Metamorphism. Bjørn Jamtveit

Size: px
Start display at page:

Download "Metamorphism. Bjørn Jamtveit"

Transcription

1 Metamorphism Bjørn Jamtveit Physics of Geological Processes, University of Oslo, P.O.Box 1048 Blindern, N-0316 Oslo, Norway

2 CHANGE According to Winkler (1979): Metamorphism is the process of mineralogical and structural changes of rocks in their solid state in response to physical and chemical conditions which differ from the conditions prevailing during the formation of the rocks; however, the changes occurring within the domains of weathering and diagenesis are commonly excluded. In terms of the processes involved, there is however no sharp distinction between diagenesis, weathering and metamorphism. Neither is there any sharp transition between metamorphism and the onset of magmatic processes during partial melting of metamorphic rocks at high temperatures. Although the very concept of metamorphism implies change, the study of metamorphic rocks was until recently focused on states rather than change. Time was mainly thought of as the age of a rock, the number of million years that had past since the minerals comprising the rock was last in thermodynamic equilibrium. Today, time is also the 4 th dimension in which the observable patterns of metamorphic rocks evolve according to coupled irreversible reaction-, transport-, and deformation processes. Accordingly, over the last couple of decades, there has been a gradual change in focus during studies of metamorphic rocks. Metamorphic petrologists have become increasingly interested in metamorphism, and thus in inferring the underlying processes from an observed pattern. Increasing efforts are thus spent on careful observations of the often very complex patterns of metamorphic rocks. The art of petrography, that by many was considered obsolete in the wake of modern computer technology, is about to become fashionable again when the focus change from being to becoming. Figure 1, illustrates some of the most important changes taking place during metamorphism. These include changes in mineralogy and mineral composition, microstructures, and rock composition (Figure 1). Such changes are associated with sometimes even dramatic changes in physical properties, such as density, porosity, strength, modes of deformation etc (cf. Escartin et al., 2001). Through its effects on rock properties, metamorphism may significantly influence the way the Earth s crust responds when subjected to the forces of plate tectonics. Metamorphism affects the way mountains form and evolve (Fisher, 2002), and thus also the evolution of

3 landscapes at the Earth s surface. It may affect the way oceanic plates bend and get subducted in a collision with a continent (Escartin et al., 2001; Ranero et al., 2003), and through its effects on fluid migration, it also influences the chemical differentiation of the Earth s crust, including the formation of major ore-deposits (eg. Phillips and Powell, 2009). CAUSES AND RATES OF METAMORPHISM Metamorphism may occur whenever a given rock is subject to conditions under which its mineral assemblage is no longer thermodynamically stable (again ignoring the regimes of weathering and melting). Under fluid absent conditions however, the rate at which metamorphism takes place will in most cases be too slow for the metamorphic changes to have significant effects on the rock properties, and for the external world in general (see Fig.1 by Putnis and John, this volume). In this volume, we will mainly be interested in metamorphism, to the extent that it has direct or indirect effects on the evolution of the Earth crust on a scale that is observable in the field, and therefore in situations where metamorphism occurs in the presence of fluids. As pointed out by Connolly (this volume), metamorphism during a rise in temperature (prograde metamorphism) is normally associated with fluid production through metamorphic devolatilization reactions. In such a case, the rate of heating is expected to control the rate of metamorphism, and thus the rate of fluid production. Large sale heating associated with plate tectonic processes is a slow process. Temperature rises of a few degrees per million years will produce average fluid fluxes on the order of m 3 /m 2 s when the fluid producing reactions actually take place. Although this may seem like a small number, the real fluid migration rate in the pores or fractures of the rocks is flux/porosity. Even for a relatively high porosity of 1%, the actual fluid migration rates would be on the order of 0.3 m/year, and focusing of the fluid flow into channelways would speed up the flow rate even further. Thus, even during prograde regional metamorphism, fluid flow rates and associated flow-related transport processes may at least locally be significant on human time scales.

