Application of GIS and Remote Sensing in Watershed Restoration

Size: px
Start display at page:

Download "Application of GIS and Remote Sensing in Watershed Restoration"

Transcription

1 Valerie Preler December 15, 2015 NRS 509 final Project Application of GIS and Remote Sensing in Watershed Restoration Over fifty years ago, Lyndon B. Johnson was once said A nation that fails to plan intelligently for the development and protection of its precious waters will be condemned to wither because of its shortsightedness. The hard lessons of history are clear, written on the deserted sands and ruins of once proud civilizations. Unfortunately, not only our nation, but nations throughout the world have failed to heed the warnings of Johnson and history itself. As our world population has grown and civilizations become progressively urbanized, there has been a continuous trend of degradation of waters on a global scale leading to flooding and poor water quality. Alternately, population growth has spurred and ever-increasing need for potable water. This need for clean water coupled with its decreasing availability has made restoring our waters a priority for decision makers across the globe. Although the need for restoring our waters is well established, the task of improving water quality has proved a challenge that is difficult to overcome. Much difficulty appears to lie in the inherent difficulties associated in planning for improvement in a system that is interconnected. Because of this interconnectivity, we must address water quality improvement at the scale of a watershed. Watersheds do not only encompass water functions. Water catchments (watersheds) are functional geographical areas that integrate a variety of environmental processes and human impacts on landscapes (Aspinall and Pearson 2000.) Wetlands within these watersheds provide important functions including providing habitat, decreasing flooding and reducing non-point source pollution (NPS). Strategically planned wetland restoration on a watershed scale has the ability to restore ecosystem level processes that maintain water quality, but wetland restoration is often done on a site by site basis (White and Fennessy 2005). Throughout the journal articles reviewed, there was a continuous assertion of the importance of the restoration of wetlands and the need to consider them within the context of an accurately defined watershed. Further discussion included the difficulties that occurred when decision makers defined watersheds according to guidelines that are not based on scientific accuracy, but rather political considerations (Bhall et al. 2011). Even though it is established that water quality can only be improved if context of an entire watershed, in reading the journal articles, it became increasingly evident that many efforts are being made to restore localized waters, but that throughout the world there has often been either a lack of pertinent current scientific data to support planning and restoration efforts or a lack of consideration for a watershed in its entirety. Remote Sensing and GIS tools can be used to overcome these hurdles as they are able to provide accurate scientific data along with products that can be presented in a manner that are understandable to decision makers and concerned citizens. The studies in the journal articles followed similar processes. They first evaluated and defined the watershed. In order to do so, the drainage area along with the land use and land coverage characteristics must first be determined. To do this, researchers often started with digital elevation models (DEM) derived from Landsat TM data and used digital line graphs (DLG) to create drainage structures from the given topography. However, for smaller scale watersheds that are either too small or have a narrow elongated shape, Landsat TM data needed to be combined with aerial photography and field data to create high resolution mapping (Mwita et al. 2013). Drainage areas (watersheds) are then determined from these maps. Watersheds vary in size. They can be viewed as relatively small catchments draining to a stream or evaluated in the context of the entire watershed. After defining the watershed boundaries within the GIS framework, calculations are used to define watershed characteristics including slope, flow, stream order, and a saturation index. Additional criteria for defining watershed characteristics include land use, land cover, and soil composition. Throughout the studies presented in the journal articles reviewed, land use and land cover are often derived from Landsat TM data or similar remote sensing methods from satellites from the country of origin. Soil data is also taken from data sets such as those derived from Landsat TM imagery. Additionally, data sets can be chosen according to various temporal resolutions which can demonstrate changes to watersheds during varying seasons as well as over longer periods of time allowing the tracking of impacts due to changes in land use (Bhalla et al 2011.) It is from these different variables

