Lithosphere extension as a function of mantle strength Frédéric Gueydan, Christina Morency & Jean Pierre Brun

Size: px
Start display at page:

Download "Lithosphere extension as a function of mantle strength Frédéric Gueydan, Christina Morency & Jean Pierre Brun"

Transcription

1 Lithosphere extension as a function of mantle strength Frédéric Gueydan, Christina Morency & Jean Pierre Brun Gueydan et al., Tectonophysics, 2008

2 Role of rheological layering on lithosphere deformation EXTENSION Distributed extension COMPRESSION Single Rifts Jackson (2002) Buck (1991) High lithosphere strength Low lithosphere strength Narrow rift Wide rift Mechanical role of each rheological layers? No high strength mantle Crustal strength >> Mantle strenght Crustal and mantle contribution to lithosphere strength?

3 1- Mantle and crustal contribution to lithosphere strength Wet quartz, dry olivine Crustal thick=30 km

4 1- Mantle and crustal contribution to lithosphere strength Wet quartz, dry olivine Crustal thick=30 km

5 1- Mantle and crustal contribution to lithosphere strength Wet quartz, dry olivine Crustal thick=30 km

6 2D modelling- Model Set-up Finite-element code: SARPP- F. Gueydan & Y. Leroy

7 2D modelling- Model Set-up Finite-element code: SARPP- F. Gueydan & Y. Leroy Small perturbation (100m)- at Brittle-Ductile Transitions In order to initiate strain localization

8 2D Results- Role of mantle strength Model 1 Model 2

9 2D Results- Role of mantle strength Three patterns of lithosphere stretching Gueydan et al, Tectonophysics, 2008

10 Transition between the 3 patterns of lithosphere extension Coupled crust-mantle Décollement Wide Rift

11 Transition between the 3 patterns of lithosphere extension

12 Map of lithosphere extension modes Transitions Coupled/décollement TM~500 C At larger T M for larger crustal thickness Décollement/wide rift TM~700 C Absence of high strength mantle

13 Map of lithosphere extension modes Transitions Coupled/décollement TM~500 C At larger T M for larger crustal thickness Décollement/wide rift TM~700 C Absence of high strength mantle

14 3- Natural examples SINGLE RIFT Rhine, Baikal TWO BRANCHES RIFTS EAR Limagne- Bresse REGULARLY SPACED RIFTS Basin&Range Aegean Tibet

15 3- Natural examples SINGLE RIFT Rhine graben Brun et al., 1992 Baikal Deverchere & al.,2001

16 3- Natural examples TWO BRANCHES RIFTS Limagne Bresse Michon & Merle,2003!" #!"

17 3- Natural examples REGULARLY SPACED RIFTS Evvia-Corinthe Latorre et al., 1992 Post-orogenic extension Extension of pre-thickened crust Basin & Range Tibet $ % "&!"& " $& '

18 Conclusions Existence of a high strength mantle Strength of the deep crust Lithosphere necking Amount of crust/mantle coupling Rift spacing is a direct function of mantle strength

19 Enjeux de la modélisation numérique Allemand et al 1989 Modélisation analogique en extension

20 Enjeux de la modélisation numérique Allemand et al 1989 Modélisation analogique en extension Beslier & Brun, 1991

21 Enjeux de la modélisation numérique Allemand et al 1989 r lage Modélisation analogique en extension grande déformation grand déplacements horizontaux Beslier & Brun, 1991 parallèle aux limites lithologiques rhéologies complexes thermo-mécanique couplé,

22

23 Rift spacing

24 Rift topography

25 Map of lithosphere extension modes 1 cm/a 1 mm/a Role of the applied velocity

26 Map of lithosphere extension modes Role of the rheological parameter Dry Olivine Wet Olivine

27 Role of the high strength uppermost mantle? Narrow rift Rhine, Brun et al., 1992 Wide rift Moho offset Existence of a high strength mantle Flat Moho No high strength mantle Objective Role of the rheological layering (thermal layering) on the patterns of lithosphere extension- Continuum analysis Focus on the role of the high strength mantle

