Strain-dependent strength profiles Implication of planetary tectonics

Size: px
Start display at page:

Download "Strain-dependent strength profiles Implication of planetary tectonics"

Transcription

1 Strain-dependent strength profiles Implication of planetary tectonics Laurent G.J. Montési 1 Frederic Gueydan 2, Jacques Précigout 3 1 University of Maryland 2 Université de Montpellier 2, 3 Université d Orléans

2 Plate Tectonics: Only on Earth! Grand challenge problem in Solid Earth Sciences (NAS report, 2008) Affects planetary evolution, atmosphere, life? Earth Venus

3 Extension on Earth and Venus Main Ethiopian Rift Devana Chasma

4 Shortening on Earth and Venus Sierra Pampaneas Yalyane Dorsa

5 Strength envelopes (classical) Brittle failure Depends on pressure Arbitrary strength limit Ductile creep Depends on Temperature Depends on Strain rate Melosh, 2011

6 A plate tectonic recipe Vigorous convection Weak deformation zones Weakened arbitrarily What mechanism weakens plate boundaries? Which mechanisms are active only on Earth Is the strength all that is needed? 11/21/2014 O Neill College de et France al.,

7 Coef cient of friction F a ult cor e Weakness of Complex V brittle faults L2 Fault rocks contain weak minerals (smectite, talc and minor chlorite). Complex I L3 2 m Low friction results from slip on a network of weak phyllosilicaterich surfaces that define the rock fabric L2 powder L3 powder L2 fault rock L3 fault rock L2 fault rock, wet Normal stress (MPa) 11/21/2014 Collettini et al., 2009 College de France 2014

8 Which level is weak? Low yield strength of the lithosphere Solomatov (2004): <~3MPa Low brittle strength Friction coefficient of 0.15 (O Neill et al. 2007) Serpentine? (Moore et al., 2007) High pore fluid pressure Low ductile strength Necessary to reconcile low coefficient of friction and depth to brittle-ductile transition Ductile shear zones

9 The San Andreas Fault at depth? Brittle failure Need fluids and/or serpentine Ductile failure In the mantle when dis-gbs is possible (T<700 C) In the crust in presence of phillosilicates (T<500 C) Brittle: earthquakes Fabric transition High strength Grain size reduction: silent? 11/21/2014 Gueydan et al., 2014 College de France 2014

10 Ductile shear zone structure Requires change in state or environment Temperature Grain size Interconnection of weak phase Abundance of weak phase Composition (metamorphism, melt) Protolith L-S tectonites, South Armorican Shear Zone F. Gueydan, personal communication, 2006

11 Fabric and rheology Protolith (uniform strain) Shear zone (uniform stress) Strength controlled by strong phase Strength controlled by weak phase

12 Grain Size Reduction Mylonite in oceanic peridotite, Shaka Fracture zone Shear direction 11/21/2014 Warren College and de Hirth, France

13 Shear zone development In the crust: Weak phase interconnection if phyllosilicates CRUSTAL SHEAR ZONES (g=2.3) Strain T=300 C T=400 C T=500 C Viscosity 100 km Strain In the mantle: grain size reduction if dis-gbs MANTLE SHEAR ZONES (g=2.3) Strain T=600 C T=700 C Viscosity (Pa.s) T=800 C Viscosity 100 km Strain /21/2014 Gueydan et al., 2014 College de France 2014

14 Final weakening 11/21/2014 Gueydan College et de al., France 2014

15 Strain-dependent strength envelopes 11/21/2014 Gueydan et al., 2014 College de France 2014

16 Oceanic lithosphere Crust: mostly brittle Hydrated minerals and high pore fluid pressure In the mantle Dis-GBS starts essentially at zero age Older lithosphere has a thicker localizing mantle Melt embrittlement? Thermal structure from McKenzie et al., EPSL 2005

17 Venus Mantle Crust Dis-GBS possible if low enough geotherm / thin crust 15 K/km: 22km 10 K/km: 34 km thick High surface temperature, no water: no phyllosilicates Shallow brittle failure More important in extension Crustal thickness from James et al., 2013

18 Localization easier in extension Deeper brittle layer => larger fault offsets Possibility of melting => melt weakening and melt embrittlement Geometrical effects (stress focusing)

