2/25/2009. Dolomitization

Size: px
Start display at page:

Download "2/25/2009. Dolomitization"

Transcription

1 Dolomitization A Short Course VU March, 29 Landscapes.htm Peter Swart University of Miami Dieudonné Sylvain Guy Tancrede de Gratet de Dolomieu usually known as Déodat de Dolomieu (Dolomieu June 23, Chateuneuf November 28, 181) a French geologist; the rock Dolomite was named after him. During one of his field trips to the Alps of South Tyrol (today part of northeastern Italy) he discovered a calcareous rock which, unlike limestone, did not effervesce in weak acid. He published these observations in 1791 in the Journal de Physique. The following year, in the same journal, the rock was named dolomie (or dolomite, in English) by Nicolas-Théodore de Saussure. Today both the rock and its major mineral constituent bear the name of Dolomieu, as do the Dolomites, the mountain range in northwestern Italy, where he first identified the rock. 1

2 "Dolomite is a complicated mineral. It exhibits a wide range in the concentration of major elements and is as complex as Feldspar" (Land, 198) 2

3 /25/29 CaMg(CO 3 ) 2 Dolomites appear to be between 3 to 4 per mille heavier (more O-18) than co-occuring carbonates. +3 OXYGEN Dolomite CARBON Calcite +1 Stable Isotopes Dolomites are about 1 per mille heavier in carbon Natural Variations UNDA 18 O o /oo Bulk Dolomites 4 (fbmp) Depth o /oo

4 Experimental CaMgCO 3 +H 3 PO 4 =CO 2 +H 2 O+CaMgHPO 4 = [CO 2 ] 1/2 [H 2 O][CaMgHPO4] 1/4 /[CaMgCO 3 ][H 3 PO 4 ] 4

5 a mineral-water Delta Northrup and Clayton (1966) O.Neil and Epstein (1966) 1 Sheppard and Schwarcz, (197) 5 O'Neil et al, (1969) Vasconcelos et al (25) Temperature oc Water or Temperature? Delta mineral-water Northrup and Clayton (1966) O.Neil and Epstein (1966) Sheppard and Schwarcz, (197) O'Neil et al, (1969) Vasconcelos et al (25) Temperature oc 5

6 dolomite-calcite 2/25/29 Temperature Oxygen After Land (198) Delta mineral-water Temperature oc Northrup and Clayton (1966) O.Neil and Epstein (1966) Sheppard and Schwarcz, (197) O'Neil et al, (1969) Delta calcite-dolomite Delta calcite-dolomite SAUDI ARABIA ARABIAN GULF Swart, Cantrell, Handford, Kendall & Westphall 25 Ghawar Field QATAR 13 C o /oo Mineralogy % Porosity % 18 O o /oo Permeability md Sr (ppm) R value Depth (ft)

7 Isotopes and Dolomites Dolomites appear to be between 3 to 4 per mille heavier (more O-18) than co-occuring carbonates. Synthesis: Uncertainties arises because dolomites are difficult (if not impossible) to synthesize at room temperatures. Hence results are often interpolated from high temperatures. Co-occuring: Dolomites co-occuring with calcites tend to be 3 per mille heavier, but are they coprecipitates? Dolomites are about 1 per mille heavier in carbon What is up with Carbon? CaCO3 + Mg 2+ = CaMg(CO3)2 + Ca2+ Ca2+ + Mg2+ + 2CO32- = CaMg(CO3)2 1 2 Dolomite can form from a range of different equations, the two end members of which are shown above. Equation one needs input of Mg2+ but is energentically less favourable than equation 2. Hence dolomite is favoured in environments with high alkalinity. What is up with Carbon? CaCO3 + Mg 2+ = CaMg(CO3)2 + Ca2+ Ca2+ + Mg2+ + 2CO32- = CaMg(CO3)2 In one 1l of seawater there are over 2 M of oxygen but only 2 mm of carbon. Hence during recrystallization it is more difficult to change the carbon isotopic values and these remain more positive despite the fact the the oxygen values can be reset to lower values. 7

8 Dolomitization 2CH2O + SO42- = 2CO2 + H2O + H2S H2S = H+ + HS- CaCO3 = Ca2+ + CO32- Ca2+ + Mg2+ + 2CO32- = CaMg(CO3)2 Decomposition of organic material in either oxic or anoxic environments favours dissolution of carbonates and promotes dolomitization by increasing the concentration of carbonate ions Stoichiometry of Dolomitization Ca 2+ + Mg CO 3 2- = CaMg(CO 3 ) 2 2CaCO 3 + Mg 2+ = CaMg(CO 3 ) + Ca 2+ Ca 2+ +Mg 2+ +2HCO 3 2- = CaMg(CO 3 ) 2 + 2H + 2CaCO 3 + Mg 2+ = CaMg(CO 3 ) + Ca /2.83 / 2/2.71 =.89 11% increase in porosity Beumont

9 What is Needed for Dolomitization? Supply of Magnesium Seawater Seawater is about 1x oversaturated with respect to dolomite High-Mg Calcite Mechanism of supplying Magnesium Dolomitization Models Mixing Zone Chemical model Supply model Reflux of Hypersaline fluids yp Thermal Convection Low Temperature High temperature Bacterial Special Geochemical Environments 9

10 Mixing-zone driven flow Mixing Zone Figure from Moore 21 1

11 Figure from Moore 21 Thermal Convection Cold Hot Cold Wilson et al. (1992) 11

12 Wilson et al. (1992) Wilson et al. (1992) 12

13 Temperature Oxygen After Land (198) Reflux Evaporation Figure from Moore 21 13

14 Figure from Moore 21 Figure from Moore 21 Dolomitization Models Mixing Zone Chemical model Supply model Reflux of Hypersaline fluids yp Thermal Convection Low Temperature High temperature Bacterial Special Geochemical Environments 14

