Goals In this activity you will:

Size: px
Start display at page:

Download "Goals In this activity you will:"

Transcription

1 Activity 3 How Big Was It? Goals In this activity you will: Rank the effects of earthquakes. Map the intensity of earthquakes. Interpret a map of earthquake intensity to infer the general location of the epicenter. Identify geologic materials that pose special problems during earthquakes. Explain how the magnitude of an earthquake is determined. Think about It Earthquakes can be so small that people can t feel them. They can be so great that the seismic energy of a magnitude 8 earthquake would supply one day s worth of electrical energy for the entire U.S. What factors would you look at to measure the size of an earthquake? What factors are most important for different uses? What measurements would interest each of the following: a seismologist? a city planner? a homeowner? you? What do you think? Record your ideas about these questions in your notebook. Be prepared to discuss your responses with your small group and the class. G 138

2 Activity 3 How Big Was It? Investigate Part A: Measurement of Earthquake Effects 1. The reports listed below describe the effects of an earthquake felt in many cities in the eastern U.S. a) In your group, rank the effects in order of intensity. Assign numerical values to your ranking. Be prepared to explain your ranking system. Newspaper data: Detroit, MI: Did you feel the earthquake? Last night a slight earth tremor was felt in this area. Pittsburgh, PA headline: Items Broken By Earthquake. Small Earthquake Awakens Many. Syracuse, NY: Mayor s 10th-floor office chandelier sways in the earthquake. Baltimore, MD: Citizens dash outside as earthquake brings down plaster in many homes. Philadelphia, PA: Doors and windows rattle as earthquake strikes. Cleveland, OH: Earthquake felt on top of new 23-story department store. Roanoke, VA: Pedestrians report parked cars rocked back and forth by earthquake. Charleston, SC: Almost no one here notices earthquake. New York City: Skyscraper offices sway in earthquake. Washington, DC: Chimneys tumble, new prefabricated buildings collapse in violent earthquake felt here. Richmond, VA: Furniture moved about by earthquake, but no major damage reported. Winston-Salem, NC: Patients in hospital report that building shakes in earthquake. Atlanta, GA: Earthquakes reported north of here apparently miss Atlanta. Indianapolis, IN: Few people here feel recently reported earthquake. 2. Use the data and your ranking to map the intensity of earthquake effects on the map of the Eastern United States. a) Draw several curves on the map connecting points or regions of equal intensity. b) Label each curve with the intensity value it represents. c) Attach your intensity scale. New Orleans Chicago Indianapolis Detroit Atlanta Syracuse Cleveland New York Pittsburgh Philadelphia Baltimore Washington Richmond Roanoke Winston-Salem Charleston km Miami Boston G 139

3 3. Use the map to answer the following questions: a) Describe any pattern you observe. b) What can you infer about the probable location of the epicenter of the earthquake? Provide a reason. 4. Share your results with the class. a) How do the rankings of earthquake effects compare? b) How close were the estimates of the epicenter of the earthquake? c) What problems did you have finding the epicenter? d) What other information do you think would have helped you to locate the earthquake more accurately? e) How would you describe your measurement scale? Is it qualitative or quantitative? f) What property or properties of the earthquake were you measuring? Explain. Part B: Measurement of Earthquake Wave Amplitude 1. Visit the web site to c) How would you expect the find the location of the Virtual amplitude as recorded on a Earthquake web site. Simulate a seismogram to change as you new earthquake. get farther from the epicenter? a) Follow the directions to calculate the magnitude of the earthquake. b) How does the amplitude (height) of a seismic wave change when the size of an earthquake changes? Reflecting on the Activity and the Challenge To reduce earthquake risks, the potential effects of earthquakes should be studied. You made an intensity scale by ranking the effects of earthquakes on people and structures. You used the distribution of intensities to find the general area where an earthquake started. On the Virtual Earthquake web site, you learned that the amplitude of seismic waves on a seismogram is used to measure magnitude. For most earthquakes, both intensity and magnitude decrease as you move farther away from the epicenter. Intensity requires human observers. Magnitude requires a seismometer. G 140

4 Activity 3 How Big Was It? Digging Deeper DESCRIBING EARTHQUAKES Earthquake Intensity The effects of an earthquake on the Earth s surface, including people and buildings, are an indication of its intensity. Intensity scales are based on certain key responses to the shaking of an earthquake. Examples include people awakening, damage to brick and stone structures, and movement of furniture.the intensity scale currently used in the United States is called the Modified Mercalli Intensity scale.there is no mathematical or quantitative basis for the scale. It is simply a ranking based on observed effects, as with the activity you just completed. Earthquake intensity is a measure of the actual effects at a certain location. This makes an intensity value more meaningful than magnitude values to a non-scientist.the maximum observed intensity often occurs near the epicenter, but there are important exceptions to this rule. During the 1985 Mexico City earthquake and the 1989 Loma Prieta earthquake, the areas with maximum intensity were not nearest to the epicenter. In the Mexico City earthquake, the epicenter was hundreds of kilometers away, yet areas within the city experienced much higher intensities. Modified Mercalli Scale of Earthquake Intensity Value I II III IV V Description of Effects not felt, except rarely by a few felt by few, especially on upper floors of buildings delicately suspended objects may swing felt indoors by some vibration similar to a passing truck not always recognized as an earthquake felt indoors by many, outdoors by few awakens some sleeping people dishes, windows, and doors rattle, walls creak standing cars rock hanging objects swing felt indoors by mostly everyone, outdoors by many awakens most sleeping people some dishes break, windows and plaster walls crack small unstable objects overturned hanging objects and doors swing considerably, pictures knocked out of plumb some liquid spilled from full containers continued on next page G 141