4 Fluid production driven by local heat sources such as magmatic intrusions (contact metamorphism) may be even faster. During emplacement of large igneous provinces in sedimentary basins, metamorphic fluids may be released at such rates and in such quantities that it may even affect global climates (Svensen and Jamtveit, this volume) and cause major perturbations to the biosphere. In contrast to prograde metamorphism that produces fluids at a rate controlled by heat transport, retrograde metamorphism is normally associated with consumption of fluids when a metamorphic rock formed at elevated temperatures is exposed to fluids at lower temperature. The rate of this process may obviously be controlled by the rate of fluid supply. In some cases, in particular where fluid supply is related to seismic activity and the generation of fracture networks, the actual fluid migration rates may be much faster than the rates associated with prograde metamorphism. Fast fluid migration increases the chances that fluids get in contact with rocks with which they are far from equilibrium. In such situations, volume changes associated with rapid reaction rates may lead to considerable perturbations of the local stress field. Retrogressive metamorphism may therefore be a very dynamic process whereby reaction, deformation and transport processes are intimately coupled, often resulting in striking patterns such as metasomatic fronts (figure 1g), complex replacement structures (Putnis and John, this volume), and reaction-driven fracture patterns (figure 2; Jamtveit and Austrheim, this volume). These non-equilbirum patterns, which are observable at all scales from the nanometer scales to outcrop scales, contain key information about the mechanisms of retrogressive metamorphism and thus about the way the Earth crust gets hydrated (and in some cases carbonated). Perhaps the most important example of retrogressive metamorphism occurs below the sea floor. Also in this case, metamorphism is directly connected to the biosphere. Along the spreading ridges, the chemical ingredients provided by the expulsion of fluids involved in hydrothermal alteration (retrogressive metamorphism) of mafic and ultramafic magmatic rocks is critical in sustaining the local biosphere (Bach and Frueh-Green, this volume). Hence, both prograde and retrograde metamorphism are key players in the dynamic evolution of the substratum to which life itself in anchored, and the metamorphic fluid

5 is often the medium through which these realms (the biosphere and the geosphere) are connected. REFERENCES Bach W, and Früh-Green G (2010) Hydration of the oceanic lithosphere and its implications for sea-floor processes. Elements, 6, this volume Connolly, JAD (2010) Metamorphic devolatilization and fluid flow: Time and spatial scales. Elements, 6, this volume Escartin, J, Hirth G, and Evans B (2001) Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere, Geology, 29: Fisher KM (2002) Waning buoyancy in the crustal roots of old mountains. Nature, 417: Jamtveit, B, Bucher-Nurminen K, and Stijfhoorn DE (1992) Contact metamorphism of layered shale-carbonate sequences in the Oslo rift: I. Buffering, infiltration and the mechanisms of mass-transport. Journal of Petrology, 33: Jamtveit B, Malthe-Sørenssen A, and Kostenko O (2008) Reaction enhanced permeability during retrogressive metamorphism. Earth and Planetary Science Letters, 267, Phillips GN, and Powell R (2009) Formation of gold deposits: Review and evaluation of the continuum model. Earth Science Reviews, 94: 1-21 Putnis A and John T (2010) Replacement processes in the Earth's crust. Elements, 6, this volume Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425: Svensen H and Jamtveit B (2010) Global climate change driven by metamorphic devolatilization. Elements, 6, this volume Winkler HGF (1979) Petrogenesis of metamorphic rocks, 5th ed. 348 p.