15 1-Hardgrounds with increased dolomite content below 2- Background dolomite 1. Burrowing, formation of firmground, pause in sedimentation Open burrows Seawater Firmground surface Mudstone-Wackestone Mineralogy along the Bahamas Transect 1 km 15

16 33 S 34 S Eyre E 128 E 129 E Terrace 2 1 W estern Transect Eyre Terrace Eastern Transect km /25/29 5 km Precambrian 16

17 Other Reactions Oxidation of Organic Material 2CH 2 O + SO 2-4 = 2HCO 3- + H 2 S Dissolution Ca (1-x-y) Sr x Mg y CO 3 = CO Ca 2+ + xsr 2+ ymg 2+ Precipitation CO Ca 2+ + xsr 2+ ymg 2+ = Ca (1-x-y) Sr x Mg y CO 3 Alkalinity Alkalinity= CO HCO

18 Mineralogy along the Bahamas Transect 1 km Eyre Terrace Mesozoic Precambrian km N 1 Cenozoic Sequences 2 3 km Mineralogy in Unda and Clino within Sequence Stratigraphic Framework 18

19 Dolomite from S Eyre E 128 E 129 E 1 Terrace Western Transect Eastern Transect S km 19

20 Eyre Terrace Mesozoic Precambrian km N 1 Cenozoic Sequences 2 3 km Site 1127 Site 1131 Site km water bottom M esozoi c sediments Dolomite isotopes Zone of hydrate formation 2

21 s 2/25/29 Sulfate /Chloride Site 1127 Site 1131 Site 1129 Sulfate/Cl km 6 water bottom Mesozoic sediments Sulfate /chloride ratio in western transect Alkalinity Site 1127 Site 1131 Site 1129 Alkalinity (mm) km 12 water bottom Mesozoic sediments Alkalinity in western transect sea level Saline Brines Develop on Continent 5 meters 1 Mesozoic syn-rift terrigenous clastic sediment Precambrian crystalline basement 15 21

22 sea level Salty water diffuses out of sediment 5 meters 1 Mesozoic syn-rift terrigenous clastic sediment Precambrian crystalline basement 15 During subsequent sea-level falls further saline ponds develop 5 meters 1 Mesozoic syn-rift terrigenous clastic sediment Precambrian crystalline basement 15 Dolomitization Models Mixing Zone Chemical model Supply model Reflux of Hypersaline fluids yp Thermal Convection Low Temperature High temperature Bacterial Special Geochemical Environments 22

23 23

24 NEXT: Geochemical Stratigraphy 24

Bahamian Dolomites. Occurrences in the Bahamas 2/25/2009. Platform Dolomites. Cretaceous Dolomite. San Salvador Little Bahama Bank.

Bahamian Dolomites. Occurrences in the Bahamas 2/25/2009. Platform Dolomites. Cretaceous Dolomite. San Salvador Little Bahama Bank. Bahamian Dolomites A Short Course VU March, 2009 Peter Swart University of Miami Occurrences in the Bahamas Platform Dolomites San Salvador Little Bahama Bank Bahamas Drilling Project Unda Clino Cretaceous

More information

2/25/2009. Carbonate Diagenesis. Early Diagenesis. Cements are indicative of diagenetic environments

2/25/2009. Carbonate Diagenesis. Early Diagenesis. Cements are indicative of diagenetic environments Carbonate Diagenesis Early Diagenesis A Short Course VU March, 2009 Peter Swart University of Miami Cements are indicative of diagenetic environments 1 2 Figure from Moore 2001 3 Figure from Moore 2001

More information

Chemical Sedimentary Rocks: CARBONATES a quick summary

Chemical Sedimentary Rocks: CARBONATES a quick summary Chemical Sedimentary Rocks: CARBONATES a quick summary Alessandro Grippo, Ph.D. What are Carbonates? Carbonate rocks are chemical sedimentary rocks composed mainly or only by carbonate minerals Carbonate

More information

The Martian Sedimentary Mass: Constraints on its Composition, Age and Size. Scott McLennan Department of Geosciences, SUNY Stony Brook

The Martian Sedimentary Mass: Constraints on its Composition, Age and Size. Scott McLennan Department of Geosciences, SUNY Stony Brook The Martian Sedimentary Mass: Constraints on its Composition, Age and Size Scott McLennan Department of Geosciences, SUNY Stony Brook Exploring Mars Habitability Lisbon 14 June, 2011 Martian Crustal Chemistry

More information

ORIGIN OF DOLOMITE IN THE ARAB-D RESERVOIR FROM THE GHAWAR FIELD, SAUDI ARABIA: EVIDENCE FROM PETROGRAPHIC AND GEOCHEMICAL CONSTRAINTS

ORIGIN OF DOLOMITE IN THE ARAB-D RESERVOIR FROM THE GHAWAR FIELD, SAUDI ARABIA: EVIDENCE FROM PETROGRAPHIC AND GEOCHEMICAL CONSTRAINTS ORIGIN OF DOLOMITE IN THE ARAB-D RESERVOIR FROM THE GHAWAR FIELD, SAUDI ARABIA: EVIDENCE FROM PETROGRAPHIC AND GEOCHEMICAL CONSTRAINTS PETER K. SWART, 1, DAVID L. CANTRELL, 2, HILDEGARD WESTPHAL, H. 1,3,