5 Modified Mercalli Scale of Earthquake Intensity (continued) Value VI VII VIII IX X Description of Effects felt by everyone general excitement and some fear slight damage to poorly built structures considerable amount of glassware and windows broken some furniture overturned, and some heavy furniture moved pictures and books fall from walls and shelves some fallen plaster and damaged chimneys small bells ring everyone frightened, some have difficulty standing negligible damage to well-designed, well-built structures, slight to moderate in well-built ordinary structures, considerable in poorly built or designed structures weak chimneys broken large church bells ring trees and bushes shaken, water in lakes and ponds disturbed, some stream banks collapse general fear, approaching panic slight damage to structures designed to withstand earthquakes, considerable damage to ordinary structures, great damage in poorly built or designed structures heavy furniture overturned chimneys and monuments topple sand and mud ejected from the ground changes in flow of wells and springs general panic considerable damage to structures designed to withstand earthquakes, well-designed buildings shifted off of foundations, great damage and partial collapse of substantial buildings ground noticeably cracked some underground pipes cracked severe damage to well-built wooden structures, most masonry structures and foundations destroyed, well-built brick walls cracked bridges severely damaged or destroyed ground severely cracked considerable landslides from steep slopes and river banks sand and mud on beaches shifted water splashes over banks of canals, rivers, and lakes underground pipes broken open cracks and wavy patterns in concrete and asphalt railroad tracks slightly bent continued on next page G 142

6 Activity 3 How Big Was It? Modified Mercalli Scale of Earthquake Intensity (continued) Value XI XII Description of Effects few structures remain standing bridges destroyed broad fissures in the ground Earth slumps and landslides in soft, wet ground sand and mud-charged water ejected from the ground underground pipelines completely out of service railroad tracks greatly bent total damage to all works of construction numerous rock and landslides, river banks slump waves seen on the ground objects thrown up in the air The Effect of Local Geologic Conditions on Intensity Often, although not always, seismic waves increase in amplitude when they pass from solid bedrock to softer material near the Earth s surface, like sand, mud, or landfill material.the physical processes that cause this change are complicated, but you can get some idea of them by thinking about how a soft gelatin-like material responds to a source of shaking, compared to a much more rigid material like metal or rock.an earthquake that shook Mexico City in 1985 showed how local geologic conditions influence the intensity (and damage) of an earthquake. It caused about $4 billion in damage and killed at least 8000 people.the earthquake epicenter was about 300 km from Mexico City. Soft sand and clay deposits from an old lake bed under part of the city amplified (increased) the ground motions by a factor of 75 times.the amplification of shaking caused selective damage to tall buildings. Nearby structures on bedrock were relatively undamaged. Another geologic process that affects earthquake intensity is liquefaction. Liquefaction is the temporary change of water-saturated soil and sand from a solid to a liquid state.areas like the Marina district in San Francisco experienced very high intensities during the Loma Prieta earthquake. Studies revealed liquefaction of the wet landfill on which the district was built.the earthquake was centered 80 km south of the city. Nearby parts of the city built on hard bedrock did not experience intensities as high as in the Marina district. G 143

7 Check Your Understanding 1. Why is the intensity value of an earthquake more meaningful than magnitude to a nonscientist? 2. Use the Modified Mercalli Scale to determine the intensity of the earthquake for each of the following observations: a) I was awakened from a deep sleep and observed the door to the bedroom swinging back and forth. b) I thought it very unusual to see a small wooden decoy vibrate on the table beside my chair. c) I noticed waves on the pond, and could hear the church bells ring. 3. Is the greatest intensity of an earthquake always found at the epicenter? Explain your answer. 4. What geological conditions influence the intensity of an earthquake? 5. What does an earthquake magnitude scale measure? Earthquake Magnitude Earthquake magnitude is a measure of the amplitude of the seismic waves recorded on a seismogram. Charles F. Richter, a seismologist at the California Institute of Technology, developed the first magnitude scale in the 1930s. His basic idea was to observe the maximum amplitude recorded on a seismogram at a known distance from an earthquake. Earthquakes could be ranked quantitatively by size or strength.the amplitude measured is the swing of the stylus.the wider the swing, the stronger the vibrations, and therefore the stronger the earthquake.you modeled this in Activity 2. The original Richter scale was developed only for shallow earthquakes detected in southern California by a certain type of seismometer. Since then it has been modified for more general use. Modern measurements of magnitude are still based on the amplitude of the recorded waves. However, more sophisticated methods are used today. Depending on which magnitude a seismologist is using to calculate the magnitude of an earthquake, the various magnitudes can vary by one unit or more. An important aspect of magnitude scales is that they are logarithmic, based on powers of 10.This means that seismic wave amplitudes increase by 10 times for each unit of the scale. For example, the measured amplitude in a magnitude 6 earthquake is 10 times the measured amplitude in a magnitude 5 earthquake. G 144

8 Activity 3 How Big Was It? Understanding and Applying What You Have Learned 1. The Magnitude/Intensity Comparison table below compares the magnitude and intensity scales. The intensities listed are those typically observed at locations near the epicenter of earthquakes of different magnitudes. If intensity and magnitude measure different characteristics of earthquakes, how can such a chart be compiled? Why isn t it like comparing apples to oranges? Magnitude/Intensity Comparison Magnitude I II III IV V Intensity VI VII VIII IX 7.0 and higher X or higher 2. What is the highest intensity/magnitude that you would consider exciting to experience, but not dangerous? Explain your reasoning. 3. The following table shows the number of earthquakes per year of a given magnitude. Use the table to answer the following questions: a) Roughly how many earthquakes occur in a given year? b) Do humans feel most earthquakes? c) How many earthquakes did you hear about in the last year? d) What were their approximate magnitudes? e) Does this generate a bias in your perception of the number of earthquakes that happen per year and their size? Explain your answer. Number of Earthquakes per Year of Given Magnitudes Number Description Magnitude per Year Great earthquake Over or 2 Major earthquake 7.0 to Destructive earthquake 6.0 to Damaging earthquake 5.0 to Minor earthquake 4.0 to Smallest usually felt by humans 3.0 to ,000 Detected but not felt 2.0 to ,000 Gutenberg, B, and Richter, C.F., 1954, Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton, NJ. G 145