2 that the GIS software is able to create the various map layers. After the watershed boundaries and characteristics are defined, researchers are then able to use this data to further evaluate the watershed using additional criteria. Criteria such as water quality data and location of riparian zones can be evaluated and mapped along with the other variables. Other concerns such as the origin of pollutants can also be derived from the evaluation process. Once the watershed characteristics have been determined, researchers can then use this information to create plans for the restoration of the watershed. Many times, the focus is on the restoration of wetlands within the watersheds as wetlands serve the dual purpose of reducing both pollution and flooding. Suitability can be determined through mathematical models that can be run within the GIS software or in another program that can be combined with GIS outputs. When running these models, variables are often weighed according to their importance in providing water quality. This is an important step. Often times the rating scales are based on the opinion of experts in hydrology who are asked to rate variables according to their importance in the watershed and sound scientific solutions can be determined. Although solutions based purely on hydrology would, on the surface, appear to be the best method for restoring water quality, these solutions are not always feasible to implement. Often planners have to account for variables that have little to do with hydrology. The persons in responsible for decision making in regards to watershed restoration often have little scientific background and at times, must assign importance to those very things that may be negatively impacting the watershed. For example, agricultural uses often lead to increased pollution, but decision makers must often consider the economic impact to the farmers as well as the need to feed a population. It is because of these competing needs that those proposing plans for restoration must understand the decision making process. The decision making process can be looked at as the continual process of consultation, decision, evaluation and revision, and, in the context of land-use management and planning, frequently is specifically concerned with adaptive management of change and design of alternative future directions for land use within a given geographic area (Aspinall and Pearson 2000.) GIS is particularly helpful in the area of decision making. GIS is an important tool used to assist decision makers as it can provide a clear representation of problems and solutions when addressing watershed restoration. GIS maps can illustrate the current state of the watershed including any of the variables previously discussed including land use and land cover which can be mapped to demonstrate changes that have occurred over time as satellite imagery is available for over 40 years. The maps themselves create an opportunity to educate the decision makers as to the necessity of restoration throughout the watershed rather than on a site by site basis. Furthermore, the GIS can be used as an adaptive tool allowing researchers and planners to revise the weighting systems assigned by experts to provide maps that reflect the various changes. Once restoration efforts occur, the processes outline previously using remotely sensed images coupled with GIS allow for the continued monitoring of outcomes and ongoing education of the decision makers. Aspinall, R and D. Pearson Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management, 59(4), This paper describes watersheds as integrated units that must viewed not only as hydrological units, as well as units that have socioeconomic impacts. The authors create a regional model with sub-basins within GIS that uses ecological and hydrological modeling functions and landscape analysis based on Landsat TM images and GIRAS land cover data set, DEMs, USGS topographic maps, precipitation data from meteorological stations, TIGER roads, and census data for populations within the catchment area. The the upper Yellowstone river is the catchment area used for the case study. The authors assert that studies need to take into account decision makers and begin by defining the decision making process, believing it necessary for the development of goals for handling spatial data in a manner that allows for the understanding of decision makers. The authors discuss the benefits of integrating GIS and eco-hydrological modeling and discuss the difficulties in doing so. The study integrates eco-hydrologic modeling tools into GIS to determine subcatchments and water quality. The authors accomplish the goal of being able to use GIS coupled with modeling to provide outputs in a manner that is understandable to decision makers.

