture

More information

Karst Landforms. Caverns Sinkholes Disappearing Streams Springs Towers

Karst Landforms. Caverns Sinkholes Disappearing Streams Springs Towers Karst Landforms Karst is a term used to describe landscapes that are formed by chemical weathering process controlled by groundwater activity. Karst landscapes are predominantly composed of limestone rock

More information

Glacial Modification of Terrain

Glacial Modification of Terrain Glacial Modification Part I Stupendous glaciers and crystal snowflakes -- every form of animate or inanimate existence leaves its impress upon the soul of man. 1 -Orison Swett Marden Glacial Modification

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

Name: Period: Date: ID: A. Circle the choice that best completes the statement or answers the question and write the letter on the blank.

Name: Period: Date: ID: A. Circle the choice that best completes the statement or answers the question and write the letter on the blank. Name: Period: _ Date: _ ID: A Unit 7 Practice Circle the choice that best completes the statement or answers the question and write the letter on the blank. 1. What term describes the movement of rock

More information

Characteristics and processes associated with the development of Hilly Landscapes

Characteristics and processes associated with the development of Hilly Landscapes GRADE 11 GEOGRAPHY SESSION 1: GEOMORPHOLOGY I (TOPOGRAPHY) Key Concepts In this lesson we will focus on summarising what you need to know about: Topography associated with Horizontally Layered Rocks Topography

More information

The Sea Floor. Chapter 2

The Sea Floor. Chapter 2 The Sea Floor Chapter 2 Geography of the Ocean Basins World ocean is the predominant feature on the Earth in total area Northern Hemisphere = 61% of the total area is ocean. Southern Hemisphere = about

More information

The Official CA State Science Education Standards for Earth Science K 8

The Official CA State Science Education Standards for Earth Science K 8 The Official CA State Science Education Standards for Earth Science K 8 Kindergarten The Earth is composed of land, air and water. As a basis for understanding this concept, students know: a. characteristics

More information

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm The Cryosphere Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm (temperate) glaciers: at pressure melting point,

More information

COURSE OUTLINE GEOLOGY 101, Sec 002 Fall 2008, Diecchio Text: Lutgens, Tarbuck and Tasa, Essentials of Geology, 10 th edition

COURSE OUTLINE GEOLOGY 101, Sec 002 Fall 2008, Diecchio Text: Lutgens, Tarbuck and Tasa, Essentials of Geology, 10 th edition COURSE OUTLINE GEOLOGY 101, Sec 002 Fall 2008, Diecchio Text: Lutgens, Tarbuck and Tasa, Essentials of Geology, 10 th edition Overview Of Earth ch 1 Earth's place in solar system, galaxy, universe Atmosphere,

More information

Chemistry 8 Chapter 7 Review Kinetic Molecular Theory 1. Define Mass The amount of matter in a substance or object.

Chemistry 8 Chapter 7 Review Kinetic Molecular Theory 1. Define Mass The amount of matter in a substance or object. Chemistry 8 Chapter 7 Review Kinetic Molecular Theory 1. Define Mass The amount of matter in a substance or object. 2. Define Volume The amount of space taken up by a substance or object. 3. What are the

More information

Landscape. Review Note Cards

Landscape. Review Note Cards Landscape Review Note Cards Last Ice Age Pleistocene Epoch that occurred about 22,000 Years ago Glacier A large, long lasting mass of ice which forms on land and moves downhill because of gravity. Continental

More information