9 Preparing for the Chapter Challenge As a group, put together a text box for your brochure explaining how earthquakes are measured. You may use diagrams or charts. The box should contain a simple but accurate explanation of the two methods. It should also explain the advantages and limitations of each method. Remember that this will only be a sidebar for your brochure. It will help people to understand the meanings of terms you use in the rest of the brochure. Inquiring Further 1. Reporting earthquakes Does your community experience frequent earthquakes? Maybe you would like to help seismologists when an earthquake happens in your community. The Earthquake Felt Report Form allows you to contribute your intensity observations directly to seismologists so that they can construct isoseismal maps. Visit the web site page now to find the address that will let you know the kinds of observations you need to detect and record. 2. Determine the intensity of an earthquake from a description Do you know someone who has experienced an earthquake? If so, ask the individual to describe the experience to you. Compare the person s descriptions to the Mercalli Intensity Scale. Are the descriptions of earthquake effects in the Mercalli intensity scale consistent with the person s experience? Use the scale to rate the intensity of an earthquake they experienced. If they recall the approximate magnitude of the earthquake they experienced, how well does the magnitude/intensity chart match their experience? 3. Investigate earthquake measurement Write down other questions you have about the ways earthquakes are measured. How would you go about gathering information to answer these questions? Write your ideas in your notebook. Visit the web site for suggestions of useful web sites to explore. G 146

earthquakes 1. Earthquakes occur when plates grind against one another along cracks called faults.

earthquakes 1. Earthquakes occur when plates grind against one another along cracks called faults. earthquakes BEGIN 1 earthquakes 1. Earthquakes occur when plates grind against one another along cracks called faults. 2 earthquakes 1. Earthquakes occur when plates grind against one another along cracks

More information

1. Why do earthquakes happen? 3. What type of mechanical waves are Primary or P waves? 4. What type of mechanical waves are Secondary or S waves?

1. Why do earthquakes happen? 3. What type of mechanical waves are Primary or P waves? 4. What type of mechanical waves are Secondary or S waves? Name Period Earthquake Activity Background Information Earthquakes occur because of a sudden release of stored energy. This energy has built up over long periods of time as a result of tectonic forces

More information

EPS 20: Earthquakes. Laboratory Exercise 1. Intensity

EPS 20: Earthquakes. Laboratory Exercise 1. Intensity Name GSI Name EPS 20: Earthquakes Laboratory Exercise 1 Intensity Purpose: To investigate seismic intensity and how it is used to describe the effects of earthquakes Background: Several hundred years ago,

More information

ENVI.2030L - Earthquakes

ENVI.2030L - Earthquakes ENVI.2030L - Earthquakes Name I. Introduction The crust of the earth behaves in a brittle manner. Stress is the force applied to a brittle substance and strain represents the build-up of energy in the

More information

Earthquakes. Dr. Mark van der Meijde INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Earthquakes. Dr. Mark van der Meijde INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Earthquakes Dr. Mark van der Meijde vandermeijde@itc.nl INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Topics to handle Theory of earthquakes Mechanism Strength Measurements

More information

Released Science Inquiry Task Location Grade 11

Released Science Inquiry Task Location Grade 11 Date: Your Name: Released Science Inquiry Task Location 2009 Grade 11 Science Directions: You will be completing an extended-response inquiry task called Location. Explain the reasons for all of your answers.

More information

20.1 Earthquakes. Chapter 20 EARTHQUAKES AND VOLCANOES. Earthquakes and plate boundaries 500 UNIT 6 EARTH S STRUCTURE

20.1 Earthquakes. Chapter 20 EARTHQUAKES AND VOLCANOES. Earthquakes and plate boundaries 500 UNIT 6 EARTH S STRUCTURE Chapter 20 EARTHQUAKES AND VOLCANOES 20.1 Earthquakes In Chapter 19, you read about the San Andreas Fault, which lies along the California coast (Figure 20.1). This fault passes right through San Francisco

More information

An earthquake can cause:

An earthquake can cause: Earthquakes An earthquake is a sudden rapid shaking of the earth. They are caused by the breaking and shifting of the rock beneath the earth s surface. Often found in conjunction with Plate tectonic boundaries.

More information

Satellite Image. False-color IR satellite view of basins and ranges north of Snake River Plain Lost River Rangelower. Lemhi Range-upper.

Satellite Image. False-color IR satellite view of basins and ranges north of Snake River Plain Lost River Rangelower. Lemhi Range-upper. Satellite Image False-color IR satellite view of basins and ranges north of Snake River Plain Lost River Rangelower center Lemhi Range-upper center Challis, Idaho is left of center Epicenter of 1983, magnitude

More information

FOURTH GRADE HAZARDS 1 WEEK LESSON PLANS AND ACTIVITIES

FOURTH GRADE HAZARDS 1 WEEK LESSON PLANS AND ACTIVITIES FOURTH GRADE HAZARDS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FOURTH GRADE VOLCANOES WEEK 1. PRE: Comparing different structures of volcanoes. LAB: Modeling three types of volcanoes.