19 Mars Mantle: Dis-GBS if low enough heat flux/ thin crust 30km crust (lowlands): 100 mw/m 2 60km crust (highlands): 50 mw/m 2 Crust: Water likely: brittle weakening Mafic composition does not favor phyllosilicates at depth: no layering effect 11/21/2014 Montési College and Zuber, de France

20 Localization in planetary lithospheres Earth continents Earth Oceans Mars Venus ~30 km

21 Convection and tectonics Bottom-driven tectonics Edge-driven tectonics Phillips and Hansen, 1998 Schmerr, 2012

22 Bottom-driven tectonics Need high basal stress: convection reaches the brittle-ductile transition Need ductile layer for accommodation of shear zones 11/21/2014 Montési, LPSC 2013 College de France 2014

23 Buoyancy-driven tectonics Continent spreading (Earth s Archean) Less efficient on Mars Rey et al., 2014 Upwellings (Beta Regio, East African Rift?) Montési, LPSC 11/21/ College de France 2014

24 Summary The strength of the lithosphere changes with strain Layering in brittle regime or in presence of micas Grain size reduction in presence of dis-gbs creep Strength profile compared to the Earth Mars is similar to Earth s continents Venus is dominated by brittle localization unless low heat flux Issue of driving forces Bottom stresses are inefficient to drive tectonics Continents dominated by buoyancy-driven flows? Buoyancy less efficient on Mars Understanding Earth textbook

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10 Lecture 2: Deformation in the crust and the mantle Read KK&V chapter 2.10 Tectonic plates What are the structure and composi1on of tectonic plates? Crust, mantle, and lithosphere Crust relatively light

More information

Thermal-Mechanical Behavior of Oceanic Transform Faults

Thermal-Mechanical Behavior of Oceanic Transform Faults Presented at the COMSOL Conference 2008 Boston Thermal-Mechanical Behavior of Oceanic Transform Faults COMSOL Conference - Boston, Massachusetts October 2008 Emily C. Roland - MIT/WHOI Joint Program Mark

More information

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults Excerpt from the Proceedings of the COMSOL Conference 2008 Boston Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults Emily C Roland *1, Mark Behn,2 and Greg Hirth 3 1 MIT/WHOI

More information

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth. Global Tectonics Kearey, Philip ISBN-13: 9781405107778 Table of Contents Preface. Acknowledgments. 1. Historical perspective. 1.1 Continental drift. 1.2 Sea floor spreading and the birth of plate tectonics.

More information

A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements

A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L15S13, doi:10.1029/2004gl019521, 2004 A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements Jean Chéry Laboratoire Dynamique de la

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

Earthquakes. Earthquakes are caused by a sudden release of energy

Earthquakes. Earthquakes are caused by a sudden release of energy Earthquakes Earthquakes are caused by a sudden release of energy The amount of energy released determines the magnitude of the earthquake Seismic waves carry the energy away from its origin Fig. 18.1 Origin

More information

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions Seismotectonics of intraplate oceanic regions Thermal model Strength envelopes Plate forces Seismicity distributions Cooling of oceanic lithosphere also increases rock strength and seismic velocity. Thus

More information

Seismic and flexure constraints on lithospheric rheology and their dynamic implications

Seismic and flexure constraints on lithospheric rheology and their dynamic implications Seismic and flexure constraints on lithospheric rheology and their dynamic implications Shijie Zhong Dept. of Physics, University of Colorado Boulder, Colorado, USA Acknowledgement: A. B. Watts Dept. of

More information

Summary and Conclusions

Summary and Conclusions Chapter 9 Summary and Conclusions 9.1 Summary The contents of this thesis revolve around the question of what type of geodynamics was active in the Early Earth and other terrestrial planets. The geology

More information

Plate Tectonics Notes

Plate Tectonics Notes Plate Tectonics Notes Last 30 Days Earthquakes Physical Features Last 30 Days Earthquakes with Plate Boundaries Earth s Structure Earth s Layers Core: Inner Core: Center of the earth, solid ball of metal

More information

Important information from Chapter 1

Important information from Chapter 1 Important information from Chapter 1 Distinguish between: Natural hazard // Disaster // Catastrophe What role does human population play in these categories? Know how to read a Hazard Map, such as Figure

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary information: Our 1080 km x 360 km model setup includes a 7 km thick oceanic crust adjacent to a 60 km thick, 250 km wide orogenic crust. Both the oceanic and the