3 Although this paper is somewhat dated, being published in 2000, it provided a clear understanding of the integration of GIS integrated with modeling. Bhalla R, N. Pelkey, D. Prasad K Application of GIS for evaluation and design of watershed guidelines. Water Resource Management 25(1): In this study, the authors analyze the Indian government s guidelines for prioritizing micro-watersheds for restoration from 2003 and 2008 with GIS and spatial statistics. The established governmental guidelines are meant to balance the need for improving watersheds, increasing agricultural productivity, and alleviating poverty and use criteria that are not based on scientifically accurate hydrologic criteria. The authors, however, analyzed these guidelines using GIS and spatial criteria. The authors use GIS to create layers of watershed boundaries, village boundaries, land use, population density, water quality and groundwater depth and then, with GIS, evaluate the efficacy of these guidelines in relation to a small rainfall watershed in southern India. The authors conclude that neither the 2003 or 2008 criteria are appropriate for watershed improvement and that efficient resources based on hydraulic function need to be considered before social and economic concerns. They also argue that a combined GIS and spatial analysis approach is beneficial for evaluating watershed selection criteria and for assessment of outcomes. The authors further concluded that the established guidelines needed to be rewritten using scientifically based criteria. The article was interesting as Bhalla et al. showed that, at times, decision makers use criteria that have little, if anything, to do with science and that these criteria are being used for the foundation of water quality restoration setting the base for future failure. The authors assert that plans need to be based on sound science, but leave the question of how to overcome the barriers to doing so. Dai C, HC Guo, Q Tan, W Ren Development of a constructed wetland network for mitigating nonpoint source pollution through a GIS-based watershed-scale inexact optimization approach. Ecological Engineering. The authors discuss that NPS losses and of nitrogen and phosphorous are degrading water quality especially in rainy mountainous agricultural areas. The authors assert that GIS based approaches are incomplete and instead develop a model that integrates GIS based spatial analysis with fuzzy stochastic two stage programming (FSTP), to better plan for installation of wetlands within a watershed The authors used the Songhuaba watershed in China as their model. By using the created GIS FSTP, they created a model for wetlands within the watershed that would meet multiple targets including maximizing economic benefits and minimizing nutrient loads and could account for multiple processes and factors that can vary which then could be mapped at different confidence levels and demonstrating excess load of N and P under different rainfall conditions according to the established confidence level. The authors note that the GIS technology was used as it allowed smooth communication between the database, the optimization models, and the presentation of results. This article was extremely detailed. The amount of specificity made it at times difficult to wade through, but the detail provided the reader with a clear understanding of the process. López, J. Martnez., F. Carreño, J. A. Palazón-Ferrando, J. Martínez-Fernández and M. A. Esteve (2014) Free advanced modeling and remote-sensing techniques for wetland watershed delineation and monitoring, International Journal of Geographical Information Science, 28:8, The authors assert that enhanced and reproducible methods for modeling land use impact on watersheds needs to be readily available. The authors discuss their use of FOSS (Free and Open Source Software) to meet this objective. The study involves 11 watersheds that drain to semi-arid wetlands in the Murcia province in Spain and compares conditions from 1987 and The authors fully explain how they used FOSS GIS to combine hydrologic modeling and remote sensing to better delineate pressures on wetlands within the watershed. The authors started with DEMs available from the Instituto Geografical Nacional and then used map algebra to create flow

4 accumulation and drainage maps. Next, Landsat images (from winter and late spring to account for seasonal phenology) were enhanced through various methods of supervised classification (again using some open source methods) to create the land use/land cover maps. At the conclusion of the study, the authors determined that the maps of the watersheds created by the chosen methods were more accurate then what was previously available. The study concluded that using Landsat data along with FOSS were methods that were applicable world-wide. The authors were specific and clear in the detailing of their processes. The article appeared to be especially relevant as having reproducible accessible data is often discussed by the authors of the various journal articles that I reviewed. Mwita E, G. Menz, S. Misana, Becker, M., Kisanga, D., Boehme, B Mapping small wetlands of Kenya and Tanzania using remote sensing techniques. International Journal of Applied Earth Observation and Geoinformation 21: The authors discuss small scale wetlands located in Tanzania and Kenya. The authors assert that although there is a need for studies in these areas, they are often overlooked due to their size, diversity, and remote location. The authors discuss the use of remote sensing as the best approach, but that Landsat images are often too poor in spatial resolution to accurately identify these wetlands due to their small size or elongated, narrow shape. Because of this, aerial photography was employed for high resolution mapping. The authors used the Landsat data with ERDAS software in the preliminary stage. They then conducted field studies and gathered aerial photos that were processed with ArcGIS 9.3 to delineate the small wetlands and to indicate the varied types, spatial distribution and land use patterns. Figure 2 in the article was a flow chart of the process which made the process easy to understand. Throughout the article, the authors provide detailed information about the wetlands and their importance. The authors were able to make a strong argument regarding the importance of mapping these as well as other small scale wetlands to help concerned authorities can gain the information needed to make wise choices regarding their management. Ouyang NL, Lu SL, Wu BF, Zhu JJ, Wang H Wetland restoration suitability evaluation at the watershed scale- A case study in upstream of the Yongdinghe river. Procedia Environmental Sciences 10, Part C: Ouyang et al discuss that wetland restoration is necessary as wetlands provide valuable environmental services. However, the authors discuss that wetlands are often studied in isolation and instead need to be evaluated in the context of the entire watershed. The study evaluates the Yongdinghe River at the convergence of the Sanggan River and Yang River. The main data used in the study are DEM, river and soil quality data, and vector data including location of villages, soils, and streams and reservoirs. The authors propose a GIS-based multi-criteria comprehensive evaluation methodology for wetland restoration suitability evaluation (which) includes three steps: criteria information extraction, criteria value assignment and normalization, and integrated evaluation. The article explains each phase of the aforementioned steps in detail. The authors further discuss that the wetland restoration in semi-arid areas is dependent upon water availability and assert that further research should focus on the feasibility of restoration according to water resources available throughout the year. The study does not address any social factors involved in the wetland restoration, but does note that recreational activities may need to be curtailed in during periods of less water. This study would appear to be a first step to wetland restoration and improvement of overall water quality. However, considering the need of water diversion to particular areas, further study involving the impacts of doing so would be necessary. D. White and Fennessy, S Modeling the suitability of wetland restoration potential at the watershed scale. Ecological Engineering 24(4): The authors discuss that often water restoration projects are considered on a site by site basis, but that they need to be considered at the watershed scale. They indicate that restoration on a watershed scale has the ability to restore ecosystem processes that maintain the integrity of the water resources. To this end, the authors develop a suitability model based on multicriteria evaluation theory model within GIS to address wetlands in a spatially explicit manner. The model is applied in a case study of the watershed along the Cuyahoga River in Ohio. The