More information

Magnitude 6.3, NORTH OF MOROCCO

Magnitude 6.3, NORTH OF MOROCCO Earthquake location & overview A magnitude 6.3 earthquake struck in Alboran Sea, orth of Morocco; the epicentre was centered about 54 km ( 34 miles) E of Al Hoceima. The depth has been estimated to be

More information

Mw 7.8, Southwest of Sumatra, Indonesia Wed, 2 March 2016 at 12:49:48 UTC M /03/03

Mw 7.8, Southwest of Sumatra, Indonesia Wed, 2 March 2016 at 12:49:48 UTC M /03/03 Earthquake overview AFGHANISTA N PAKISTA N INDIA A moment magnitude (Mw) 7.8 earthquake struck in South West, Indonesia. The epicentre was centered about 800 km West South West of Padang, Sumatra province,

More information

Measuring the Size of an Earthquake

Measuring the Size of an Earthquake Earthquake Hazard Information Hazard, Risk, Magnitude, Intensity, Earthquake Statistics Part 1 (Information for interpreting the results of building contest and shake table testing; L. Braile, 03/12/03)

More information

Earthquakes and Earth s Chapter. Interior

Earthquakes and Earth s Chapter. Interior Earthquakes and Earth s Chapter Interior 8.1 What Is an Earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Focus and Epicenter Focus is the point within Earth

More information

Earthquake. earthquake, epicenters in the U.S. Kobe, Japan deaths

Earthquake. earthquake, epicenters in the U.S. Kobe, Japan deaths Kobe, Japan 1995 5000 deaths Earthquakes It is estimated that there are 500,000 detectable earthquakes in the world each year. 100,000 of those can be felt, and 100 of them cause damage. The world's deadliest

More information

ESS 202. Landslide. Earthquake effects. ! Natural Hazards. More quake effects. ! Man-aided hazards. Stanford library in 1906

ESS 202. Landslide. Earthquake effects. ! Natural Hazards. More quake effects. ! Man-aided hazards. Stanford library in 1906 ESS 202 Today: The Size of an Earthquake! Intensity! Magnitude! Moment House after tsunami, Brumbaugh 8-18 Earthquake effects! Natural Hazards " Ground shaking # Structural collapse # Falling objects "

More information

II Seismic waves: Nearly- pure elasic waves

II Seismic waves: Nearly- pure elasic waves MAGNITUDE AND INTENSITY (10) I Main Topics A Seismic waves B Magnitude C Intensity D Evernden s equaion for intensity decay 2/9/15 GG303 1 A Seismic waves 1 Cause damage 2 Provide quanitaive informaion

More information

C2.2 The physics of Earthquakes

C2.2 The physics of Earthquakes C2.2 The physics of Earthquakes C2.2.1 Stress axes and faults Most earthquakes occur because of the mechanical failure on brittle faults. The type of faulting is a consequence of the stress pattern causing

More information

Earthquakes An introduction to earthquake monitoring techniques

Earthquakes An introduction to earthquake monitoring techniques Earthquakes An introduction to earthquake monitoring techniques TEACHER S COPY Aims To understand what an earthquake is and where they occur To gain an insight into how earthquakes are recorded and how

More information

Earthquake Damage Scenario

Earthquake Damage Scenario Chapter 2. Earthquake Damage Scenario CHAPTER 2. EARTHQUAKE DAMAGE SCENARIO 2.1 Earthquake Scenario Setting and Ground Motion 2.1.1 Fault in the Philippines The Philippines is located in latitude 5 to

More information

Forces in Earth s Crust

Forces in Earth s Crust Name Date Class Earthquakes Section Summary Forces in Earth s Crust Guide for Reading How does stress in the crust change Earth s surface? Where are faults usually found, and why do they form? What land

More information

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Earthquake Machine Stick-slip: Elastic Rebound Theory Jerky motions on faults produce EQs Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Three

More information

appendix e: geologic and seismic hazards

appendix e: geologic and seismic hazards appendix e: geologic and seismic hazards CONTENTS: E-2 Fault Rupture E-3 Ground Shaking E-5 Seismic Ground Deformation E-5 Liquification E-6 Seismically Induces Landslide E-6 Landslide Hazard E The following

More information

Introduction to Engineering Seismology

Introduction to Engineering Seismology Introduction to Engineering Seismology Sudhir K Jain Mythology The Myths 2 The Earth is held up by 4 elephants that stand on the back of a turtle. The turtle is balanced in turn on a cobra. When any of

More information

I. What are Earthquakes?

I. What are Earthquakes? I. What are Earthquakes? A. There is more to earthquakes than just the shaking of the ground. An entire branch of Earth science, called seismology, is devoted to the study of earthquakes. B. Earthquakes

More information

11/30/16 EARTHQUAKES ELASTIC LIMIT FAULT FORCE AND PLATES WHAT DO YOU NOTICE?

11/30/16 EARTHQUAKES ELASTIC LIMIT FAULT FORCE AND PLATES WHAT DO YOU NOTICE? ELASTIC LIMIT EARTHQUAKES Bend sitck but do not break it. What do you notice? No bend until it breaks. Describe the energy and forces at work. (Kinetic, potential etc) 8 TH GRADE FAULT FORCE AND PLATES

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

SECTION 3. Housing. EAppendix E GEOLOGIC AND SEISMIC HAZARDS

SECTION 3. Housing. EAppendix E GEOLOGIC AND SEISMIC HAZARDS SECTION 3 Housing EAppendix E GEOLOGIC AND SEISMIC HAZARDS E-2 Housing Commission Attachment B Appendix E Geologic and Seismic Hazards The following definitions provide a more comprehensive discussion

More information

The Size of an Earthquake. Intensity of Shaking (Robert Mallet, 1857) Calculation of Earthquake Magnitude (Charles Richter, 1935)

The Size of an Earthquake. Intensity of Shaking (Robert Mallet, 1857) Calculation of Earthquake Magnitude (Charles Richter, 1935) The Size of an Earthquake Intensity of Shaking (Robert Mallet, 1857) Calculation of Earthquake Magnitude (Charles Richter, 1935) In 1857, Robert Mallet produced isoseismal lines based on quantified damage

More information

Analysis of NYS Earthquake

Analysis of NYS Earthquake Analysis of NYS Earthquake NAME INTRODUCTION An earthquake s strength depends on how much of the energy stored in the rocks is released. There are two methods of identifying the intensity of an earthquake.