More information

On the mechanical origin of two-wavelength tectonics on Ganymede

On the mechanical origin of two-wavelength tectonics on Ganymede On the mechanical origin of two-wavelength tectonics on Ganymede Laurent G.J. Montési Woods Hole Oceanographic Institution Geoffrey C. Collins Wheaton College Overview Tectonic Wavelengths Fault spacing

More information

Generation of plate tectonics from grain to global scale. David Bercovici Yale University 50 Years of Plate Tectconics, College de France

Generation of plate tectonics from grain to global scale. David Bercovici Yale University 50 Years of Plate Tectconics, College de France Generation of plate tectonics from grain to global scale David Bercovici Yale University 50 Years of Plate Tectconics, College de France Collaborators Elvira Mulyukova Yale Elvira Mulyukova Yale Phil Skemer

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Structure of the Earth and the Origin of Magmas

Structure of the Earth and the Origin of Magmas Page 1 of 12 EENS 2120 Petrology Tulane University Prof. Stephen A. Nelson Structure of the Earth and the Origin of Magmas This document last updated on 23-Jan-2015 Magmas do not form everywhere beneath

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Lithospheric Rheology and Stress, Dynamics of Plate Tectonics, and Long-wavelength Mantle Convection

Lithospheric Rheology and Stress, Dynamics of Plate Tectonics, and Long-wavelength Mantle Convection Lithospheric Rheology and Stress, Dynamics of Plate Tectonics, and Long-wavelength Mantle Convection Shijie Zhong and Xi Liu Dept. of Physics, University of Colorado Boulder, Colorado, USA A. B. Watts,

More information

Captain s Tryouts 2017

Captain s Tryouts 2017 Captain s Tryouts 2017 Dynamic Planet Test Written by: Araneesh Pratap (Chattahoochee High School) Name: Date: Answer all questions on the answer sheet. Point values are given next to each question or

More information

Plate Tectonics and the cycling of Earth materials

Plate Tectonics and the cycling of Earth materials Plate Tectonics and the cycling of Earth materials Plate tectonics drives the rock cycle: the movement of rocks (and the minerals that comprise them, and the chemical elements that comprise them) from

More information

Beall et al., 2018, Formation of cratonic lithosphere during the initiation of plate tectonics: Geology, https://doi.org/ /g

Beall et al., 2018, Formation of cratonic lithosphere during the initiation of plate tectonics: Geology, https://doi.org/ /g GSA Data Repository 2018160 Beall et al., 2018, Formation of cratonic lithosphere during the initiation of plate tectonics: Geology, https://doi.org/10.1130/g39943.1. Numerical Modeling Methodology Stokes

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA Naam Studentnummer... Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA Do not forget to put your name and student number on each of the question and answer sheets and to return both of

More information

Layer Composition Thickness State of Matter

Layer Composition Thickness State of Matter Unit 4.2 Test Review Earth and Its Layers 1. Label the layers of the earth. oceanic crust continental crust lithosphere asthenosphere mantle outer core inner core 2. Complete the Following Table about

More information

Dynamic analysis. 1. Force and stress

Dynamic analysis. 1. Force and stress Dynamic analysis 1. Force and stress Dynamics is the part of structural geology that involves energy, force, stress, and strength. It's very important to distinguish dynamic concepts from kinematic ones.

More information

1. What is Wegener s theory of continental drift? 2. What were the 4 evidences supporting his theory? 3. Why wasn t Wegener s theory excepted?

1. What is Wegener s theory of continental drift? 2. What were the 4 evidences supporting his theory? 3. Why wasn t Wegener s theory excepted? Notebook 7a and 7b Objective (left-side): Students will be able to explain the theory of plate tectonics and be able to make predictions about plate interactions. Mapping Reflection 1. What is Wegener

More information

Geodynamics Lecture 7 Heat conduction and production

Geodynamics Lecture 7 Heat conduction and production Geodynamics Lecture 7 Heat conduction and production Lecturer: David Whipp david.whipp@helsinki.fi 23.9.2014 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Gain a conceptual and mathematical

More information

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust Tectonics Planets, Moons & Rings 9/11/13 movements of the planet s crust Planetary History Planets formed HOT Denser materials fall to center Planet cools by conduction, convection, radiation to space