More information

Sedimentary Rocks and Processes

Sedimentary Rocks and Processes Sedimentary Rocks and Processes Weathering Sedimentary Processes Breakdown of pre-existing rock by physical and chemical processes Transport Movement of sediments from environments of relatively high potential

More information

Constraining the thermal history of carbonate reservoirs

Constraining the thermal history of carbonate reservoirs Constraining the thermal history of carbonate reservoirs Kristin Bergmann Victor P. Starr Assistant Professor Department of Earth, Atmospheric and Planetary Sciences MIT Earth Resources Laboratory 217

More information

Weathering: the disintegration, or breakdown of rock material

Weathering: the disintegration, or breakdown of rock material Weathering: the disintegration, or breakdown of rock material Mechanical Weathering: no change in chemical composition--just disintegration into smaller pieces Chemical Weathering: breakdown as a result

More information

Chapter 6 Pages of Earth s Past: Sedimentary Rocks

Chapter 6 Pages of Earth s Past: Sedimentary Rocks Chapter 6 Pages of Earth s Past: Sedimentary Rocks Introduction! Drilling into the bottom of the North Sea, we encounter: " Soft mud and loose sand, silt, pebbles, and shells. Then: " Similar materials

More information

Lecture 5. Introduction to Stable Isotopes

Lecture 5. Introduction to Stable Isotopes Lecture 5 Introduction to Stable Isotopes Stable Isotope Geochemistry Primarily concerned with the isotope ratios of H, C, N, O, and S Si and B often included and new instrumentation has opened up others

More information

Carbonate Diagenesis. M.Geo.136b, Applications in hydrocarbon exploration Saskia Köhler, Patrick Ahlers

Carbonate Diagenesis. M.Geo.136b, Applications in hydrocarbon exploration Saskia Köhler, Patrick Ahlers Carbonate Diagenesis M.Geo.136b, Applications in hydrocarbon exploration Saskia Köhler, Patrick Ahlers Carbonate in general 3 main components: 1) carbonate grains (aragonite, high- /low-mg calcite), 2)

More information

Literature 2/25/2009 ISOTOPES. Peter Swart University of Miami. A Short Course VU March, 2009

Literature 2/25/2009 ISOTOPES. Peter Swart University of Miami. A Short Course VU March, 2009 Literature A Short Course VU March, 2009 Peter Swart University of Miami Arthur M., Anderson T., Kaplan I., Veizer J., and Land L. (1983) Stable Isotopes in Sedimentary Geology, SEPM Short Course No 10.

More information

Lecture 4: Carbonate sediments: principal components and classification

Lecture 4: Carbonate sediments: principal components and classification GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 4: Carbonate sediments: principal components and classification Today s Lecture Differences between siliciclastics

More information

EPS 50 Lab 4: Sedimentary Rocks

EPS 50 Lab 4: Sedimentary Rocks Name: EPS 50 Lab 4: Sedimentary Rocks Grotzinger and Jordan, Chapter 5 Introduction In this lab we will classify sedimentary rocks and investigate the relationship between environmental conditions and

More information

Origin and Evolution of Formation Waters in the West-Central Part of the Alberta Basin

Origin and Evolution of Formation Waters in the West-Central Part of the Alberta Basin Page No. 004-1 Origin and Evolution of Formation Waters in the West-Central Part of the Alberta Basin Karsten Michael* University of Alberta, 1-26 ESB, Edmonton, AB T6G 2E3 karsten@ualberta.ca and Stefan

More information

Sci.tanta.edu.eg PALEOECOLOGY, GE 2218

Sci.tanta.edu.eg PALEOECOLOGY, GE 2218 Sci.tanta.edu.eg PALEOECOLOGY, GE 2218 Lec. 4 1 Biosphere Lithosphere Community Hydrosphere Atmosphere 2 1 Temperature Temperature range in the ocean is approximately 2 to 40 º C. Coldest waters are found

More information

48. A SUMMARY OF INTERSTITIAL-WATER GEOCHEMISTRY OF LEG 133 1

48. A SUMMARY OF INTERSTITIAL-WATER GEOCHEMISTRY OF LEG 133 1 McKenzie, J.A., Davies, P.J., Palmer-Julson, A., et al., 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 133 48. A SUMMARY OF INTERSTITIAL-WATER GEOCHEMISTRY OF LEG 133 1 Peter

More information

EOSC221 DIAGENESIS 1

EOSC221 DIAGENESIS 1 EOSC221 DIAGENESIS 1 LECTURE OUTLINE Introduc4on and Diagene4c Zones Sandstone Diagenesis Mudstone Diagenesis Marine Non Marine Carbonate Diagenesis Major Processes Diagen4c Environments Dolomi4za4on 2

More information

Salinity distribution in the Oceans

Salinity distribution in the Oceans Salinity distribution in the Oceans Average practical salinity of open ocean waters 34.72 http://eps.mcgill.ca/~courses/c542/ 1/58 Salinity distribution in the Oceans Factors that control seawater salinity:

More information

31. GEOCHEMISTRY OF INTERSTITIAL WATERS INTERSTITIAL WATER STUDIES ON SMALL CORE SAMPLES FROM THE MEDITERRANEAN SEA 1

31. GEOCHEMISTRY OF INTERSTITIAL WATERS INTERSTITIAL WATER STUDIES ON SMALL CORE SAMPLES FROM THE MEDITERRANEAN SEA 1 31. GEOCHEMISTRY OF INTERSTITIAL WATERS 31.1. INTERSTITIAL WATER STUDIES ON SMALL CORE SAMPLES FROM THE MEDITERRANEAN SEA 1 F. L. Sayles and L. S. Waterman, Woods Hole Oceanographic Institution, Woods