28 2D Results- Role of the applied velocity Coupled crust-mantle/crustal décollement Crustal decollement Wide rift Decrease of the velocity Decreases the deep crust strength Increases the amount of Mantle/Crust decoupling Crustal decollement mode triggered for lower T M More localized deformation (cf. Wide Rift)

29 2D Results- Role of the crustal thickness Crustal décollement Crustal decollement Coupled crust-mantle Crustal decollement Increase of crustal thickness Increase of lithosphere strength (uppermost mantle) Increase the amount of Mantle/Crust Coupling

Tectonophysics 460 (2008) Contents lists available at ScienceDirect. Tectonophysics. journal homepage:

Tectonophysics 460 (2008) Contents lists available at ScienceDirect. Tectonophysics. journal homepage: Tectonophysics 460 (2008) 83 93 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Continental rifting as a function of lithosphere mantle strength

More information

Brittle Ductile coupling in symmetrical extension Analogue modeling at a crustal scale

Brittle Ductile coupling in symmetrical extension Analogue modeling at a crustal scale Brittle Ductile coupling in symmetrical extension Analogue modeling at a crustal scale Nynke Hoornveld, Student number: 1330055, Vrije Universiteit Amsterdam, April 2007 Abstract Analogue models made of

More information

Supplementary information on the West African margin

Supplementary information on the West African margin Huismans and Beaumont 1 Data repository Supplementary information on the West African margin Interpreted seismic cross-sections of the north Angolan to south Gabon west African passive margins 1-3, including

More information

Structural style of formation of passive margins, insights from dynamical modelling

Structural style of formation of passive margins, insights from dynamical modelling Trabajos de Geología, Universidad de Oviedo, 29 : 342-348 (2009) Structural style of formation of passive margins, insights from dynamical modelling R. S. HUISMANS 1* AND C. BEAUMONT 2 1Dep. Earth Science,

More information

Effects of Initial Weakness on Rift Architecture

Effects of Initial Weakness on Rift Architecture Effects of Initial Weakness on Rift Architecture Scott Dyksterhuis 1, Patrice Rey 1, Dietmar Müller 1 and Louis Moresi 2 1 University of Sydney School of Geosciences Baxter Building (H11) University of

More information

From Continental Subduction to Uppercrustal Nappes Stacking A Numerical Analysis

From Continental Subduction to Uppercrustal Nappes Stacking A Numerical Analysis From Continental Subduction to Uppercrustal Nappes A Numerical Analysis CARRY Nicolas, Frédéric GUEYDAN, Jean Pierre BRUN, Denis GAPAIS Géosciences Rennes, UMR 6118, Université de Rennes 1 Didier MARQUER

More information

Mode of lithospheric extension: Conceptual models from analogue modeling

Mode of lithospheric extension: Conceptual models from analogue modeling TECTONICS, VOL. 22, NO. 4, 1028, doi:10.1029/2002tc001435, 2003 Mode of lithospheric extension: Conceptual models from analogue modeling Laurent Michon 1 Netherlands Organization for Applied Scientific

More information

The numerical method used for experiments is based on an explicit finite element

The numerical method used for experiments is based on an explicit finite element Bialas 1 Model Supplementary Data The numerical method used for experiments is based on an explicit finite element technique similar to the Fast Lagrangian Analysis of Continua (FLAC) method (Cundall,

More information

Wilson cycle. 1. Intracontinental rift 2. From rifting to drifting

Wilson cycle. 1. Intracontinental rift 2. From rifting to drifting Wilson cycle 1. Intracontinental rift 2. From rifting to drifting Stages of the Wilson Cycle Intracontinental Rifts 1. Contemporary examples (EAR, RGR, Baikal, Rhine graben) 2. Mechanical aspects. Characteristics

More information

Klaus Gessner, Chris Wijns, Louis Moresi, Fabio Boschetti and Alison Ord

Klaus Gessner, Chris Wijns, Louis Moresi, Fabio Boschetti and Alison Ord Flow partitioning in the lithosphere during core complex formation: An interactive evolutionary computation approach using particle-in-cell finite elements Klaus Gessner, Chris Wijns, Louis Moresi, Fabio