6 FIGURES

7 Figure 1. Examples of metamorphism. a) to b) The dark fine grained magmatic basalt in a) is transformed into a spectacular coarse grained green and red eclogite (b) during metamorphism at high pressures and temperatures. During the metamorphic transition, the augite (pyroxene), plagioclase and olivine in the basalt is transformed into garnet (red), omphacite (green) and clinozoisite (white). A densification of the rock from a density of about 2.9 g/cm 3 to about 3.5 g/cm 3 makes this transition potentially important for large-scale geodynamic processes, including basin subsidence and subduction. c) to d) A dark fine grained sedimentary shale is transformed into bright an shiny mica-schist with large garnet crystals at intermediate metamorphic pressure and temperature conditions. During this transition the rock looses several weight% H 2 O and thus such a transition is an important source of metamorphic fluids (cf. Connolly, this volume). Scales similar to figures a) and b). e) to f) Microphotographs. Oolite-bearing limestone rich in fossils (e) will transforms into an equigranular marble (f) during metamorphism. In this case, no major changes in mineralogy nor composition occur, yet the rock s microstructure is transformed completely during coupled growth- dissolution and grain boundary migration processes. Scale bar in e) also applies to f). g) Metamorphic zones of different mineralogy and color around a fracture in contact metamorphic shale from the Oslo rift (see Jamtveit et al., 1992 for details). Ca-rich fluids from neighboring limestones entered the fractures and diffusional mass-transport generated zones of decreasing Cacontent away from the fracture. This is an example of metasomatism. g) Microphotograph of troctolite texture from the Duluth Igneous Complex, showing partly serpentinized olivine grains in a plagioclase matrix. A dense network of microfractures connect individual olivine crystals and allow hydrous fluids to move through the rock. The microfracture network is most extensively developed where the distance between neighboring olivines is smallest and the plagioclase matrix has been squeezed between the olivine grains during hydration and expansion. Small olivine grains in unfractured regions are virtually unaltered. This image illustrates the strong coupling beween metamorphic reactions, fluid migration and deformation (cf. Jamtveit et al., 2008).

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metamorphism What happens to rocks that are

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks!

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks! Lecture 5 Sedimentary rocks Recap+ continued and Metamorphic rocks! Metamorphism Process that leads to changes in: Mineralogy Texture Sometimes chemical composition Metamorphic rocks are produced from

More information

Topic 12: Dynamic Earth Pracatice

Topic 12: Dynamic Earth Pracatice Name: Topic 12: Dynamic Earth Pracatice 1. Earth s outer core is best inferred to be A) liquid, with an average density of approximately 4 g/cm 3 B) liquid, with an average density of approximately 11

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Rock Cycle. Draw the Rock cycle on your remediation page OR use a sheet of notebook paper and staple

Rock Cycle. Draw the Rock cycle on your remediation page OR use a sheet of notebook paper and staple Earth Science Test 8.ESS2.3) Describe the relationship between the processes and forces that create igneous, sedimentary, and metamorphic rocks. I can develop and use models to explain how plate movements

More information

Rocks and the Rock Cycle. Banded Iron Formation

Rocks and the Rock Cycle. Banded Iron Formation Rocks and the Rock Cycle Banded Iron Formation Rocks Big rocks into pebbles, Pebbles into sand. I really hold a million, million Rocks here in my hand. Florence Parry Heide How do rocks change? How are

More information

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphosis "When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphism The transformation of rock by temperature

More information

ד"ר חנן גינת ד"ר ירון פינצי

דר חנן גינת דר ירון פינצי Geology The rock cycle Earth materials and their stories Experiments in the lab and working with rock kits (in school) Plate Tectonics The Dynamic Earth The story of fossils The Geological History of the

More information

Metamorphic Petrology. Jen Parks ESC 310, x6999

Metamorphic Petrology. Jen Parks ESC 310, x6999 Metamorphic Petrology Jen Parks ESC 310, x6999 jeparks@sciborg.uwaterloo.ca Definition of Metamorphism The IUGS-SCMR SCMR definition of metamorphism: Metamorphism is a subsolidus process leading to changes

More information

L.O: THE CRUST USE REFERENCE TABLE PAGE 10

L.O: THE CRUST USE REFERENCE TABLE PAGE 10 USE REFERENCE TABLE PAGE 10 1. The oceanic crust is thought to be composed mainly of A) granite B) sandstone C) basalt D) rhyolite 2. To get sample material from the mantle, drilling will be done through