More information

Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3

Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 I. Environmental significance II. Definition III. 3 major classes IV. The Rock Cycle V. Secondary classification VI. Additional sub-classes

More information

Rocks Environmental Significance. Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3. Rocks Definition of a rock

Rocks Environmental Significance. Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3. Rocks Definition of a rock Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 Environmental Significance I. Environmental significance II. Definition III. 3 major classes IV. The Rock Cycle V. Secondary classification

More information

Reactive transport modeling of carbonate diagenesis on unstructured grids

Reactive transport modeling of carbonate diagenesis on unstructured grids Reactive transport modeling of carbonate diagenesis on unstructured grids Alina Yapparova Chair of Reservoir Engineering Montanuniversität Leoben Dolomitization and geochemical modeling Hollywood may never

More information

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions OCN 623 Chemical Oceanography Reading: Libes, Chapters 15 and 16 Outline I. Deep sea sedimentation Detrital sediments

More information

EOSC221: Sediments Content Summary

EOSC221: Sediments Content Summary EOSC221: Sediments Content Summary TOPIC 1: Sedimentary Rocks and Structures Why are Sedimentary Rocks Important? Overall Classification (Siliciclastic/Orthochemical/Allochemical) Sedimentary Strata and

More information

Evaluating Reflux Dolomitization using a Novel High-Resolution Record of Dolomite

Evaluating Reflux Dolomitization using a Novel High-Resolution Record of Dolomite 1 GSA Data Repository 2019208 2 3 4 5 6 Evaluating Reflux Dolomitization using a Novel High-Resolution Record of Dolomite Stoichiometry: A Case Study from the Cretaceous of Central Texas, U.S.A. Cameron

More information

Mg-isotope & REE compositions of the St. George Group carbonates (WNL): Implications for the origin of dolomites & limestones

Mg-isotope & REE compositions of the St. George Group carbonates (WNL): Implications for the origin of dolomites & limestones Mg-isotope & REE compositions of the St. George Group carbonates (WNL): Implications for the origin of dolomites & limestones K. Azmy Azmy et al., 2013. Chemical Geology 365, 64 75. Post-doc fellows Blamey,

More information

ROCK CLASSIFICATION AND IDENTIFICATION

ROCK CLASSIFICATION AND IDENTIFICATION Name: Miramar College Grade: GEOL 101 - Physical Geology Laboratory SEDIMENTARY ROCK CLASSIFICATION AND IDENTIFICATION PRELAB SECTION To be completed before labs starts: I. Introduction & Purpose: The

More information

Activity and Concentration

Activity and Concentration Activity and Concentration Activity effective concentration Ion-ion and ion-h 2 O interactions (hydration shell) cause number of ions available to react chemically ("free" ions) to be less than the number

More information

Paleoclimate indicators

Paleoclimate indicators Paleoclimate indicators Rock types as indicators of climate Accumulation of significant thicknesses of limestone and reef-bearing limestone is restricted to ~20º + - equator Gowganda tillite, Ontario

More information

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 2. When did the Earth form? A. About 540 million years ago B. About 2.5 billion years ago

More information

The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya -An example of "Virtual Core Study"*

The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya -An example of Virtual Core Study* The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya -An example of "Virtual Core Study"* Henry Williams 1 Search and Discovery Article #20288 (2014) Posted December 29, 2014 *Adapted

More information

Lecture 16 - Stable isotopes

Lecture 16 - Stable isotopes Lecture 16 - Stable isotopes 1. The fractionation of different isotopes of oxygen and their measurement in sediment cores has shown scientists that: (a) ice ages are common and lasted for hundreds of millions

More information

Seawater Chemistry and Chemical Oceanography. The Universal Solvent. Sphere of Hydration

Seawater Chemistry and Chemical Oceanography. The Universal Solvent. Sphere of Hydration Seawater Chemistry and Chemical Oceanography The Universal Solvent Polarity of molecule makes water very effective at hydrating even weakly charged ions Sphere of Hydration Polarity of water molecules

More information

Chemical Oceanography 14 March 2012 Points are in parentheses (show all your work) Final Exam

Chemical Oceanography 14 March 2012 Points are in parentheses (show all your work) Final Exam Ocean 400 Name: Chemical Oceanography 14 March 2012 Winter 2012 Points are in parentheses (show all your work) (give as much detail as you can) (use back if necessary) Final Exam 1. Sarmiento and Gruber

More information

Phosphogenesis in epicontinental and marginal sedimentary basins: problems with using the modern as an analog for the ancient rock record

Phosphogenesis in epicontinental and marginal sedimentary basins: problems with using the modern as an analog for the ancient rock record Phosphogenesis in epicontinental and marginal sedimentary basins: problems with using the modern as an analog for the ancient rock record Eric Hiatt Geology Department University of Wisconsin Phosphoria

More information

Rockall Plateau. OCN 201: Shelf Sediments

Rockall Plateau. OCN 201: Shelf Sediments Rockall Plateau OCN 201: Shelf Sediments Classification by Size Classification by Mode of Formation Detrital sediments Transported and deposited as particles Derived from weathering of pre-existing rocks