More information

Strain weakening enables continental plate tectonics

Strain weakening enables continental plate tectonics Strain weakening enables continental plate tectonics Frédéric Gueydan, Jacques Précigout, Laurent G.J. Montesi To cite this version: Frédéric Gueydan, Jacques Précigout, Laurent G.J. Montesi. Strain weakening

More information

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10 Lecture 2: Deformation in the crust and the mantle Read KK&V chapter 2.10 Tectonic plates What are the structure and composi1on of tectonic plates? Crust, mantle, and lithosphere Crust relatively light

More information

Small scale convection at the edge of the Colorado Plateau?

Small scale convection at the edge of the Colorado Plateau? Small scale convection at the edge of the Colorado Plateau? Jolante van Wijk & David Coblentz, Rick Aster, Jeroen van Hunen, Saskia Goes, Steve Grand, Scott Baldridge, Jim Ni 1 La RISTRA seismic experiment

More information

Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening

Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B10, 2496, doi:10.1029/2002jb002026, 2003 Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening

More information

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth. Global Tectonics Kearey, Philip ISBN-13: 9781405107778 Table of Contents Preface. Acknowledgments. 1. Historical perspective. 1.1 Continental drift. 1.2 Sea floor spreading and the birth of plate tectonics.

More information

M. Pérez-Gussinyé (Royal Holloway), Sascha Brune (Potsdam), Jason Phipps Morgan (RHUL), Tony Lowry (Utah Univ.), Mario Araujo (Petrobras).

M. Pérez-Gussinyé (Royal Holloway), Sascha Brune (Potsdam), Jason Phipps Morgan (RHUL), Tony Lowry (Utah Univ.), Mario Araujo (Petrobras). Continental rifting at magma-poor margins and birth of new steady state oceanic ridges: Interactions between thinning continents and the underlying asthenosphere. M. Pérez-Gussinyé (Royal Holloway), Sascha

More information

How to make a rift wide

How to make a rift wide How to make a rift wide By W. Roger Buck 1, Luc L. Lavier 1 and Alexei N. B. Poliakov 2 1 Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences, Columbia University, Palisades,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary information: Our 1080 km x 360 km model setup includes a 7 km thick oceanic crust adjacent to a 60 km thick, 250 km wide orogenic crust. Both the oceanic and the

More information

Strain-dependent strength profiles Implication of planetary tectonics

Strain-dependent strength profiles Implication of planetary tectonics Strain-dependent strength profiles Implication of planetary tectonics Laurent G.J. Montési 1 Frederic Gueydan 2, Jacques Précigout 3 1 University of Maryland 2 Université de Montpellier 2, 3 Université

More information

A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements

A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L15S13, doi:10.1029/2004gl019521, 2004 A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements Jean Chéry Laboratoire Dynamique de la

More information

Numerical modeling of rock deformation: 03 Analytical methods - Folding

Numerical modeling of rock deformation: 03 Analytical methods - Folding Numerical modeling of rock deformation: 0 Analytical methods - Folding Stefan Schmalholz schmalholz@erdw.ethz.ch NO E 6 AS 2009, Thursday 0-2, NO D Overview Application of linear stability analysis Dominant

More information

Crust : wet quartzite Arc root : dry olivine mantle = 2840 kg/m km = 3300 kg/m km (Arc root thickness) 280 km (Arc width)

Crust : wet quartzite Arc root : dry olivine mantle = 2840 kg/m km = 3300 kg/m km (Arc root thickness) 280 km (Arc width) Crust : wet quartzite Arc root : dry olivine mantle = 2840 kg/m 3 41.5 km = 3300 kg/m 3 o 118.5 km Temperature (C) free surface z = 0 550 1350 160 km (Arc root thickness) 280 km (Arc width) sub-lithospheric