More information

Metamorphism / Metamorphic Rocks

Metamorphism / Metamorphic Rocks Metamorphism / Metamorphic Rocks Metamorphism: occurs when rocks are subjected to heat, pressure, and/or other environmental conditions - The rock remains a solid during this time period - Why Should You

More information

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc. Chapter 8 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Metamorphism and dmetamorphic Rocks Tarbuck and Lutgens Chapter 8 Metamorphic Rocks What Is Metamorphism? Metamorphism means

More information

CHAPTER 3.3: METAMORPHIC ROCKS

CHAPTER 3.3: METAMORPHIC ROCKS CHAPTER 3.3: METAMORPHIC ROCKS Introduction Metamorphism - the process of changes in texture and mineralogy of pre-existing rock due to changes in temperature and/or pressure. Metamorphic means change

More information

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism Chapter 8 Metamorphism Introduction Metamorphism - The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks During

More information

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks Introduction Metamorphism The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks Metamorphism and Metamorphic Rocks

More information

Metamorphism: summary in haiku form

Metamorphism: summary in haiku form Metamorphism & Metamorphic Rocks Earth, Chapter 8 Metamorphism: summary in haiku form Shape-shifters in crust. Just add heat and/or pressure. Keep it solid please! What Is Metamorphism? Metamorphism means

More information

Engineering Geology ECIV 3302

Engineering Geology ECIV 3302 Engineering Geology ECIV 3302 Instructor : Dr. Jehad Hamad 2019-2018 Chapter (7) Metamorphic Rocks Chapter 7 Metamorphism and Metamorphic Rocks Metamorphism The transition of one rock into another by temperatures

More information

METAMORPHIC ROCKS CHAPTER 8

METAMORPHIC ROCKS CHAPTER 8 Lecture 6 October 18, 20, 23 October 19, 24 METAMORPHIC ROCKS CHAPTER 8 This is only an outline of the lecture. You will need to go to class to fill in the outline, although much of the relevant information

More information

16. Metamorphic Rocks II (p )

16. Metamorphic Rocks II (p ) 16. Metamorphic Rocks II (p. 233-242) Causes of Metamorphism The two main processes that occur within a rock during metamorphism are: : physical processes like squeezing and crushing - caused by strong

More information

Metamorphism (means changed form

Metamorphism (means changed form Metamorphism (means changed form) is recrystallization without melting of a previously existing rock at depth in response to a change in the environment of temperature, pressure, and fluids. Common minerals

More information

Metamorphism and Metamorphic Rocks Earth - Chapter Pearson Education, Inc.

Metamorphism and Metamorphic Rocks Earth - Chapter Pearson Education, Inc. Metamorphism and Metamorphic Rocks Earth - Chapter 8 Metamorphism Transition of one rock into another by temperatures and/or pressures unlike those in which it formed Metamorphic rocks are produced from:

More information

Evolution of the Earth

Evolution of the Earth Evolution of the Earth http://static.newworldencyclopedia.org/f/fe/geologic_clock.jpg Evolution of the Earth Solar system, 4.6 byr Collapse of a nebula Star forms as gravity concentrates material at center

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

b. atomic mass H What is the density of an object with a volume of 15cm 3 and a mass of 45g?

b. atomic mass H What is the density of an object with a volume of 15cm 3 and a mass of 45g? Name Period Date Earth Science Midterm Review 2015-2016 Quarter 1 Review Assign #1 Basic Chemistry An atom is a basic chemical building block of matter. An atom consists of protons, neutrons, and electrons.

More information

Chapter 8: The Dynamic Planet

Chapter 8: The Dynamic Planet Chapter 8: The Dynamic Planet I. The Pace of Change A. The Geologic Time Scale II. Earth s Structure and Internal Energy A. The Earth s Core B. The Earth s Mantle C. The Earth s Crust III. The Geologic

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

Metamorphism: Alteration of Rocks by Temperature and Pressure

Metamorphism: Alteration of Rocks by Temperature and Pressure CHAPTER 6 Metamorphism: Alteration of Rocks by Temperature and Pressure Chapter Summary Metamorphism is the alteration in the solid state of preexisting rocks, including older metamorphic rocks. Increases

More information

Types of Metamorphism!