More information

THE ORIGIN OF DOLOMITES IN TERTIARY SEDIMENTS FROM THE MARGIN OF GREAT BAHAMA BANK PETER K. SWART AND LESLIE A. MELIM

THE ORIGIN OF DOLOMITES IN TERTIARY SEDIMENTS FROM THE MARGIN OF GREAT BAHAMA BANK PETER K. SWART AND LESLIE A. MELIM THE ORIGIN OF DOLOMITES IN TERTIARY SEDIMENTS FROM THE MARGIN OF GREAT BAHAMA BANK 1 2 PETER K. SWART AND LESLIE A. MELIM 1-Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science,

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

Stable Isotopes OUTLINE

Stable Isotopes OUTLINE Stable Isotopes OUTLINE Reading: White Ch 9.1 to 9.7.1 (or digital p370-400) Exercise answer? What does the salt do? Today 1. 2 leftovers 2. Stable Isotopes for hydrologic and climate applications 1 CaCO

More information

The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya - an example of "Virtual Core Study"

The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya - an example of Virtual Core Study The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya - an example of "Virtual Core Study" Henry Williams*, Suncor Energy Inc., Calgary, AB hwilliams@suncor.com Summary The Gir Formation

More information

TCNJ Physics 120 Introduction to Geology

TCNJ Physics 120 Introduction to Geology TCNJ Physics 120 Introduction to Geology Laboratory Manual Professor Gregory C. Herman hermang@tcnj.edu Sources notes within GCH 2018-01 1 GCH 2016-17 2 TCNJ Physics 120 Introduction to Geology Lab Manual

More information

Sedimentología Ayudantía Lectura 1 Carbonate minerals

Sedimentología Ayudantía Lectura 1 Carbonate minerals Carbonate minerals The most common minerals in this group are the calcium carbonates, calcite and aragonite, while dolomite (a magnesium calcium carbonate) and siderite (iron carbonate) are also frequently

More information

Hydrogen Sulphide-Rich Hydrates and Saline Fluids in the Continental Margin of South Australia

Hydrogen Sulphide-Rich Hydrates and Saline Fluids in the Continental Margin of South Australia Hydrogen SulphideRich Hydrates and Saline Fluids in the Continental Margin of South Australia 1 3 5 6 Swart, P.K, Wortmann, U.G., Mitterer, R.M, Malone, M.J., Smart, P.L., Feary D., 7 Hine, A.C., and ODP

More information

I.S : What s in it and the role of the Geologist

I.S : What s in it and the role of the Geologist Institute of Geologists of Ireland Pyrite Course I.S. 398-1: What s in it and the role of the Geologist Michael L.J. Maher 4 December, 2013 Responsibilities of Geologist You re only the messenger! Classification

More information

Thermal springs and balneology in the Peri-Adriatic area: geochemical status and prospects

Thermal springs and balneology in the Peri-Adriatic area: geochemical status and prospects Thermal springs and balneology in the Peri-Adriatic area: geochemical status and prospects Riccardo Petrini, Pisa University (with contributions by R. Cataldi and B. Della Vedova) 1 The Peri-Adriatic Region

More information

Cycles in the Phanerozoic

Cycles in the Phanerozoic Cycles in the Phanerozoic Evolutionary trends: extinctions, adaptive radiations, diversity over time Glaciations Sea level change Ocean chemistry Atmospheric CO 2 biosphere Mass extinctions in the..you

More information

A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin*

A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin* A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin* Noga Vaisblat 1, Nicholas B. Harris 1, Vincent Crombez 2, Tristan Euzen 3, Marta Gasparrini 2,

More information

Mammoth Cave National Park, Kentucky

Mammoth Cave National Park, Kentucky Mammoth Cave National Park, Kentucky Objectives of Today s Lecture Refresher on Sedimentary Depositional Systems and Rock Classifications Transgressive and Regressive Marine Environments Carbonate Depositional

More information

GEOL Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section)

GEOL Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section) GEOL 333 - Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section) Sedimentary Rock Classification - As we learned last week, sedimentary rock, which forms by accumulation and lithification

More information

Exploration Of The Geothermal Energy

Exploration Of The Geothermal Energy Exploration Of The Geothermal Energy Resources In The Republic Of Yemen Ameen sharian Mazen ALmakatari November 2008 The geographical location of Yemen The Republic of Yemen is located in the southern

More information

Lecture 4 What Controls the Composition of Seawater

Lecture 4 What Controls the Composition of Seawater Lecture 4 What Controls the Composition of Seawater Seawater is salty! Why? What controls the composition of seawater? Do Chemical Equilibrium reactions control the composition of the Ocean? What is meant

More information

Kizito Maloba Opondo. Kenya Electricity Generating Company

Kizito Maloba Opondo. Kenya Electricity Generating Company MIXING TRENDS AND SOLUTE GEOTHERMOMETRY OF BOREHOLE WATERS FROM THE PAKA GEOTHERMAL PROSPECT, KENYA. Kizito Maloba Opondo Kenya Electricity Generating Company Geothermal Prospects and fields in Kenya -

More information

Tim Carr - West Virginia University

Tim Carr - West Virginia University Tim Carr - West Virginia University Exploration s Ultimate Goal is to Answer Four Questions: Where to Drill? What to Expect? How Certain? How Profitable? Location & Depth HC Volumes Chance of Success

More information

I.S. 398 GEOLOGICAL TESTING PROCEDURES, RESULTS and BACKGROUND

I.S. 398 GEOLOGICAL TESTING PROCEDURES, RESULTS and BACKGROUND I.S. 398 GEOLOGICAL TESTING PROCEDURES, RESULTS and BACKGROUND EurGeol Dr John Kelly, PGeo, MIMMM, MIQ Engineers Ireland 5 th November 2013 SWELLING RISK BASICS Pyrite is a form of iron sulphide (FeS 2

More information

CHAPTER 3.2: SEDIMENTARY ROCK

CHAPTER 3.2: SEDIMENTARY ROCK CHAPTER 3.2: SEDIMENTARY ROCK Introduction Second major rock group. Formed from fine constituents of rock usually from mountainous areas which are transported to lower elevation due to certain processes.