More information

and passive margin formation

and passive margin formation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 11, NO. B9, PAGES 2,175-2,194, SEPTEMBER 1, 1996 The effect of lower crustal flow on continental and passive margin formation extension John R. Hopper Danish Lithosphere

More information

Supplement of The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes

Supplement of The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes Supplement of Solid Earth, 9, 127 1224, 218 https://doi.org/1.5194/se-9-127-218-supplement Author(s) 218. This work is distributed under the Creative Commons Attribution 4. License. Supplement of The influence

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Growth of continental plateaus by channel injection: models designed to address constraints and thermomechanical consistency

Growth of continental plateaus by channel injection: models designed to address constraints and thermomechanical consistency Growth of continental plateaus by channel injection: models designed to address constraints and thermomechanical consistency S. MEDVEDEV,,3 & C. BEAUMONT Department of Oceanography, Dalhousie University,

More information

Conjugate Passive Margins Studies Focusing on Continental Breakup and Development of Microcontinents

Conjugate Passive Margins Studies Focusing on Continental Breakup and Development of Microcontinents A literature survey on Conjugate Passive Margins Studies Focusing on Continental Breakup and Development of Microcontinents Sudipta Tapan Sinha Research candidate Masaryk University, Brno Under the supervision

More information

Geodynamics. Climatic, geomorphic and geodynamic processes Lecture Orogenic wedges. Lecturer: David Whipp

Geodynamics. Climatic, geomorphic and geodynamic processes Lecture Orogenic wedges. Lecturer: David Whipp Geodynamics Climatic, geomorphic and geodynamic processes Lecture 13.3 - Orogenic wedges Lecturer: David Whipp david.whipp@helsinki.fi Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Introduce

More information

Long-term survival of the axial valley morphology at abandoned slow-spreading centers

Long-term survival of the axial valley morphology at abandoned slow-spreading centers Long-term survival of the axial valley morphology at abandoned slow-spreading centers Andrew M. Freed Department of Geosciences, University of Arizona, Tucson, Arizona 85721 Jian Lin Peter R. Shaw Woods

More information

How rigid is Europe s lithosphere?

How rigid is Europe s lithosphere? GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L16303, doi:10.1029/2009gl039229, 2009 How rigid is Europe s lithosphere? Magdala Tesauro, 1,2 Mikhail K. Kaban, 2,3 and Sierd A. P. L. Cloetingh 1 Received 21 May

More information

The Earth s Structure from Travel Times

The Earth s Structure from Travel Times from Travel Times Spherically symmetric structure: PREM - Crustal Structure - Upper Mantle structure Phase transitions Anisotropy - Lower Mantle Structure D D - Structure of of the Outer and Inner Core

More information

Earthquakes. Earthquakes are caused by a sudden release of energy

Earthquakes. Earthquakes are caused by a sudden release of energy Earthquakes Earthquakes are caused by a sudden release of energy The amount of energy released determines the magnitude of the earthquake Seismic waves carry the energy away from its origin Fig. 18.1 Origin

More information

Dynamic models of continental rifting with melt generation

Dynamic models of continental rifting with melt generation Dynamic models of continental rifting with melt generation Harro Schmeling Goethe University, Institute of Earth Sciences, Frankfurt, Germany, Altenhöferallee 1, 60438 Frankfurt, schmeling@geophysik.uni-frankfurt.de

More information

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 5 Rheology Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise Rheology is... the study of deformation and flow of

More information

Dynamics of the Lithosphere

Dynamics of the Lithosphere Chapter 12 Dynamics of the Lithosphere In this chapter we study how the lithosphere deforms in response to external forces, and how factors such as the thermal regime and lithology affect the deformation.