More information

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Rheology III Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Ideal materials fall into one of the following categories:

More information

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS OBJECTIVES: I. Understand the three basic types of tectonic interactions that can occur II. Identify tectonic interactions on other planets MATERIALS:

More information

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) -

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) - Constitution of Magmas Magmas Best, Ch. 8 Hot molten rock T = 700-1200 degrees C Composed of ions or complexes Phase Homogeneous Separable part of the system With an interface Composition Most components

More information

The Theory of Plate Tectonics

The Theory of Plate Tectonics Plate Tectonics Objectives Describe how plates move. Explain the features of plate tectonics. Describe the types of plate boundaries and the features that can form and events that can occur at each. The

More information

Supplementary information on the West African margin

Supplementary information on the West African margin Huismans and Beaumont 1 Data repository Supplementary information on the West African margin Interpreted seismic cross-sections of the north Angolan to south Gabon west African passive margins 1-3, including

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

Lecture 2: Causes of metamorphism

Lecture 2: Causes of metamorphism Lecture 2: Causes of metamorphism Metamorphism refers to a suite of processes that change the mineralogy, composition and texture of pre-existing materials this is a broad definition and certain industrial

More information

Plate Tectonics. Why Continents and Ocean Basins Exist

Plate Tectonics. Why Continents and Ocean Basins Exist Plate Tectonics Plate Tectonics Why Continents and Ocean Basins Exist Topics Density Structure of Earth Isostasy Sea-Floor Spreading Mechanical Structure of Earth Driving Mechanism of Plate Tectonics Lithospheric

More information

Elizabeth H. Hearn modified from W. Behr

Elizabeth H. Hearn modified from W. Behr Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones Elizabeth H. Hearn hearn.liz@gmail.com modified

More information

The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting The Mechanics of Earthquakes and Faulting Christopher H. Scholz Lamont-Doherty Geological Observatory and Department of Earth and Environmental Sciences, Columbia University 2nd edition CAMBRIDGE UNIVERSITY

More information

Topics. Magma Ascent and Emplacement. Magma Generation. Magma Rise. Energy Sources. Instabilities. How does magma ascend? How do dikes form?

Topics. Magma Ascent and Emplacement. Magma Generation. Magma Rise. Energy Sources. Instabilities. How does magma ascend? How do dikes form? Magma Ascent and Emplacement Reading: Encyclopedia of Volcanoes: Physical Properties of Magmas (pp. 171-190) Magma Chambers (pp. 191-206) Plumbing Systems (pp. 219-236) Magma ascent at shallow levels (pp.237-249)

More information

PLATE TECTONIC PROCESSES

PLATE TECTONIC PROCESSES Lab 9 Name Sec PLATE TECTONIC PROCESSES 1. Fill in the blank spaces on the chart with the correct answers. Refer to figures 2.3, 2.4 p.33 (2.2 and 2.3 on p. 23) as needed. 2. With your knowledge of different

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Strain weakening enables continental plate tectonics

Strain weakening enables continental plate tectonics Strain weakening enables continental plate tectonics Frédéric Gueydan, Jacques Précigout, Laurent G.J. Montesi To cite this version: Frédéric Gueydan, Jacques Précigout, Laurent G.J. Montesi. Strain weakening

More information

PLANETARY TECTONICS. Edited by THOMAS R. WATTERS Smithsonian Institution, Washington, DC. RICHARD A. SCHULTZ University of Nevada, Reno

PLANETARY TECTONICS. Edited by THOMAS R. WATTERS Smithsonian Institution, Washington, DC. RICHARD A. SCHULTZ University of Nevada, Reno PLANETARY TECTONICS Edited by THOMAS R. WATTERS Smithsonian Institution, Washington, DC RICHARD A. SCHULTZ University of Nevada, Reno cambridge university press Cambridge, New York, Melbourne, Madrid,

More information

3. PLATE TECTONICS LAST NAME (ALL IN CAPS): FIRST NAME: PLATES

3. PLATE TECTONICS LAST NAME (ALL IN CAPS): FIRST NAME: PLATES LAST NAME (ALL IN CAPS): FIRST NAME: PLATES 3. PLATE TECTONICS The outer layers of the Earth are divided into the lithosphere and asthenosphere. The division is based on differences in mechanical properties