More information

Hydrological Cycle Rain and rivers OUTLINE

Hydrological Cycle Rain and rivers OUTLINE Hydrological Cycle Rain and rivers The Hydrosphere Rain and rivers OUTLINE 1 Generalizations (non-political conservatism) Conservative (not affected) and Non-Conservative (affected) Ions Distinction: whether

More information

Department of Geoscience, University of Calgary, Calgary, Alberta 2

Department of Geoscience, University of Calgary, Calgary, Alberta 2 URTeC Control ID Number: 1618654 Use of XRF Elemental Data to Quantify Mineralogy and Reservoir Properties of an Upper Cretaceous Oil and Gas Shale Reservoir, Eastern Saskatchewan and South western Manitoba

More information

Habitable Environments of Ancient Mars: Deciphering the Rock Record. John Grotzinger

Habitable Environments of Ancient Mars: Deciphering the Rock Record. John Grotzinger Habitable Environments of Ancient Mars: Deciphering the Rock Record John Grotzinger Modern Mars: Recurring Slope Lineae McEwan et al., 2014 Mars Timeline: Water-related environments Ehlmann et al., 2011,

More information

Geological Overview of the Niobrara Chalk Natural Gas Play

Geological Overview of the Niobrara Chalk Natural Gas Play Geological Overview of the Niobrara Chalk Natural Gas Play W. Lynn Watney Kansas Geological Survey KU Energy Research Center The University of Kansas Lawrence, KS Outline Geologic Setting Paleogeography

More information

Lab: Metamorphism: minerals, rocks and plate tectonics!

Lab: Metamorphism: minerals, rocks and plate tectonics! Introduction The Earth s crust is in a constant state of change. For example, plutonic igneous rocks are exposed at the surface through uplift and erosion. Many minerals within igneous rocks are unstable

More information

(4) Give an example of important reactions that are responsible for the composition of river water.

(4) Give an example of important reactions that are responsible for the composition of river water. Lecture 12 Global Biogeochemical Cycles (1) If rivers are the chief source of the dissolved salts in seawater, why is seawater not simply a concentrated version of average composition of all rivers? The

More information

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3.

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3. 12.742 - Marine Chemistry Fall 2004 Lecture 6 - Determinants of Seawater Composition Prof. Scott Doney What is seawater? Water Dissolved inorganic salts (major ions) Trace species, organics, colloids,

More information

Wednesday, October 10 th

Wednesday, October 10 th Wednesday, October 10 th Page 13a (left side) / Place Lab on table Objective: We will describe the different types of weathering and erosion and identify evidence of each type. Warm-up: 1. What is weathering?

More information

Chapter 23 test. Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1

Chapter 23 test. Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1 Chapter 23 test Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1 1. In Figure 23-1, what process does the arrow labeled A represent? a. transpiration

More information

Chapter 15 Millennial Oscillations in Climate

Chapter 15 Millennial Oscillations in Climate Chapter 15 Millennial Oscillations in Climate This chapter includes millennial oscillations during glaciations, millennial oscillations during the last 8000 years, causes of millennial-scale oscillations,

More information

Weathering Cycle Teacher Notes

Weathering Cycle Teacher Notes The Weathering Cycle Stages of the Weathering Cycle: 1. Carbon Dioxide and Water In clouds, carbon dioxide reacts with water to form a weak acid. H 2 O + CO 2 --> H 2 CO 3 H 2 CO 3 H + + HCO 3-2. Acid

More information

CEE 680 Lecture #2 1/23/2016

CEE 680 Lecture #2 1/23/2016 Updated: 23 January 2016 Print version Lecture #2 Intro: Water & Thermodynamics: Fundamentals and Definitions (Stumm & Morgan, Chapt.1 & 3.4 ) (Pg. 4 11; 97 105) (Pankow, Chapt. 2.8) (Benjamin, 1.2-1.5)

More information

Sedimentary Geology. Strat and Sed, Ch. 1 1

Sedimentary Geology. Strat and Sed, Ch. 1 1 Sedimentary Geology Strat and Sed, Ch. 1 1 Sedimentology vs. Stratigraphy Sedimentology is the study of the origin and classification of sediments and sedimentary rocks Mostly the physical and chemical

More information

GY 112 Lecture Notes Stable Isotope Stratigraphy

GY 112 Lecture Notes Stable Isotope Stratigraphy GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Stable Isotope Stratigraphy Lecture Goals: A) Stable isotopes of use to geology (fractionation) B) Delta values and isotopic standards C) Delta

More information

INSTITUTE OF GEOLOGY AND MINERAL EXPLORATION (I.G.M.E.)