More information

IV OTHER TYPES OF BASINS

IV OTHER TYPES OF BASINS IV OTHER TYPES OF BASINS 1-Strike-slip basins 2-Cratonic basins 3 Late orogenic basins and more 1 Tectonic setting of strike-slip faulting Woodcock 1986 2 Seismic examples of stike-slip faults «!Flower

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-304 Review Questions 4, 6, 7, 10, 12, 15, 18, 20 FINAL EXAM NOON TO 2 PM, TUESDAY DEC. 5 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

OCN 201: Seafloor Spreading and Plate Tectonics I

OCN 201: Seafloor Spreading and Plate Tectonics I OCN 201: Seafloor Spreading and Plate Tectonics I Revival of Continental Drift Theory Kiyoo Wadati (1935) speculated that earthquakes and volcanoes may be associated with continental drift. Hugo Benioff

More information

Three-dimensional numerical simulations of thermo-chemical multiphase convection in Earth s mantle Takashi Nakagawa a, Paul J.

Three-dimensional numerical simulations of thermo-chemical multiphase convection in Earth s mantle Takashi Nakagawa a, Paul J. Three-dimensional numerical simulations of thermo-chemical multiphase convection in Earth s mantle Takashi Nakagawa a, Paul J. Tackley b a Department of Earth and Planetary Sciences, University of Tokyo,

More information

Géométrie et cinématique du réseau de failles normales à Corinthe : les controverses

Géométrie et cinématique du réseau de failles normales à Corinthe : les controverses Géométrie et cinématique du réseau de failles normales à Corinthe : les controverses Ford, M. (1,2), C. Le Carlier (1),S. Rohais, S. (3), S. Bourlange (1,2), D. Jousselin (1,2), A. Girard (2) (1) Centre

More information

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault. Strike-Slip Faults! Fault motion is parallel to the strike of the fault.! Usually vertical, no hanging-wall/footwall blocks.! Classified by the relative sense of motion. " Right lateral opposite block

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

TS Tectonics & Structural Geology Orals and PICOs Monday, 08 April

TS Tectonics & Structural Geology Orals and PICOs Monday, 08 April TS Tectonics & Structural Geology Orals and PICOs Monday, 08 April MO1, 08:30 10:00 MO2, 10:30 12:00 MOL, 12:15 13:15 MO3, 13:30 15:00 MO4, 15:30 17:00 GD3.3/GM3.3/GMPV16/TS4.7, The evolution of plate

More information

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions Seismotectonics of intraplate oceanic regions Thermal model Strength envelopes Plate forces Seismicity distributions Cooling of oceanic lithosphere also increases rock strength and seismic velocity. Thus

More information

The influence of short wavelength variations in viscosity on subduction dynamics

The influence of short wavelength variations in viscosity on subduction dynamics 1 Introduction Deformation within the earth, driven by mantle convection due primarily to cooling and subduction of oceanic lithosphere, is expressed at every length scale in various geophysical observations.

More information

Rheology: What is it?

Rheology: What is it? Schedule Rheology basics Viscous, elastic and plastic Creep processes Flow laws Yielding mechanisms Deformation maps Yield strength envelopes Constraints on the rheology from the laboratory, geology, geophysics

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

11.1 Rock Deformation

11.1 Rock Deformation Tarbuck Lutgens Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock

More information

Crustal rheology and seismicity in the Gibraltar Arc (western Mediterranean)

Crustal rheology and seismicity in the Gibraltar Arc (western Mediterranean) TECTONICS, VOL. 27,, doi:10.1029/2007tc002192, 2008 Crustal rheology and seismicity in the Gibraltar Arc (western Mediterranean) F. Fernández-Ibáñez 1,2 and J. I. Soto 1 Received 2 August 2007; revised

More information

L.O: THE CRUST USE REFERENCE TABLE PAGE 10

L.O: THE CRUST USE REFERENCE TABLE PAGE 10 USE REFERENCE TABLE PAGE 10 1. The oceanic crust is thought to be composed mainly of A) granite B) sandstone C) basalt D) rhyolite 2. To get sample material from the mantle, drilling will be done through

More information

Q. What is the hypothesis of continental drift? Q. What are the evidences that used to support this hypothesis?

Q. What is the hypothesis of continental drift? Q. What are the evidences that used to support this hypothesis? Q & A 1 Q. What is the hypothesis of continental drift? - That there was a supercontinent called Pangaea that began to break apart about 200 Ma, this was proposed by Alfred Wegener in 1912. Q. What are