More information

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6.

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6. Earthquakes Chapter 6 Modern Earth Science Earthquakes and Plate Tectonics Section 6.1 Modern Earth Science Earthquakes and Plate Tectonics Earthquakes are the result of stresses in Earth s s lithosphere.

More information

Dynamic Crust Regents Review

Dynamic Crust Regents Review Name Dynamic Crust Regents Review Base your answers to questions 1 through 3 on the table below, which lists the location of some earthquakes, their Richter magnitude, and their year of occurrence. Data

More information

Figure 12.1: The 1964 Alaska earthquake was the longest ever recorded and the largest ever recorded in the United States.

Figure 12.1: The 1964 Alaska earthquake was the longest ever recorded and the largest ever recorded in the United States. 12.1 Earthquakes In a place where earthquakes are common, it is not unusual to feel the ground shake. You might notice tiny ripples in your juice glass at breakfast and then you might feel small vibrations

More information

Basic Seismological Characterization for Goshen County, Wyoming

Basic Seismological Characterization for Goshen County, Wyoming Basic Seismological Characterization for Goshen County, Wyoming by James C. Case, Rachel N. Toner, and Robert Kirkwood Wyoming State Geological Survey September 2002 BACKGROUND Seismological characterizations

More information

An entire branch of Earth science, called, is devoted to the study of earthquakes.

An entire branch of Earth science, called, is devoted to the study of earthquakes. Lesson One Essential Question Where do earthquakes take place? What causes earthquakes? What are three different types of faults that occur at plate boundaries? How does energy from earthquakes travels

More information

Earthquakes. Copyright 2006 InstructorWeb

Earthquakes. Copyright 2006 InstructorWeb Earthquakes Earthquakes cause the earth to shake! Earthquakes are caused by a fault line under the earth's crust. You do not have to be right under a fault line to feel an earthquake. You could be miles

More information

Basic Seismological Characterization for Niobrara County, Wyoming

Basic Seismological Characterization for Niobrara County, Wyoming Basic Seismological Characterization for Niobrara County, Wyoming by James C. Case, Rachel N. Toner, and Robert Kirkwood Wyoming State Geological Survey September 2002 BACKGROUND Seismological characterizations

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Lecture Outline Wednesday-Monday April 18 23, 2018

Lecture Outline Wednesday-Monday April 18 23, 2018 Lecture Outline Wednesday-Monday April 18 23, 2018 Questions? Lecture Final Exam Lecture Section 1 Friday May 4, 8:00-10:00am Lecture Section 2 Friday May 4, 3:10-5:10 pm Final Exam is 70% new material

More information

dt r = 0 sin i 0 = P d Δ V 0

dt r = 0 sin i 0 = P d Δ V 0 dt dδ = r 0 sin i 0 V 0 = P sin i toa Me Always someone needs to reorder and make difficult to check Me One that agrees with me many don t though many agree with each other science begins Locating Local

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

1 of 27. Boardworks Ltd Earthquakes

1 of 27. Boardworks Ltd Earthquakes 1 of 27 Earthquakes Teacher s notes and Flash files Most slides contain notes to accompany the presentation. This icon indicates that the notes contain particularly detailed instructions or extension activities.

More information

Earthquake Notes. Earthquakes occur all the time all over the world, both along plate edges and along faults.

Earthquake Notes. Earthquakes occur all the time all over the world, both along plate edges and along faults. Earthquake Notes Name: Date: Where Do Earthquakes Happen? Earthquakes occur all the time all over the world, both along plate edges and along faults. Most earthquakes occur along the edge of the oceanic

More information

Earthquakes. These icons indicate that teacher s notes or useful web addresses are available in the Notes Page.

Earthquakes. These icons indicate that teacher s notes or useful web addresses are available in the Notes Page. Earthquakes These icons indicate that teacher s notes or useful web addresses are available in the Notes Page. This icon indicates the slide contains activities created in Flash. These activities are not

More information

IV. ENVIRONMENTAL IMPACT ANALYSIS F. GEOLOGY AND SOILS

IV. ENVIRONMENTAL IMPACT ANALYSIS F. GEOLOGY AND SOILS IV. ENVIRONMENTAL IMPACT ANALYSIS F. GEOLOGY AND SOILS INTRODUCTION This section of the DEIR evaluates potential impacts to the project site s geologic environment that may result from implementation of

More information

Identifying the causes and effects of earthquakes

Identifying the causes and effects of earthquakes Science 3 Physical Earth and Space Life LESSON 57 Identifying the causes and effects of earthquakes Lesson Preparation Program Materials Child s Booklet E Exploring the Earth s Structure (pp. 12 13) Optional:

More information

Wattsville and Mercalli Booklet

Wattsville and Mercalli Booklet Wattsville and Mercalli Booklet Lesson Concept: Observable phenomena are used to determine the intensity of earthquakes using the Mercalli Scale. Link Lesson 6.8 demonstrated how triangulation of P and

More information

A Violent Pulse: Earthquakes. Lecture #2

A Violent Pulse: Earthquakes. Lecture #2 A Violent Pulse: Earthquakes Lecture #2 Earthquakes Are Always Happening ~ 1,000,000 / yr Most are small o Detected only by instruments Large EQ ~ 20 / yr cause extensive damage ~ 1 catastrophic EQ / year