Types of Metamorphism! Types of Metamorphism! The Types of Metamorphism 2 different approaches to classification 1. Based on principal process or agent Dynamic Metamorphism Thermal Metamorphism Dynamo-thermal Metamorphism The

More information

Metamorphism and Metamorphic Rocks

Metamorphism and Metamorphic Rocks Page 1 of 13 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Metamorphism and Metamorphic Rocks This page last updated on 25-Sep-2017 Definition of Metamorphism The word "Metamorphism"

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

Metamorphic Rocks. Metamorphic Rocks: Big Ideas

Metamorphic Rocks. Metamorphic Rocks: Big Ideas Metamorphic Rocks: Big Ideas Earth scientists use the structure, sequence, and properties of rocks to reconstruct events in Earth s history Earth s systems continually react to changing influences from

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Hornblende (Ca,Na)2-3(Fe,Mg,Al)5Si6(Si,Al)2O22(OH)2. Kaolinite (clay) Al2Si2O5(OH)4. Foliation ANIMATION

Hornblende (Ca,Na)2-3(Fe,Mg,Al)5Si6(Si,Al)2O22(OH)2. Kaolinite (clay) Al2Si2O5(OH)4. Foliation ANIMATION 1 Hornblende (Ca,Na)2-3(Fe,Mg,Al)5Si6(Si,Al)2O22(OH)2 Kaolinite (clay) Al2Si2O5(OH)4 Foliation ANIMATION 2 Grade Foliation type How does change as grade increases? Density increases (volume shrinks) Foliation

More information

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks Rocks Tarbuck Lutgens 3.1 The Rock Cycle 3.1 The Rock Cycle I. Rocks Rocks are any solid mass of mineral or mineral-like matter occurring naturally as part of our planet. Types of Rocks 1. Igneous rock

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Big Island Field Trip

Big Island Field Trip Big Island Field Trip Space Still Available Group Airline Tickets May be available if enough people sign on If interested send email to Greg Ravizza Planning Meeting Next Week Will

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 3 Rocks 3.1 The Rock Cycle Rocks Rocks are any solid mass of mineral or mineral-like matter occurring naturally as part of our planet. Types of Rocks

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat Chapter 7 Metamorphism and Metamorphic Rocks Introduction Metamorphism - The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic

More information

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks Igneous rocks form as molten magma or lava cools and solidifies. Magma is completely or partly molten

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 2. When did the Earth form? A. About 540 million years ago B. About 2.5 billion years ago

More information

Metamorphic Petrology GLY 262 Metamorphic fluids

Metamorphic Petrology GLY 262 Metamorphic fluids Metamorphic Petrology GLY 262 Metamorphic fluids The metamorphic fluid is arguably the most geologically important phase Spear (1993) The great volumetric abundance of hydrate-rich and carbonate-rich minerals

More information

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION GEOL.2150 - FORENSIC GEOLOGY ROCK IDENTIFICATION Name I. Introduction There are three basic types of rocks - igneous, sedimentary, and metamorphic: Igneous. Igneous rocks have solidified from molten matter

More information

Name: Date: Use the following to answer question 2.

Name: Date: Use the following to answer question 2. Name: Date: 1. Which of the following statements regarding the scientific method is false? A) A hypothesis must be agreed upon by more than one scientist. B) A theory is a hypothesis that has withstood

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Lesson Seven: Metamorphic Rocks

Lesson Seven: Metamorphic Rocks Name: Date: GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Seven: Metamorphic Rocks Background Reading: Metamorphic Rocks Metamorphic Rocks These are rocks that have been changed

More information

1. In the diagram below, letters A and B represent locations near the edge of a continent.

1. In the diagram below, letters A and B represent locations near the edge of a continent. 1. In the diagram below, letters A and B represent locations near the edge of a continent. A geologist who compares nonsedimentary rock samples from locations A and B would probably find that the samples