More information

Plate Tectonics. Why Continents and Ocean Basins Exist

Plate Tectonics. Why Continents and Ocean Basins Exist Plate Tectonics Why Continents and Ocean Basins Exist Topics Density Structure of Earth Isostasy Sea-Floor Spreading Mechanical Structure of Earth Driving Mechanism of Plate Tectonics Lithospheric Plate

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

Announcements. Manganese nodule distribution

Announcements. Manganese nodule distribution Announcements Lithospheric plates not as brittle as previously thought ESCI 322 Meet in Env. Studies Bldg Rm 60 at 1 PM on Tuesday One week (Thursday): Quiz on Booth 1994 and discussion. (Lots of odd terms

More information

Marine Geophysics. Plate tectonics. Dept. of Marine Sciences, Ocean College, Zhejiang University. Nov. 8, 2016

Marine Geophysics. Plate tectonics. Dept. of Marine Sciences, Ocean College, Zhejiang University. Nov. 8, 2016 Marine Geophysics Plate tectonics 何小波 Dept. of Marine Sciences, Ocean College, Zhejiang University Nov. 8, 2016 Ocean College (ZJU) Plate tectonics xbhe@zju.edu.cn 1 / 1 Mantle flow and Plate tectonics

More information

Convergent plate boundary.

Convergent plate boundary. Crustal Deformation Convergent plate boundary http://my.execpc.com/~acmelasr/mountains/geogramsnf.html Plate Tectonic Settings and Magma Where plates CONVERGE, water is driven off the subducting plate,

More information

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes Earthquakes and Plate Tectonics Global Problems in Geology Distribution of Continents Mid-ocean Ridges Trenches Orogenic Belts Deformation Metamorphism Volcanism Earthquakes Development of Continental

More information

Evidence from the Surface. Chapter 02. Continental Drift. Fossil Evidence for Pangaea. Seafloor Spreading. Seafloor Spreading 1/31/2012

Evidence from the Surface. Chapter 02. Continental Drift. Fossil Evidence for Pangaea. Seafloor Spreading. Seafloor Spreading 1/31/2012 Evidence from the Surface Surface landforms Continental shelf and slope Abyssal Plane Mid-oceanic ridge Oceanic Trenches Chapter 02 Continental Drift Continental Drift - a hypothesis that the continents

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Types of Metamorphism!

Types of Metamorphism! Types of Metamorphism! The Types of Metamorphism 2 different approaches to classification 1. Based on principal process or agent Dynamic Metamorphism Thermal Metamorphism Dynamo-thermal Metamorphism The

More information

Earthquakes. Pt Reyes Station 1906

Earthquakes. Pt Reyes Station 1906 Earthquakes Pt Reyes Station 1906 Earthquakes Ground shaking caused by the sudden release of accumulated strain by an abrupt shift of rock along a fracture in the earth. You Live in Earthquake Country

More information

Rheology and the Lithosphere

Rheology and the Lithosphere Rheology and the Lithosphere Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 3/8/2017 16:51 We Discuss Rheology and the Lithosphere What is rheology?

More information

1. List the 3 main layers of Earth from the most dense to the least dense.

1. List the 3 main layers of Earth from the most dense to the least dense. 1. List the 3 main layers of Earth from the most dense to the least dense. 2. List the 6 layers of earth based on their physical properties from the least dense to the most dense. 3. The thinnest layer

More information

Composition of the earth, Geologic Time, and Plate Tectonics

Composition of the earth, Geologic Time, and Plate Tectonics Composition of the earth, Geologic Time, and Plate Tectonics Layers of the earth Chemical vs. Mechanical Chemical : Mechanical: 1) Core: Ni and Fe 2) Mantle: Mostly Peridotite 3) Crust: Many different

More information

Plate Tectonics. Theory of Plate Tectonics. What is Plate Tectonics. Plate Tectonics Plate Boundaries Causes of Plate Tectonics

Plate Tectonics. Theory of Plate Tectonics. What is Plate Tectonics. Plate Tectonics Plate Boundaries Causes of Plate Tectonics Theory of Plate Tectonics Plate Tectonics Plate Boundaries Causes of Plate Tectonics Plate Tectonics What is Plate Tectonics The Earth s crust and upper mantle are broken into sections called plates Plates

More information

Earth as a planet: Interior and Surface layers

Earth as a planet: Interior and Surface layers Earth as a planet: Interior and Surface layers Bibliographic material: Langmuir & Broecker (2012) How to build a habitable planet Internal structure of the Earth: Observational techniques Seismology Analysis

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity. San Andreas Fault Palmdale Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

More information

MAR110 Lecture #5 Plate Tectonics-Earthquakes

MAR110 Lecture #5 Plate Tectonics-Earthquakes 1 MAR110 Lecture #5 Plate Tectonics-Earthquakes Figure 5.0 Plate Formation & Subduction Destruction The formation of the ocean crust from magma that is upwelled into a pair of spreading centers. Pairs

More information

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:!