More information

Monday 11 May 2015 Morning

Monday 11 May 2015 Morning Oxford Cambridge and RSA Monday 11 May 2015 Morning AS GCE GEOLOGY F791/01 Global Tectonics *5003095113* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required:

More information

Earthquakes and Earth s Interior

Earthquakes and Earth s Interior - What are Earthquakes? Earthquakes and Earth s Interior - The shaking or trembling caused by the sudden release of energy - Usually associated with faulting or breaking of rocks - Continuing adjustment

More information

Preliminary Damage Report of the August 22, 2011 Mw 5.3 Earthquake near Trinidad, Colorado

Preliminary Damage Report of the August 22, 2011 Mw 5.3 Earthquake near Trinidad, Colorado Preliminary Damage Report of the August 22, 2011 Mw 5.3 Earthquake near Trinidad, Colorado Matthew L. Morgan and Karen S. Morgan Colorado Geological Survey At 11:46 PM MDT on August 22, 2011, a Mw 5.3

More information

Names: ESS 315 Lab # 1 Seismic Hazards along the Cascadia Subduction Zone

Names: ESS 315 Lab # 1 Seismic Hazards along the Cascadia Subduction Zone Names: ESS 315 Lab # 1 Seismic Hazards along the Cascadia Subduction Zone 1 Seismographs located throughout the Pacific Northwest record thousands of earthquakes each year in Washington and Oregon. Between

More information

2.3 Notes: Earthquake Damage Can Be Reduced

2.3 Notes: Earthquake Damage Can Be Reduced 2.3 Notes: Earthquake Damage Can Be Reduced Earthquakes can cause severe damage and loss of life Each year, there is about one earthquake with a magnitude of or higher-this is an extremely earthquake.

More information

UNIT - 7 EARTHQUAKES

UNIT - 7 EARTHQUAKES UNIT - 7 EARTHQUAKES WHAT IS AN EARTHQUAKE An earthquake is a sudden motion or trembling of the Earth caused by the abrupt release of energy that is stored in rocks. Modern geologists know that most earthquakes

More information

Seismic Waves. 1. Seismic Deformation

Seismic Waves. 1. Seismic Deformation Types of Waves 1. Seismic Deformation Seismic Waves When an earthquake fault ruptures, it causes two types of deformation: static; and dynamic. Static deformation is the permanent displacement of the ground

More information

EARTHQUAKE STATISTICS FOR OHIO 1

EARTHQUAKE STATISTICS FOR OHIO 1 EARTHQUAKE STATISTICS FOR OHIO 1 EDMUND F. PAWLOWICZ Seismological Observatory, Department of Geology, Bowling Green State Bowling Green, Ohio 434-03 University, PAWLOWICZ, EDMUND F. Earthquake statistics

More information

Earthquakes, an overview. Christa G. von Hillebrandt-Andrade Puerto Rico Seismic Network University of PR-Mayagüez

Earthquakes, an overview. Christa G. von Hillebrandt-Andrade Puerto Rico Seismic Network University of PR-Mayagüez Earthquakes, an overview Christa G. von Hillebrandt-Andrade Puerto Rico Seismic Network University of PR-Mayagüez Earthquakes?!?!?! Myth #1 The main danger associated with Earthquakes are the fissures

More information

C) 10:20:40 A) the difference between the arrival times of the P -wave and the S -wave

C) 10:20:40 A) the difference between the arrival times of the P -wave and the S -wave 1. The arrival time of the first earthquake P-wave at a seismograph station was 10:11:20 (hours:minutes:seconds). If the epicenter of the earthquake is 8000 km away, what was the approximate arrival time

More information

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of.

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of. Chapter Outline Earthquakes CHAPTER 6 Lesson 1: Earthquakes and Plate Boundaries A. What is an earthquake? 1. A(n) is the rupture and sudden movement of rocks along a fault. A fault is a fracture surface

More information

VIDEO The 2011 Japanese Earthquake and Tsunami

VIDEO The 2011 Japanese Earthquake and Tsunami VIDEO The 2011 Japanese Earthquake and Tsunami Why was it so large and devastating? Why so short a warning? Why did tsunami precautions fail? What happened elsewhere? The Loma Prieta Earthquake (1989)

More information

Dangerous tsunami threat off U.S. West Coast

Dangerous tsunami threat off U.S. West Coast Earthquakes Ch. 12 Dangerous tsunami threat off U.S. West Coast Earthquakes What is an Earthquake? It s the shaking and trembling of the Earth s crust due to plate movement. The plates move, rocks along

More information

Directed Reading. Section: How and Where Earthquakes Happen WHY EARTHQUAKES HAPPEN. Skills Worksheet. 1. Define earthquake.

Directed Reading. Section: How and Where Earthquakes Happen WHY EARTHQUAKES HAPPEN. Skills Worksheet. 1. Define earthquake. Skills Worksheet Directed Reading Section: How and Where Earthquakes Happen 1. Define earthquake. 2. When do earthquakes usually occur? 3. What is a fault? WHY EARTHQUAKES HAPPEN 4. Rocks along both sides

More information

Origin of the Hawaiian Islands

Origin of the Hawaiian Islands Origin of the Hawaiian Islands Note that as the islands get older, they erode away and sink into the ocean. Origin of Coral Atolls (Darwin) Origin of mantle plumes? Young THE GREAT PLUME CONTROVERSY (Not

More information

Technical Considerations Associated with Risk Management of Induced Seismicity in Waste-Water Disposal & Hydraulic Fracturing Operations

Technical Considerations Associated with Risk Management of Induced Seismicity in Waste-Water Disposal & Hydraulic Fracturing Operations Technical Considerations Associated with Risk Management of Induced Seismicity in Waste-Water Disposal & Hydraulic Fracturing Operations K. J. (Kris) Nygaard, Sr. Stimulation Consultant ExxonMobil Production