More information

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Chapter 5 Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Andrew Putnis & Håkon Austrheim Equilibration

More information

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth Quiz 1 1) Earth's atmosphere is unique among the moons and planets in that A) it has a nitrogen (N2) rich atmosphere. B) it is rich in oxygen (O2) and nitrogen (N2). C) it is rich in carbon dioxide because

More information

THE ROCK CYCLE & ROCKS. Subtitle

THE ROCK CYCLE & ROCKS. Subtitle THE ROCK CYCLE & ROCKS Subtitle 3. Three rocks that do not have minerals or are composed of nonmineral matter. Coal Pumuce Obsidian THE ROCK CYCLE Why do scientists study rocks? Rocks contain clues about

More information

Chapter 7 Metamorphism: A Process of Change

Chapter 7 Metamorphism: A Process of Change Chapter 7 Metamorphism: A Process of Change Metamorphism: A Process of Change Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides

More information

LAB 6: TRINIDAD BEACH FIELD TRIP

LAB 6: TRINIDAD BEACH FIELD TRIP OBJECTIVES: LAB 6: TRINIDAD BEACH FIELD TRIP 1) to develop your powers of observation, especially of geological phenomena; 2) to identify the rocks exposed at Trinidad Beach; 3) to reconstruct some of

More information

Topics that will be discussed

Topics that will be discussed Topics that will be discussed The Rock Cycle Igneous Rock Sedimentary Rock Metamorphic Rock The Rock Cycle -Rocks The parent material for all rocks is MAGMA. What is MAGMA? -Rock forming Minerals Are:

More information

Lecture 2: Causes of metamorphism

Lecture 2: Causes of metamorphism Lecture 2: Causes of metamorphism Metamorphism refers to a suite of processes that change the mineralogy, composition and texture of pre-existing materials this is a broad definition and certain industrial

More information

Igneous Rocks. Sedimentary Rocks

Igneous Rocks. Sedimentary Rocks Earth Sciences 083F Plate Tectonics Exercises Plate tectonics is a model for the dynamic behaviour of Earth s lithosphere. Outlining stable areas of lithosphere are narrow zones (plate boundaries) in which

More information

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? 1663-1 - Page 1 5) The flowchart below illustrates the change from melted rock to basalt. 2) Which processes most likely

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Practice Test Rocks and Minerals. Name. Page 1

Practice Test Rocks and Minerals. Name. Page 1 Name Practice Test Rocks and Minerals 1. Which rock would be the best source of the mineral garnet? A) basalt B) limestone C) schist D) slate 2. Which mineral is mined for its iron content? A) hematite

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Engineering Geology. Metamorphic Rocks. Hussien Al - deeky

Engineering Geology. Metamorphic Rocks. Hussien Al - deeky Metamorphic Rocks Hussien Al - deeky 1 Definition Metamorphic rock is the result of the transformation of an existing rock type, the protolith (parent rock), in a process called metamorphism, which means

More information

Earth History 870:035

Earth History 870:035 Earth History 870:035 Course goal: To describe the history of Earth and its inhabitants Most of Earth s history predates humanity, so it has not been observed Therefore, we will emphasize how scientists

More information

If you thought geology was boring then you have not entered the world of

If you thought geology was boring then you have not entered the world of Curtis Williams E105 Hydrothermal Alteration and Mineral Deposits If you thought geology was boring then you have not entered the world of hydrothermal alteration! This is where all of the fun begins.