More information

SCIENCE CHINA Earth Sciences

SCIENCE CHINA Earth Sciences SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2011 Vol.54 No.9: 1386 1393 doi: 10.1007/s11430-011-4177-2 Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications

More information

Benjamin Huet, Laetitia Le Pourhiet, Loic Labrousse, Evgenii Burov, Laurent Jolivet. To cite this version:

Benjamin Huet, Laetitia Le Pourhiet, Loic Labrousse, Evgenii Burov, Laurent Jolivet. To cite this version: Post-orogenic extension and metamorphic core complexes in a heterogeneous crust: the role of crustal layering inherited from collision. Application to the Cyclades (Aegean domain) Benjamin Huet, Laetitia

More information

Chapter 1. The Science of Historical Geology

Chapter 1. The Science of Historical Geology Chapter 1 The Science of Historical Geology Geology Geology is the study of the Earth. Two major branches of geology: Physical Geology - deals with Earth materials and processes Historical Geology - deals

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Lithospheric Extension on Icy Satellites

Lithospheric Extension on Icy Satellites Lithospheric Extension on Icy Satellites GEOL394H: Geology Honors Senior Thesis Project 29 April 2011 James T. Keane Undergraduate: Departments of Geology, Astronomy & Physics, University of Maryland,

More information

Supplement of Pinch and swell structures: evidence for strain localisation by brittle viscous behaviour in the middle crust

Supplement of Pinch and swell structures: evidence for strain localisation by brittle viscous behaviour in the middle crust Supplement of Solid Earth, 6, 1045 1061, 2015 http://www.solid-earth.net/6/1045/2015/ doi:10.5194/se-6-1045-2015-supplement Author(s) 2015. CC Attribution 3.0 License. Supplement of Pinch and swell structures:

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 10, Number 11 26 November 2009 Q11015, doi: ISSN: 1525-2027 Click Here for Full Article

More information

LAB Exercise #10 What controls rheology?

LAB Exercise #10 What controls rheology? LAB Exercise #10 What controls rheology? Based on lab exercise developed by Dyanna Czeck Exercises are in two parts. The Lab exercise is to be completed and submitted today. The Homework Problems are Due

More information

A gravity model of the North Eurasia crust and upper mantle. 3. Stress state of the lithosphere induced by density inhomogeneities

A gravity model of the North Eurasia crust and upper mantle. 3. Stress state of the lithosphere induced by density inhomogeneities RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 6, NO. 2, PAGES 95 103, JULY 2004 A gravity model of the North Eurasia crust and upper mantle. 3. Stress state of the lithosphere induced by density inhomogeneities

More information

Captain s Tryouts 2017

Captain s Tryouts 2017 Captain s Tryouts 2017 Dynamic Planet Test Written by: Araneesh Pratap (Chattahoochee High School) Name: Date: Answer all questions on the answer sheet. Point values are given next to each question or

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-294 FINAL EXAM 8 to 10 AM, THURSDAY DEC. 6 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW QUESTIONS BEFORE THE TEST, PICK UP WHEN YOU

More information

Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko. G. Bertotti - TUDelft

Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko. G. Bertotti - TUDelft Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko G. Bertotti - TUDelft Moving continents Continent with matching boundaries Same fauna in different continents Similar

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Mode of crustal extension determined by rheological layering

Mode of crustal extension determined by rheological layering Earth and Planetary Science Letters 236 (2005) 120 134 www.elsevier.com/locate/epsl Mode of crustal extension determined by rheological layering Chris Wijns a,b, *,1, Roberto Weinberg c,2, Klaus Gessner

More information

Accelerated extension of Tibet linked to the northward underthrusting of Indian crust

Accelerated extension of Tibet linked to the northward underthrusting of Indian crust Accelerated extension of Tibet linked to the northward underthrusting of Indian crust Richard Styron*, Michael Taylor, and Kurt Sundell richard.h.styron@gmail.com DOI: 1.138/NGEO2336 Methods summary The

More information

Earth s Interior and Geophysical Properties. Chapter 13

Earth s Interior and Geophysical Properties. Chapter 13 Earth s Interior and Geophysical Properties Chapter 13 Introduction Can we just go there? Deep interior of the Earth must be studied indirectly Direct access only to crustal rocks and upper mantle fragments

More information

Rheology and the Lithosphere

Rheology and the Lithosphere Rheology and the Lithosphere Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 3/8/2017 16:51 We Discuss Rheology and the Lithosphere What is rheology?