More information

Earthquakes and Seismic Waves Lesson 4 2

Earthquakes and Seismic Waves Lesson 4 2 Earthquakes and Seismic Waves Lesson 4 2 Apr 15 8:52 PM What are seismic waves? How are earthquakes measured? How is an earthquake located? Apr 15 8:54 PM 1 What are seismic waves An earthquake is the

More information

Before exploring the effects of the 1906 earthquake, watch the video on ground shaking and liquefaction at:

Before exploring the effects of the 1906 earthquake, watch the video on ground shaking and liquefaction at: Seismic Risk: Pre- Work Paper Maps Version Early on the morning of April 16, 1906, a magnitude 7.8 earthquake struck on the San Andreas Fault. The 1906 San Francisco earthquake revolutionized our understanding

More information

Basic Seismological Characterization for Sheridan County, Wyoming

Basic Seismological Characterization for Sheridan County, Wyoming Basic Seismological Characterization for Sheridan County, Wyoming by James C. Case, Rachel N. Toner, and Robert Kirkwood Wyoming State Geological Survey September 2002 BACKGROUND Seismological characterizations

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information

Geologic Conditions. his section of the Background Report describes the existing conditions of the City of Elk Grove relative to Geologic Conditions.

Geologic Conditions. his section of the Background Report describes the existing conditions of the City of Elk Grove relative to Geologic Conditions. T his section of the Background Report describes the existing conditions of the City of Elk Grove relative to Geologic Conditions. Setting The Planning Area is located within the Great Valley geomorphic

More information

Important Concepts. Earthquake hazards can be categorized as:

Important Concepts. Earthquake hazards can be categorized as: Lecture 1 Page 1 Important Concepts Monday, August 17, 2009 1:05 PM Earthquake Engineering is a branch of Civil Engineering that requires expertise in geology, seismology, civil engineering and risk assessment.

More information

Earthquakes.

Earthquakes. Earthquakes http://thismodernworld.com/comic-archive Elastic rebound http://projects.crustal.ucsb.edu/understanding/elastic/rebound.html Elastic rebound Rocks store energy elastically When stored stress

More information

Geologic Hazards. Montour County Multi-jurisdictional. General. Earthquake

Geologic Hazards. Montour County Multi-jurisdictional. General. Earthquake Geologic Hazards General s are very rare in Pennsylvania and have caused little damage with no reported injuries or causalities. s that do occur in Pennsylvania happen deep within the Earth s crust. This

More information

Objectives. Vocabulary

Objectives. Vocabulary Forces Within Earth Objectives Define stress and strain as they apply to rocks. Distinguish among the three types of faults. Contrast three types of seismic waves. Vocabulary stress strain fault primary

More information

LAB 9: Earthquakes & Seismic Activity

LAB 9: Earthquakes & Seismic Activity LAB 9: Earthquakes & Seismic Activity Objectives Identify P, S, and surface waves on a simple seismogram Locate the epicenter of an earthquake using seismograms and travel times curves Describe how the

More information

PHYSICAL SCIENCE FINAL

PHYSICAL SCIENCE FINAL PHYSICAL SCIENCE FINAL Liquefaction Doreen Wallace, Tesla Grogan, Amber Ward, Erik Garcia, Cinthia Salas, Alexis Albers Liquefaction What is it? Conditions needed How it works Effects of Liquefaction Soil

More information

The Richter Scale. Micro Less than 2.0 Microearthquakes, not felt. About 8,000/day

The Richter Scale. Micro Less than 2.0 Microearthquakes, not felt. About 8,000/day Geologic Hazards General s are very rare in Pennsylvania and have caused very little damage and no reported injuries or casualties. Since the Commonwealth is not on an active fault, the earthquakes that

More information

Course Outline (1) 2. Engineering Seismology. #2 Engineering Seismology

Course Outline (1) 2. Engineering Seismology. #2 Engineering Seismology CE3.98N Soil Dynamics and Earthquake Engineering # Engineering Seismology January 15, 3 Fumio Yamazaki yamazaki@ait.ac.th http://www.sce.ait.ac.th/people/faculty/~yamazaki SEC/SCE, AIT. 1 1. Introduction

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 3 Understanding Earthquakes and Earthquake Hazards Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information:

More information

Name: KEY California Geology. Unit IX Earthquakes

Name: KEY California Geology. Unit IX Earthquakes Unit IX Earthquakes Name: KEY California Geology The following assignment is based on information presented in Unit IX. Be sure to read the paragraphs (Note 1) provided before you attempt to answer the

More information

Earthquakes & Volcanoes

Earthquakes & Volcanoes Earthquakes & Volcanoes Geology - the study of solid Earth, the rocks of which it is composed, and the processes by which they change geo = Earth; ology = study of Earth s Layers Plate Tectonics - the

More information

Earthquakes Packet 5

Earthquakes Packet 5 Earthquakes Packet 5 Your Name Group Members Score Minutes Standard 4 Key Idea 2 Performance Indicator 2.1 Use the concepts of density and heat energy to explain observations of weather patterns, seasonal

More information

Natural Disasters. Why Are There Earthquakes? 197 words. The Power of the Earth 221 words. Big Waves! 188 words

Natural Disasters. Why Are There Earthquakes? 197 words. The Power of the Earth 221 words. Big Waves! 188 words ARTICLE-A-DAY Natural Disasters 6 Articles Check articles you have read: Why Are There Earthquakes? 197 words The Power of the Earth 221 words Big Waves! 188 words The Volcano That Keeps Erupting 228 words

More information

An Earthquake in Your Community

An Earthquake in Your Community Activity 1 An Earthquake in Your Community Goals In this activity you will: Generate and describe two types of waves. Determine the relative speeds of compressional and shear waves. Simulate some of the

More information

Earthquakes. Beyond the Book. FOCUS Book

Earthquakes. Beyond the Book. FOCUS Book FOCUS Book Model how liquefaction during an earthquake changes Earth s surface and affects buildings. Put sand in a large plastic container. Mix enough water into the sand to make the ground feel firm.