More information

Plate Tectonics Practice Test

Plate Tectonics Practice Test Plate Tectonics Practice Test 1. What is the main idea Alfred Wegner proposed in the Theory of Continental Drift that he published in 1915? a. The continents float on a liquid layer that allows them to

More information

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals. Skills Worksheet Directed Reading Section: Rocks and the Rock Cycle 1. The solid part of Earth is made up of material called a. glacial ice. b. lava. c. rock. d. wood. 2. Rock can be a collection of one

More information

EARTH'S INTERIOR MEGA PACKET MC

EARTH'S INTERIOR MEGA PACKET MC 1. Which two Earth layers are separated by the Moho boundary? A) rigid mantle and plastic mantle B) outer core and stiffer mantle C) stiffer mantle and asthenosphere D) crust and rigid mantle 2. A model

More information

Marine Science and Oceanography

Marine Science and Oceanography Marine Science and Oceanography Marine geology- study of the ocean floor Physical oceanography- study of waves, currents, and tides Marine biology study of nature and distribution of marine organisms Chemical

More information

Understanding Earth Fifth Edition

Understanding Earth Fifth Edition Understanding Earth Fifth Edition Grotzinger Jordan Press Siever Chapter 6: METAMORPHISM Modification of Rocks by Temperature and Pressure Lecturer: H Mohammadzadeh Assistant professors, Department of

More information

Name Class Date. Chapter 3 Rocks Chapter Test. Write the letter that best answers the question or completes the statement on the line provided.

Name Class Date. Chapter 3 Rocks Chapter Test. Write the letter that best answers the question or completes the statement on the line provided. Chapter 3 Rocks Chapter Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is true about rocks? a. Rocks are

More information

Unit 1: Earth as a System. Section 1: Plate Tectonics and the Rock Cycle

Unit 1: Earth as a System. Section 1: Plate Tectonics and the Rock Cycle Unit 1: Earth as a System Section 1: Plate Tectonics and the Rock Cycle Earth s Realms Earth is divided into 4 major realms: Atmosphere gases surrounding earth Hydrosphere - earth s supply of water Lithosphere

More information

6. In the diagram below, letters A and B represent locations near the edge of a continent.

6. In the diagram below, letters A and B represent locations near the edge of a continent. 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Name Date Class. Directions: Use the diagram below to answer question Florida Progress Monitoring and Benchmark Assessments

Name Date Class. Directions: Use the diagram below to answer question Florida Progress Monitoring and Benchmark Assessments b e n c h m a r k t e s t : e a r t h a n d s p a c e s c i e n c e Multiple Choice 1. Geologists obtain indirect evidence about Earth s interior by A measuring pressure differences at Earth s surface.

More information

RAYMOND SIEVER Harvard University

RAYMOND SIEVER Harvard University E A R T H FOURTH EDITION FRANK PRESS National Academy of Sciences RAYMOND SIEVER Harvard University W. H. Freeman and Company New York Preface xiii Acknowledgments xviii PART I PROLOGUE CHAPTER 1 HISTORY

More information

Questions and Topics

Questions and Topics Plate Tectonics and Continental Drift Questions and Topics 1. What are the theories of Plate Tectonics and Continental Drift? 2. What is the evidence that Continents move? 3. What are the forces that

More information

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test Teacher: Mrs. Zimmerman Print Close Plate Tectonics and Mountains Practice Test Plate Tectonics Tutoiral URL: http://www.hartrao.ac.za/geodesy/tectonics.html Questions 1. Fossils of organisms that lived

More information

Chapter 7 Plate Tectonics

Chapter 7 Plate Tectonics Chapter 7 Plate Tectonics Earthquakes Earthquake = vibration of the Earth produced by the rapid release of energy. Seismic Waves Focus = the place within the Earth where the rock breaks, producing an earthquake.

More information

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere Name Class Date Assessment Geology Plate Tectonics MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere

More information

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 is initial number of parents, D* is number of radiogenic daughter atoms, and λ is the decay

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

Structure of the Earth

Structure of the Earth Structure of the Earth Compositional (Chemical) Layers Crust: Low density Moho: Density boundary between crust and mantle Mantle: Higher density High in Magnesium (Mg) and Iron (Fe) Core: High in Nickel

More information

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure. Standard 2: Students will understand Earth s internal structure and the dynamic nature of the tectonic plates that form its surface. Standard 2, Objective 1: Evaluate the source of Earth s internal heat

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

Rock Identification. invisible rhyolite andesite basalt komatiite. visible granite diorite gabbro peridotite