5 authors target wetlands that can be best restored to mitigate NPS pollution. The study takes a two-phase approach was used. The first is step was to develop indicators identifying all sites suitable for long term sustainable wetland restoration. Criteria used include hydric soils, land use, topography, stream order, and a saturation index based on slope and flow accumulation in each grid cell in the model. The second phase filters and prioritizes sites based on their ability to contribute to the water quality within the watershed once they are restored. This was a well presented paper as the authors clearly outlined the their methods of gathering and modeling data.

Summary Description Municipality of Anchorage. Anchorage Coastal Resource Atlas Project

Summary Description Municipality of Anchorage. Anchorage Coastal Resource Atlas Project Summary Description Municipality of Anchorage Anchorage Coastal Resource Atlas Project By: Thede Tobish, MOA Planner; and Charlie Barnwell, MOA GIS Manager Introduction Local governments often struggle

More information

Dr. S.SURIYA. Assistant professor. Department of Civil Engineering. B. S. Abdur Rahman University. Chennai

Dr. S.SURIYA. Assistant professor. Department of Civil Engineering. B. S. Abdur Rahman University. Chennai Hydrograph simulation for a rural watershed using SCS curve number and Geographic Information System Dr. S.SURIYA Assistant professor Department of Civil Engineering B. S. Abdur Rahman University Chennai

More information

URBAN WATERSHED RUNOFF MODELING USING GEOSPATIAL TECHNIQUES

URBAN WATERSHED RUNOFF MODELING USING GEOSPATIAL TECHNIQUES URBAN WATERSHED RUNOFF MODELING USING GEOSPATIAL TECHNIQUES DST Sponsored Research Project (NRDMS Division) By Prof. M. GOPAL NAIK Professor & Chairman, Board of Studies Email: mgnaikc@gmail.com Department

More information

Pierce Cedar Creek Institute GIS Development Final Report. Grand Valley State University

Pierce Cedar Creek Institute GIS Development Final Report. Grand Valley State University Pierce Cedar Creek Institute GIS Development Final Report Grand Valley State University Major Goals of Project The two primary goals of the project were to provide Matt VanPortfliet, GVSU student, the

More information

VILLAGE INFORMATION SYSTEM (V.I.S) FOR WATERSHED MANAGEMENT IN THE NORTH AHMADNAGAR DISTRICT, MAHARASHTRA

VILLAGE INFORMATION SYSTEM (V.I.S) FOR WATERSHED MANAGEMENT IN THE NORTH AHMADNAGAR DISTRICT, MAHARASHTRA VILLAGE INFORMATION SYSTEM (V.I.S) FOR WATERSHED MANAGEMENT IN THE NORTH AHMADNAGAR DISTRICT, MAHARASHTRA Abstract: The drought prone zone in the Western Maharashtra is not in position to achieve the agricultural

More information

Application of GIS Technology in Watershed-based Management and Decision Making

Application of GIS Technology in Watershed-based Management and Decision Making Application of GIS Technology in Watershed-based Management and Decision Making U. Sunday Tim Iowa State University Department of Agricultural and Biosystems Engineering 100 Davidson Hall Email:

More information

Improvement of the National Hydrography Dataset for Parts of the Lower Colorado Region and Additional Areas of Importance to the DLCC

Improvement of the National Hydrography Dataset for Parts of the Lower Colorado Region and Additional Areas of Importance to the DLCC Improvement of the National Hydrography Dataset for Parts of the Lower Colorado Region and Additional Areas of Importance to the DLCC Carlos Reyes-Andrade California State University, Northridge September