More information

Whole Earth Structure and Plate Tectonics

Whole Earth Structure and Plate Tectonics Whole Earth Structure and Plate Tectonics Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 4/5/2017 14:45 We Discuss Whole Earth Structure and Plate

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

TS Tectonics & Structural Geology Orals Monday, 28 April

TS Tectonics & Structural Geology Orals Monday, 28 April TS Tectonics & Structural Geology Orals Monday, 28 April MO1, 08:30 10:00 MO2, 10:30 12:00 MOL, 12:15 13:15 MO3, 13:30 15:00 MO4, 15:30 17:00 GD3.2/TS9.7, Recent advances in computational geodynamics (co-organized),

More information

On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults

On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults Geophys. J. Int. (2001) 147, 155 162 On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults J. Vergne, 1 R. Cattin 2 and J. P. Avouac 1,2 1 Laboratoire

More information

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults Excerpt from the Proceedings of the COMSOL Conference 2008 Boston Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults Emily C Roland *1, Mark Behn,2 and Greg Hirth 3 1 MIT/WHOI

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

Development of volcanic passive margins: Three-dimensional laboratory models

Development of volcanic passive margins: Three-dimensional laboratory models TECTONICS, VOL. 21, NO. 6, 1052, doi:10.1029/2001tc901019, 2002 Development of volcanic passive margins: Three-dimensional laboratory models Jean-Paul Callot 1 Laboratoire de Géologie, UMR 8538 CNRS, Ecole

More information

SUPPLEMENTARY INFORMATION ON NUMERICAL MODELLING APPROACH

SUPPLEMENTARY INFORMATION ON NUMERICAL MODELLING APPROACH 1 GSA DATA REPOSITORY 2011201 Butler et al. SUPPLEMENTARY INFORMATION ON NUMERICAL MODELLING APPROACH The present models employ the same numerical approach and philosophy used in our most recent work.

More information

Whole Earth Geophysics. Robert J. Lillie

Whole Earth Geophysics. Robert J. Lillie Whole Earth Geophysics Robert J. Lillie 1 - Geophysical techniques provide information on the internal structure and tectonics development of the earth. - Some of the geophysical methods are: refraction,

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Tectonophysics. E.B. Burov. Contents lists available at ScienceDirect. journal homepage: 1.

Tectonophysics. E.B. Burov. Contents lists available at ScienceDirect. journal homepage:   1. Tectonophysics 484 (2010) 4 26 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto The equivalent elastic thickness (T e ), seismicity and the long-term

More information

Tectonic landforms. Global distribution Extension. Compression. Strike-slip faults Outlook: Implications for geophysics

Tectonic landforms. Global distribution Extension. Compression. Strike-slip faults Outlook: Implications for geophysics Tectonic landforms Global distribution Extension Long and narrow graben ( simple grabens ) Complex graben systems ( rifts ) Compression Wrinkle ridges Lobate scarps Strike-slip faults Outlook: Implications

More information

block tectonics on Venus

block tectonics on Venus block tectonics on Venus p a u l b y r n e r i c h a r d g h a i l a. m. c e l â l s e n g ö r c h r i s t i a n k l i m c z a k r e b e c c a h a h n s e a n s o l o m o n VEXAG meeting #15 byrne et al.