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! 1. List the three types of tectonic plate boundaries! 2. Describe the processes occurring

More information

Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface?

Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface? Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface? Remember The Lithosphere is made of The CRUST + The Upper Rigid Mantle Plates may be called by different

More information

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metamorphism What happens to rocks that are

More information

Practice Questions: Plate Tectonics

Practice Questions: Plate Tectonics Practice Questions: Plate Tectonics 1. Base your answer to the following question on The block diagram below shows the boundary between two tectonic plates. Which type of plate boundary is shown? A) divergent

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Continental Drift. Wegener theory that the crustal plates are moving and once were a super continent called Pangaea.

Continental Drift. Wegener theory that the crustal plates are moving and once were a super continent called Pangaea. PLATE TECTONICS WHAT IS TECTONICS? Tectonism is the faulting or folding or other deformation of the outer layer of a planet. It happens very slowly, on the scale of millions of years. Tectonic activity

More information

Q. What is the hypothesis of continental drift? Q. What are the evidences that used to support this hypothesis?

Q. What is the hypothesis of continental drift? Q. What are the evidences that used to support this hypothesis? Q & A 1 Q. What is the hypothesis of continental drift? - That there was a supercontinent called Pangaea that began to break apart about 200 Ma, this was proposed by Alfred Wegener in 1912. Q. What are

More information

Whole Earth Structure and Plate Tectonics

Whole Earth Structure and Plate Tectonics Whole Earth Structure and Plate Tectonics Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 4/5/2017 14:45 We Discuss Whole Earth Structure and Plate

More information

Modeling the interior dynamics of terrestrial planets

Modeling the interior dynamics of terrestrial planets Modeling the interior dynamics of terrestrial planets Paul J. Tackley, ETH Zürich Fabio Crameri, Tobias Keller, Marina Armann, Hein van Heck, Tobias Rolf Talk Plan Introduction Tectonic modes: plates,

More information

Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries

Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries What is the process by which oceanic crust sinks beneath a deep-ocean Why does oceanic crust sink beneath continental crust

More information

10. Paleomagnetism and Polar Wandering Curves.

10. Paleomagnetism and Polar Wandering Curves. Map of ocean floor Evidence in Support of the Theory of Plate Tectonics 10. Paleomagnetism and Polar Wandering Curves. The Earth's magnetic field behaves as if there were a bar magnet in the center of

More information

1. occurs when the oceanic crust slides under the continental crust.

1. occurs when the oceanic crust slides under the continental crust. 1. occurs when the oceanic crust slides under the continental crust. 2. What type of stress is shown? 3. Where two plates slide past one another is called a boundary. 4. What type of stress is shown? 5.

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

Geodynamics. Heat conduction and production Lecture Heat production. Lecturer: David Whipp

Geodynamics. Heat conduction and production Lecture Heat production. Lecturer: David Whipp Geodynamics Heat conduction and production Lecture 7.3 - Heat production Lecturer: David Whipp david.whipp@helsinki.fi Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Discuss radiogenic heat

More information

Earth s Interior StudyGuide

Earth s Interior StudyGuide Name Date Period Earth s Interior StudyGuide 1. The two main elements that make up the Earth s crust are and. 2. The Earth s inner core is made of solid and. 3. When one plates slides under another plate

More information

Structure and history of the Kern Canyon fault system: introduction and thesis overview

Structure and history of the Kern Canyon fault system: introduction and thesis overview 1 Chapter 1 Structure and history of the Kern Canyon fault system: introduction and thesis overview Exposures of fault zones from the surface to deep levels afford an opportunity to study the transition

More information

The Basics The lithosphere is made up of numerous plates (14 major, 38 minor)