More information

Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin

Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin Christopher Konrad, US Geological Survey Tim Beechie, NOAA Fisheries Managing

More information

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS 80 CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS 7.1GENERAL This chapter is discussed in six parts. Introduction to Runoff estimation using fully Distributed model is discussed in first

More information

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Technical briefs are short summaries of the models used in the project aimed at nontechnical readers. The aim of the PES India

More information

The Road to Data in Baltimore

The Road to Data in Baltimore Creating a parcel level database from high resolution imagery By Austin Troy and Weiqi Zhou University of Vermont, Rubenstein School of Natural Resources State and local planning agencies are increasingly

More information

Distinct landscape features with important biologic, hydrologic, geomorphic, and biogeochemical functions.

Distinct landscape features with important biologic, hydrologic, geomorphic, and biogeochemical functions. 1 Distinct landscape features with important biologic, hydrologic, geomorphic, and biogeochemical functions. Have distinguishing characteristics that include low slopes, well drained soils, intermittent

More information

Spatial units (Levels 0 and 1)

Spatial units (Levels 0 and 1) Spatial units (Levels 0 and 1) Project: Advancing the SEEA Experimental Ecosystem Accounting Overview: Spatial units 1. Learning objectives 2. Level 1: Presentation & group exercise Spatial units (10m

More information

06/04/2015. Overview: Spatial units. Advancing the SEEA Experimental Ecosystem Accounting Spatial units (Level 1)

06/04/2015. Overview: Spatial units. Advancing the SEEA Experimental Ecosystem Accounting Spatial units (Level 1) Advancing the SEEA Experimental Ecosystem Accounting Spatial units (Level 1) Advancing the SEEA-EEA Project Overview: Spatial units 1. Learning objectives 2. Level 1: Presentation & group exercise Spatial

More information

MANAGEMENT OF SPATIAL DATA IN MULTIDISCIPLINARY PROJECTS

MANAGEMENT OF SPATIAL DATA IN MULTIDISCIPLINARY PROJECTS MANAGEMENT OF SPATIAL DATA IN MULTIDISCIPLINARY PROJECTS Ir. B.P.J. van den Bergh Resource Analysis Dr. Ir. A. de Vries IWACO BV Working Group IC-19, TC IV-3, WG IV/6 KEY WORDS: Spatial Data Management,

More information

GIS and Coastal Nutrients Luke Cole

GIS and Coastal Nutrients Luke Cole GIS and Coastal Nutrients Luke Cole Human population density has been widely utilized as a valid predictor of terrestrial nitrogen loads into marine systems. As 50% of the world s population lives within

More information

Physical Geography: Patterns, Processes, and Interactions, Grade 11, University/College Expectations

Physical Geography: Patterns, Processes, and Interactions, Grade 11, University/College Expectations Geographic Foundations: Space and Systems SSV.01 explain major theories of the origin and internal structure of the earth; Page 1 SSV.02 demonstrate an understanding of the principal features of the earth

More information

Biodiversity Blueprint Overview

Biodiversity Blueprint Overview Biodiversity Blueprint Overview Climate Variability Climate projections for the Glenelg Hopkins Regions suggest that the weather will be hotter and drier in the coming years which will impact on land use,

More information

A Comprehensive Inventory of the Number of Modified Stream Channels in the State of Minnesota. Data, Information and Knowledge Management.

A Comprehensive Inventory of the Number of Modified Stream Channels in the State of Minnesota. Data, Information and Knowledge Management. A Comprehensive Inventory of the Number of Modified Stream Channels in the State of Minnesota Data, Information and Knowledge Management Glenn Skuta Environmental Analysis and Outcomes Division Minnesota

More information

DEM-based Ecological Rainfall-Runoff Modelling in. Mountainous Area of Hong Kong

DEM-based Ecological Rainfall-Runoff Modelling in. Mountainous Area of Hong Kong DEM-based Ecological Rainfall-Runoff Modelling in Mountainous Area of Hong Kong Qiming Zhou 1,2, Junyi Huang 1* 1 Department of Geography and Centre for Geo-computation Studies, Hong Kong Baptist University,

More information

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques İrfan Akar University of Atatürk, Institute of Social Sciences, Erzurum, Turkey D. Maktav & C. Uysal