More information

Plate Boundaries & Resulting Landforms

Plate Boundaries & Resulting Landforms Plate Boundaries & Resulting Landforms Divergent Plate Boundaries (plates being pulled apart) Type: oceanic plates Description: rising magma gently lifts the crust creating a ridge. The flow of convection

More information

Dynamics of outer-rise faulting in oceanic-continental subduction systems

Dynamics of outer-rise faulting in oceanic-continental subduction systems Article Volume 14, Number 7 29 July 2013 doi: ISSN: 1525-2027 Dynamics of outer-rise faulting in oceanic-continental subduction systems John B. Naliboff Department of Geology, University of California,

More information

Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere

Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere Alain Vauchez, Andrea Tommasi, Guilhem Barruol To cite this version: Alain Vauchez, Andrea Tommasi, Guilhem

More information

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms.

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Chapter 10 Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Reading Strategy Previewing Before you read the section,

More information

Geo736: Seismicity along mid-ocean ridges

Geo736: Seismicity along mid-ocean ridges Geo736: Seismicity along mid-ocean ridges Course Notes: S. G. Wesnousky Spring 2018 Bathymetric maps show the ocean basins of the world are characteristically divided by a bathymetric ridge. The bathymetric

More information

Gravity influenced brittle-ductile deformation and growth faulting in the lithosphere during collision: Results from laboratory experiments

Gravity influenced brittle-ductile deformation and growth faulting in the lithosphere during collision: Results from laboratory experiments Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jb005560, 2008 Gravity influenced brittle-ductile deformation and growth faulting in the lithosphere during collision:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature09988 1. Supplementary Figure and Information on the Iberia- Newfoundland conjugate margin system Figure A1. The Iberia - Newfoundland conjugate margin system

More information

Seismic Discontinuity #1 9/25/2009. Important Seismic Discontinuities. Important Properties of Seismic Waves. Important Properties of Seismic Waves

Seismic Discontinuity #1 9/25/2009. Important Seismic Discontinuities. Important Properties of Seismic Waves. Important Properties of Seismic Waves Important Properties of Seismic Waves P-waves Move through solids and liquids S-Waves Move through solids only Relative Velocities: P-waves are fastest S-waves are second fastest Surface waves are slowest

More information

Please be sure to look over the study guides for the midterms, and your review questions and the keys for those (from the course webpages).

Please be sure to look over the study guides for the midterms, and your review questions and the keys for those (from the course webpages). Earth Science 104 Study Guide Final Exam Please be sure to look over the study guides for the midterms, and your review questions and the keys for those (from the course webpages). Vocabulary A a Accretionary

More information

What is the LAB Dynamically: Lithosphere and Asthenosphere Rheology from Post-loading Deformation

What is the LAB Dynamically: Lithosphere and Asthenosphere Rheology from Post-loading Deformation What is the LAB Dynamically: Lithosphere and Asthenosphere Rheology from Post-loading Deformation Roland Bürgmann, UC Berkeley With contributions by Pascal Audet, Daula Chandrasekhar, Georg Dresen, Andy

More information

GD3.3/GM3.3/GMPV16/TS4.7

GD3.3/GM3.3/GMPV16/TS4.7 GD Geodynamics Orals and PICOs MO1, 08:30 10:00 MO2, 10:30 12:00 MO3, 13:30 15:00 MO4, 15:30 17:00 TU1, 08:30 10:00 TU2, 10:30 12:00 TU3, 13:30 15:00 Monday, 08 April Medal Lecture) (co-organized), 08:30

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

Rheological modelling and deformation instability of lithosphere under extension

Rheological modelling and deformation instability of lithosphere under extension Geophysical Journal (1988) 93, 85-5 Rheological modelling and deformation instability of lithosphere under extension Gianna Bassi and Jean Bonnin Laboratoire de Giodynamique, Institut de Physique du Globe,

More information

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea:

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea: Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # A. Viscosity Group # B. Dissolved Gases Group # II. Volcanic Material

More information

Learning Objectives (LO) What we ll learn today:!

Learning Objectives (LO) What we ll learn today:! Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl041835, 2010 Seismic structure of the Longmen Shan region from S wave tomography and its relationship with the Wenchuan

More information