INSTITUTE OF GEOLOGY AND MINERAL EXPLORATION (I.G.M.E.) INSTITUTE OF GEOLOGY AND MINERAL EXPLORATION (I.G.M.E.) PERSPECTIVES FOR THE PRODUCTION OF INDUSTRIAL MINERALS FROM THE EXPLOITATION OF THE WASTE STEMMING DURING THE EXTRACTION OF GREEK WHITE CALCITIC

More information

SCOPE 35 Scales and Global Change (1988)

SCOPE 35 Scales and Global Change (1988) 1. Types and origins of marine sediments 2. Distribution of sediments: controls and patterns 3. Sedimentary diagenesis: (a) Sedimentary and organic matter burial (b) Aerobic and anaerobic decomposition

More information

UNIT 4 SEDIMENTARY ROCKS

UNIT 4 SEDIMENTARY ROCKS UNIT 4 SEDIMENTARY ROCKS WHAT ARE SEDIMENTS Sediments are loose Earth materials (unconsolidated materials) such as sand which are transported by the action of water, wind, glacial ice and gravity. These

More information

Diagenetic processes in the Cenozoic sedimentary formations associated with the Chicxulub Impact Crater, northwestern Yucatan Peninsula, Mexico

Diagenetic processes in the Cenozoic sedimentary formations associated with the Chicxulub Impact Crater, northwestern Yucatan Peninsula, Mexico The Second International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Mérida, Yucatán, México, March 30 - April 2, 2003 Diagenetic processes in the Cenozoic

More information

Geol. 656 Isotope Geochemistry

Geol. 656 Isotope Geochemistry HYDROTHERMAL ACTIVITY, METAMORPHISM, AND ORE DEPOSITS II SULFUR ISOTOPE FRACTIONATION IN LOW-TEMPERATURE SYSTEMS 2 - At temperatures below about 400 C, sulfate (SO 4 ) species becomes the dominant form

More information

Geochemical mobility of chemical elements in saline lake systems in Khakassia (Russia)

Geochemical mobility of chemical elements in saline lake systems in Khakassia (Russia) Available online at www.sciencedirect.com Procedia Earth and Planetary Science 7 ( 2013 ) 325 329 Water Rock Interaction [WRI 14] Geochemical mobility of chemical elements in saline lake systems in Khakassia

More information

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle.

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle. Chapter 15 Climate Systems Systems? What is a system? Geologic phenomena are complex. All processes are related to, and interact with, other processes. So it is useful to think of geologic processes as

More information

17. OVERVIEW OF INTERSTITIAL FLUID AND SEDIMENT GEOCHEMISTRY, SITES (BAHAMAS TRANSECT) 1

17. OVERVIEW OF INTERSTITIAL FLUID AND SEDIMENT GEOCHEMISTRY, SITES (BAHAMAS TRANSECT) 1 Swart, P.K., Eberli, G.P., Malone, M.J., and Sarg, J.F. (Eds.), 2 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 166 17. OVERVIEW OF INTERSTITIAL FLUID AND SEDIMENT GEOCHEMISTRY, SITES

More information

Geology 252, Historical Geology, California State University, Los Angeles - professor: Dr. Alessandro Grippo

Geology 252, Historical Geology, California State University, Los Angeles - professor: Dr. Alessandro Grippo LAB # 1 - CLASTIC ROCKS Background: - Mechanical and Chemical Weathering - Production of Clastic Sediment - Classification of Sediment according to size: Gravel, Sand, Silt, Clay - Erosion, Transportation

More information

Burrow-Mottled Carbonates in the Devonian Wabamun Formation, Pine Creek Gas Field, Alberta, Canada

Burrow-Mottled Carbonates in the Devonian Wabamun Formation, Pine Creek Gas Field, Alberta, Canada Page No. 142-1 Burrow-Mottled Carbonates in the Devonian Wabamun Formation, Pine Creek Gas Field, Alberta, Canada Gladys Fong Department of Earth and Atmospheric Sciences University of Alberta, Edmonton,

More information

Minerals and Rocks Chapter 20

Minerals and Rocks Chapter 20 Minerals and Rocks Chapter 20 Emily and Megan Earth System Science Interconnected Rocks and minerals Interior processes Erosion and deposition Water and air Elements of Earth by weight Made of atoms Earth

More information

Sedimentary Rocks, Stratigraphy, and Geologic Time

Sedimentary Rocks, Stratigraphy, and Geologic Time Sedimentary Rocks, Stratigraphy, and Geologic Time A rock is any naturally formed, nonliving, coherent aggregate mass of solid matter that constitutes part of a planet, asteroid, moon, or other planetary

More information

Chapter 3 Sedimentation of clay minerals

Chapter 3 Sedimentation of clay minerals Chapter 3 Sedimentation of clay minerals 3.1 Clay sedimentation on land 3.2 From land to sea 3.3 Clay sedimentation in the sea 1 3.1 Clay sedimentation on land Deserts Glaciers Rivers Lacustrine 2 University

More information

Carbonate Diagenesis. From soft sediment to hard rock M.Geo.136b: Beckenanalyse 2. Stephan Sarner Maximilian Schaidt Johannes Sucke

Carbonate Diagenesis. From soft sediment to hard rock M.Geo.136b: Beckenanalyse 2. Stephan Sarner Maximilian Schaidt Johannes Sucke Carbonate Diagenesis From soft sediment to hard rock M.Geo.136b: Beckenanalyse 2 A Presentation by: Falko Malis Stephan Sarner Maximilian Schaidt Johannes Sucke Carbonates Diagenetic Mechanisms Environments

More information

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs Mineral Systems Q3 Fluid reservoirs 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity to

More information

Hydrochemical Assessment of The Devonian Keg River Formation

Hydrochemical Assessment of The Devonian Keg River Formation Hydrochemical Assessment of The Devonian Keg River Formation Francisco Castrillon-Munoz, MSc., P.Geol. Senior Hydrogeologist Worley Parsons Canada Thinks are not always what they seem MACBETH W. Shakespeare

More information

Emily and Megan. Earth System Science. Elements of Earth by weight. Crust Elements, by weight. Minerals. Made of atoms Earth is mostly iron, by weight