More information

Chapter: Earthquakes and Volcanoes

Chapter: Earthquakes and Volcanoes Table of Contents Chapter: Earthquakes and Volcanoes Section 1: Earthquakes Section 2: Volcanoes Section 3: Earthquakes, Volcanoes, and Plate Tectonics 1 Earthquakes What causes earthquakes? Elastic Rebound

More information

Module 2, Investigation 1: Earthquake Hazards

Module 2, Investigation 1: Earthquake Hazards Module 2, Investigation 1: Earthquake Hazards Introduction Welcome! In the last module, you assumed the role of a volcanologist and learned how volcanoes are described and monitored. You will now assume

More information

HiMAP Pull-Out Section: Winter 1988

HiMAP Pull-Out Section: Winter 1988 Earthquakes and Logarithms Peter A. Lindstrom Photograph of Charles Richter courtesy of California Institute of Technology. One thinks of an earthquake as a sudden motion or trembling in the earth caused

More information

Rapid Changes on Earth: Earthquakes, Volcanoes, Landslides. Chapter 6 Study Guide

Rapid Changes on Earth: Earthquakes, Volcanoes, Landslides. Chapter 6 Study Guide Rapid Changes on Earth: Earthquakes, Volcanoes, Landslides Chapter 6 Study Guide Magma is 1. The point underground where an earthquake starts. 2. Molten rock beneath the Earth s surface. 3. Molten rock

More information

Lesson 4: Earthquakes and Moving Plates

Lesson 4: Earthquakes and Moving Plates Our Changing Earth -> 4: Earthquakes and Moving lates Getting Started Lesson 4: Earthquakes and Moving lates Earthquakes happen quickly, but the pressures that build up to cause them happen over a long

More information

What is seismology? Seismology is science dealing with all aspects of earthquakes:

What is seismology? Seismology is science dealing with all aspects of earthquakes: Seismology What is seismology? Seismology is science dealing with all aspects of earthquakes: OBSERVATIONAL SEISMOLOGY Recording earthquakes (microseismology) Cataloguing earthquakes Observing earthquake

More information

Earthquakes Science & Safety. Ms Joan L. Latchman Seismologist Seismic Research Unit

Earthquakes Science & Safety. Ms Joan L. Latchman Seismologist Seismic Research Unit Earthquakes Science & Safety Ms Joan L. Latchman Seismologist Seismic Research Unit Summary Trinidad lies in an area of high earthquake activity for the Caribbean. Earthquake safety tips should be practiced

More information

Earthquake Leaflet What to do if you experience a strong Earthquake

Earthquake Leaflet What to do if you experience a strong Earthquake Earthquake Leaflet What to do if you experience a strong Earthquake Prepared by Prof. Peter Bormann This leaflet provides basic information for those citizens who may have temporary or long-term stays

More information

Chapter 11: Earthquakes. Grade 6 Earth Science Mr. Norton

Chapter 11: Earthquakes. Grade 6 Earth Science Mr. Norton Chapter 11: Earthquakes Grade 6 Earth Science Mr. Norton Table of Contents Chapter 10: Earthquakes Section 1: Forces Inside Earth Section 2: Features of Earthquakes Section 3: People and Earthquakes Chapter

More information

Processes and Impact of Natural Hazards

Processes and Impact of Natural Hazards The Big Island of Hawaii is the largest of the Hawaiian Islands. It is also home to a very active volcano. The Kilauea volcano has been active since 1983. The lava that flows from the Kilauea volcano has

More information

Homework Assignment II. Seismological Exercises Fall 2014

Homework Assignment II. Seismological Exercises Fall 2014 Page 1 of 8 EENS 3050 Tulane University Natural Disasters Prof. Stephen A. Nelson Homework Assignment II. Seismological Exercises Fall 2014 This page last updated on 03-Sep-2014 Answer the following questions.

More information

Recording Form. Part One: Oral Reading. Recording Form. Earthquakes Level U Nonfiction

Recording Form. Part One: Oral Reading. Recording Form. Earthquakes Level U Nonfiction Student Grade _ Date Teacher School Part One: Oral Reading Place the book in front of the student. Read the title and introduction. Introduction: Seismologists are scientists who study ways to measure

More information

INTRODUCTION TO SEISMOLOGY

INTRODUCTION TO SEISMOLOGY INTRODUCTION TO SEISMOLOGY 1 Earthquake Engineering Earthquake engineering can be defined as the branch of engineering devoted to mitigating earthquake hazards. Earthquake engineering involves planning,

More information

SEISMOLOGY. - The study of earthquakes waves and how they move through the body and around the surface of the earth.

SEISMOLOGY. - The study of earthquakes waves and how they move through the body and around the surface of the earth. EARTHQUAKES SEISMOLOGY - The study of earthquakes waves and how they move through the body and around the surface of the earth. Seismic Waves - vibrations generated in the earths interior that carry energy

More information

Earthquakes!! Be sure to fill in your notes sheet as you go through the power point!

Earthquakes!! Be sure to fill in your notes sheet as you go through the power point! Earthquakes!! Be sure to fill in your notes sheet as you go through the power point! Plate Boundary Review Click on the link below to try some plate boundary movement simulations. The link will take you

More information

Earthquakes.

Earthquakes. Earthquakes http://quake.usgs.gov/recenteqs/latestfault.htm An earthquake is a sudden motion or shaking of the Earth's crust, caused by the abrupt release of stored energy in the rocks beneath the surface.

More information