The Basics The lithosphere is made up of numerous plates (14 major, 38 minor) The Basics The lithosphere is made up of numerous plates (14 major, 38 minor) These plates float atop the asthenosphere, where they can move (albeit very slowly) Plate tectonics describes the formation,

More information

material would flow extremely slowly similarly to a brittle material. The shear zone

material would flow extremely slowly similarly to a brittle material. The shear zone GSA DATA REPOSITORY 21468 Hayman and Lavier Supplementary model description: Lavier et al. (213) showed that formation or reactivation of mixed mode fractures in ductile shear zones might generate variations

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Isostasy and Tectonics Lab Understanding the Nature of Mobile Floating Lithospheric Plates

Isostasy and Tectonics Lab Understanding the Nature of Mobile Floating Lithospheric Plates Isostasy and Tectonics Lab Understanding the Nature of Mobile Floating Lithospheric Plates Crust Mantle Dynamics Introductory Geology Lab Ray Rector - Instructor Isostasy and Tectonics Laboratory Topics

More information

Mission to Mars! IS EARTH THE ONLY PLANET TO EXPERIENCE PLATE TECTONICS?

Mission to Mars! IS EARTH THE ONLY PLANET TO EXPERIENCE PLATE TECTONICS? Mission to Mars! IS EARTH THE ONLY PLANET TO EXPERIENCE PLATE TECTONICS? PLATE TECTONICS Earth s crust is split up into several tectonic plates which are constantly moving around (about the same speed

More information

OCN 201: Seafloor Spreading and Plate Tectonics I

OCN 201: Seafloor Spreading and Plate Tectonics I OCN 201: Seafloor Spreading and Plate Tectonics I Revival of Continental Drift Theory Kiyoo Wadati (1935) speculated that earthquakes and volcanoes may be associated with continental drift. Hugo Benioff

More information

Metamorphism. Bjørn Jamtveit

Metamorphism. Bjørn Jamtveit Metamorphism Bjørn Jamtveit Physics of Geological Processes, University of Oslo, P.O.Box 1048 Blindern, N-0316 Oslo, Norway E-mail: bjorn.jamtveit@geo.uio.no CHANGE According to Winkler (1979): Metamorphism

More information

Chapter 21: Metamorphism. Fresh basalt and weathered basalt

Chapter 21: Metamorphism. Fresh basalt and weathered basalt Chapter 21: Metamorphism Fresh basalt and weathered basalt Chapter 21: Metamorphism The IUGS-SCMR proposed this definition: Metamorphism is a subsolidus process leading to changes in mineralogy and/or

More information

The Earth. February 26, 2013

The Earth. February 26, 2013 The Earth February 26, 2013 The Planets 2 How long ago did the solar system form? Definition: Cosmic Rays High-energy particles that constantly bombard objects in space Mostly they are hydrogen nuclei

More information

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent Name: Date: Period: Plate Tectonics The Physical Setting: Earth Science CLASS NOTES Tectonic plates are constantly moving and interacting As they move across the asthenosphere and form plate boundaries

More information

Unit 4 Lesson 7 Mountain Building

Unit 4 Lesson 7 Mountain Building Indiana Standards 7.2.4 Explain how convection currents in the mantle cause lithospheric plates to move causing fast changes like earthquakes and volcanic eruptions, and slow changes like creation of mountains

More information

GEOL 321 Structural Geology and Tectonics

GEOL 321 Structural Geology and Tectonics GEOL 321 Structural Geology and Tectonics Geology 321 Structure and Tectonics will be given in Spring 2017. The course provides a general coverage of the structures produced by brittle and ductile rock

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-294 FINAL EXAM 8 to 10 AM, THURSDAY DEC. 6 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW QUESTIONS BEFORE THE TEST, PICK UP WHEN YOU

More information

Full file at

Full file at Chapter 2 PLATE TECTONICS AND PHYSICAL HAZARDS MULTIPLE-CHOICE QUESTIONS 1. What direction is the Pacific Plate currently moving, based on the chain of Hawaiian Islands with only the easternmost island

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Earth Science ENR Plate Boundaries Notes

Earth Science ENR Plate Boundaries Notes Name Earth Science ENR Plate Boundaries Notes Per Tchr Plate Boundary Types: 1) Divergent Plate Boundary (Seafloor Spreading Centers) 2) Divergent Plate Boundary (Continental Rift Valley) 3) Transform

More information