Emily and Megan. Earth System Science. Elements of Earth by weight. Crust Elements, by weight. Minerals. Made of atoms Earth is mostly iron, by weight Emily and Megan Chapter 20 MINERALS AND ROCKS Earth System Science Interconnected Rocks and minerals Interior processes Erosion and deposition Water and air Elements of Earth by weight Made of atoms Earth

More information

Rocks and Minerals. Tillery, Chapter 19. Solid Earth Materials

Rocks and Minerals. Tillery, Chapter 19. Solid Earth Materials Rocks and Minerals Tillery, Chapter 19 Science 330 Summer 2007 No other planet in the solar system has the unique combination of fluids of Earth. Earth has a surface that is mostly covered with liquid

More information

APPLICATION OF GEOCHEMICAL METHODS IN GEOTHERMAL EXPLORATION. Halldór Ármannsson November 2007

APPLICATION OF GEOCHEMICAL METHODS IN GEOTHERMAL EXPLORATION. Halldór Ármannsson November 2007 APPLICATION OF GEOCHEMICAL METHODS IN GEOTHERMAL EXPLORATION Halldór Ármannsson November 2007 Geochemical Exploration Subsurface composition Temperature Origin and flow direction Reservoir location Equilibrium

More information

Update on Geochemistry and Diagenetic Models. Taury Smith, Richard Nyahay and Reservoir Characterization Group

Update on Geochemistry and Diagenetic Models. Taury Smith, Richard Nyahay and Reservoir Characterization Group Update on Geochemistry and Diagenetic Models Taury Smith, Richard Nyahay and Reservoir Characterization Group Biggest Well Onshore US in 2004: One of [Fortuna s] New York wells (Reed #1) produced at more

More information

Thickness, Compositional and Textural Variability, and Genesis of El-Lajjun Oil Shale, Central Jordan

Thickness, Compositional and Textural Variability, and Genesis of El-Lajjun Oil Shale, Central Jordan Thickness, Compositional and Textural Variability, and Genesis of El-Lajjun Oil Shale, Central Jordan H Alnawafleh 1, D Large 2 & B Spiro 3 1 Department of Mining Engineering, Al-Hussein Bin Talal University,

More information

Outline 16: The Mesozoic World: Formation of Oil Deposits (with a side trip to the Devonian Marcellus Shale)

Outline 16: The Mesozoic World: Formation of Oil Deposits (with a side trip to the Devonian Marcellus Shale) Outline 16: The Mesozoic World: Formation of Oil Deposits (with a side trip to the Devonian Marcellus Shale) The first commercial oil well was drilled by Colonel Edwin Drake in Titusville, Pennsylvania,

More information

Physical Oceanography

Physical Oceanography Physical Oceanography SECTION 15.1 The Oceans In your textbook, read about modern oceanography. For each item in Column A, write the letter of the matching item in Column B. Column A 1. German research

More information

HYDROCHEMICAL STRUCTURE OF BLACK SEA HYDROGEN SULFIDE. Galina Shtereva Institute of Oceanology - BAS

HYDROCHEMICAL STRUCTURE OF BLACK SEA HYDROGEN SULFIDE. Galina Shtereva Institute of Oceanology - BAS HYDROCHEMICAL STRUCTURE OF BLACK SEA HYDROGEN SULFIDE Galina Shtereva Institute of Oceanology - BAS Hydrological structure The Black Sea is one of the largest enclosed seas in the world Upper Mixed layer

More information

Effect of chemical composition to large scale CO 2 Injection in Morrow Sandstone, Farnsworth Hydrocarbon Field, Texas, USA

Effect of chemical composition to large scale CO 2 Injection in Morrow Sandstone, Farnsworth Hydrocarbon Field, Texas, USA Effect of chemical composition to large scale CO 2 Injection in Morrow Sandstone, Farnsworth Hydrocarbon Field, Texas, USA Bulbul Ahmmed Martin Appold Department of Geological Sciences University of Missouri-Columbia

More information

SW Density = kg/l at 20 o C (Pilson 1998)

SW Density = kg/l at 20 o C (Pilson 1998) Composition of SW To Date We Have Covered: Descriptive Oceanography (Millero chapter 1) Special Properties of H 2 O (Millero chapter 4) Ion-Water & Ion-Ion Interactions (Millero chap 4) Continuing Coverage

More information

GEOLOGY MEDIA SUITE Chapter 5

GEOLOGY MEDIA SUITE Chapter 5 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 5 Sedimentation Rocks Formed by Surface Processes 2010 W.H. Freeman and Company Mineralogy of sandstones Key Figure 5.12

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting On the applicability of Gassmann model in carbonates Ravi Sharma*, Manika Prasad and Ganpat Surve (Indian Institute of Technology, Bombay), G C Katiyar (Third Eye Centre, Oil and Natural Gas Corporation

More information

Test is over no later than 9:40 p.m. There are 43 questions. Each is worth points, for a total of 100 points.

Test is over no later than 9:40 p.m. There are 43 questions. Each is worth points, for a total of 100 points. Student name NOTE: Test 2 - Form B 3370:133 Section 001 SAMPLE Caves Count pages to make sure that you have all of them. Turn in this question sheet when done. Fill in all information requested on the

More information

Fracture, Fluid Flow and Diagenetic History of the Arbuckle Group

Fracture, Fluid Flow and Diagenetic History of the Arbuckle Group Fracture, Fluid Flow and Diagenetic History of the Arbuckle Group Robert H. Goldstein, Evan K. Franseen, W. Lynn Watney, Bradley King STATUS: Focused-term near completion, year 3 of 3 TIMING: Began August

More information