Rock Identification. invisible rhyolite andesite basalt komatiite. visible granite diorite gabbro peridotite Rock Identification The samples in this lab are arranged into four groups: igneous, sedimentary, metamorphic, and unknown. Study the igneous, sedimentary, and metamorphic collections to get an idea of

More information

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA A map that shows Earth s Topographic Map surface topography, which is Earth s shape and features Contour

More information

Structure of the Earth and the Origin of Magmas

Structure of the Earth and the Origin of Magmas Page 1 of 12 EENS 2120 Petrology Tulane University Prof. Stephen A. Nelson Structure of the Earth and the Origin of Magmas This document last updated on 23-Jan-2015 Magmas do not form everywhere beneath

More information

Happy Tuesday. Pull out a ½ sheet of paper

Happy Tuesday. Pull out a ½ sheet of paper Happy Tuesday Pull out a ½ sheet of paper 1. Physical properties of a mineral are predominantly related to 1. the external conditions of temperature, pressure, and amount of space available for growth.

More information

Factors cause Metamorphism:

Factors cause Metamorphism: Metamorphic Rocks: A rock whose original mineralogy, texture and/or composition has changed due to pressure, temperature and/or fluids. It can be formed from igneous, sedimentary, or previously metamorphosed

More information

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rocks Rock- A group of minerals, glass, mineroid bound together in some way. Rocks Rock- A group of minerals, glass, mineroid bound together in some way. All rocks fit into one of three categories: Igneous- formed by the cooling and hardening of hot molten rock Sedimentary- formed

More information

12. The diagram below shows the collision of an oceanic plate and a continental plate.

12. The diagram below shows the collision of an oceanic plate and a continental plate. Review 1. Base your answer to the following question on the cross section below, which shows the boundary between two lithospheric plates. Point X is a location in the continental lithosphere. The depth

More information

Question #1 Assume that the diagram below shows a cross section of part of the lithosphere.

Question #1 Assume that the diagram below shows a cross section of part of the lithosphere. Name: Class: Date: Question #1 Assume that the diagram below shows a cross section of part of the lithosphere. Which diagram correctly shows what will happen to the lithosphere when pushed by tectonic

More information

Metamorphic Rocks. Metamorphic rocks. Formed by heat, pressure and fluid activity

Metamorphic Rocks. Metamorphic rocks. Formed by heat, pressure and fluid activity Metamorphic Rocks Most figures and tables contained here are from course text: Understanding Earth Fourth Edition by Frank Press, Raymond Siever, John Grotzinger, and Thomas H. Jordan Metamorphic rocks

More information

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS Learning outcomes The student is able to: 1. understand and identify rocks 2. understand and identify parent materials 3. recognize

More information

A. IGNEOUS Rocks formed by cooling and hardening of hot molten rock called magma (within crust or at its surface).

A. IGNEOUS Rocks formed by cooling and hardening of hot molten rock called magma (within crust or at its surface). EARTH SCIENCE 11 CHAPTER 5 NOTES KEY How Earth's Rocks Were Formed Early geologists believed that the physical features of the Earth were formed by sudden spectacular events called CATASTROPHES. Modern

More information

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle?

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Forces That Shape Earth How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Plate Motion Mountain ranges are produced by plate tectonics. The theory of plate

More information

Grade 7 Science Revision Sheet for third term final exam

Grade 7 Science Revision Sheet for third term final exam Grade 7 Science Revision Sheet for third term final exam Material for the final exam : 1- Chapter 4 sections 1+2+3+4 [rock cycle + igneous rocks + sedimentary rocks + metamorphic rocks ] pages from the

More information

Announcements. Manganese nodule distribution

Announcements. Manganese nodule distribution Announcements Lithospheric plates not as brittle as previously thought ESCI 322 Meet in Env. Studies Bldg Rm 60 at 1 PM on Tuesday One week (Thursday): Quiz on Booth 1994 and discussion. (Lots of odd terms

More information