More information

Flood Hazard Inundation Mapping. Presentation. Flood Hazard Mapping

Flood Hazard Inundation Mapping. Presentation. Flood Hazard Mapping Flood Hazard Inundation Mapping Verne Schneider, James Verdin, and JeradBales U.S. Geological Survey Reston, VA Presentation Flood Hazard Mapping Requirements Practice in the United States Real Time Inundation

More information

A GIS based Land Capability Classification of Guang Watershed, Highlands of Ethiopia

A GIS based Land Capability Classification of Guang Watershed, Highlands of Ethiopia A GIS based Land Capability Classification of Guang Watershed, Highlands of Ethiopia Gizachew Ayalew 1 & Tiringo Yilak 2 1 Amhara Design and Supervision Works Enterprise (ADSWE), Bahir Dar, Ethiopia 2

More information

REMOTE SENSING AND GEOSPATIAL APPLICATIONS FOR WATERSHED DELINEATION

REMOTE SENSING AND GEOSPATIAL APPLICATIONS FOR WATERSHED DELINEATION REMOTE SENSING AND GEOSPATIAL APPLICATIONS FOR WATERSHED DELINEATION Gaurav Savant (gaurav@engr.msstate.edu) Research Assistant, Department of Civil Engineering, Lei Wang (lw4@ra.msstate.edu) Research

More information

Spatial Units (Level 1)

Spatial Units (Level 1) Spatial Units (Level 1) Project: Advancing the SEEA Experimental Ecosystem Accounting Overview: Spatial Units 1. Learning objectives 2. Review of Level 0 (5m) 3. Level 1 (Compilers): Presentation & group

More information

Water Supply System in Ntisaw, Cameroon

Water Supply System in Ntisaw, Cameroon Water Supply System in Ntisaw, Cameroon Garrett Kehoe UNIVERSITY OF TEXAS AT AUSTIN FALL 2013 GIS Contents Project Background... 2 Available and Required Data... 3 Methodology... 3 Results... 8 Future

More information

RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. II - Catchment Management A Framework for Managing Rangelands - Hugh Milner

RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. II - Catchment Management A Framework for Managing Rangelands - Hugh Milner CATCHMENT MANAGEMENT A FRAMEWORK FOR MANAGING RANGELANDS Hugh Milner International Water Management Consultant, Australia Keywords: Rangeland management; catchments and watersheds; catchment management

More information

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY CO-439 VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY YANG X. Florida State University, TALLAHASSEE, FLORIDA, UNITED STATES ABSTRACT Desert cities, particularly

More information

GIS Based Delineation of Micro-watershed and its Applications: Mahendergarh District, Haryana

GIS Based Delineation of Micro-watershed and its Applications: Mahendergarh District, Haryana Kamla-Raj 2012 J Hum Ecol, 38(2): 155-164 (2012) GIS Based Delineation of Micro-watershed and its Applications: Mahendergarh District, Haryana Gulshan Mehra and Rajeshwari * Department of Geography, Kurukshetra

More information

GIS in Weather and Society

GIS in Weather and Society GIS in Weather and Society Olga Wilhelmi Institute for the Study of Society and Environment National Center for Atmospheric Research WAS*IS November 8, 2005 Boulder, Colorado Presentation Outline GIS basic

More information

National Hydrography Dataset (NHD) Update Project for US Forest Service Region 3

National Hydrography Dataset (NHD) Update Project for US Forest Service Region 3 National Hydrography Dataset (NHD) Update Project for US Forest Service Region 3 Allison Moncada California State University, Northridge February 2017 July 2017 Advisor: Joel Osuna Center for Geographical

More information

ROLE OF SPATIAL PLANNING TOOLS AT MESO-SCALE IN THE MANAGEMENT OF NATURAL RESOURCES, LESSONS LEARNT FROM AFRICAN COUNTRIES

ROLE OF SPATIAL PLANNING TOOLS AT MESO-SCALE IN THE MANAGEMENT OF NATURAL RESOURCES, LESSONS LEARNT FROM AFRICAN COUNTRIES 6th Nov, 2012 ROLE OF SPATIAL PLANNING TOOLS AT MESO-SCALE IN THE MANAGEMENT OF NATURAL RESOURCES, LESSONS LEARNT FROM AFRICAN COUNTRIES Masoom Hamdard Environmental Planning and Assessment for Adaptation

More information

SUB CATCHMENT AREA DELINEATION BY POUR POINT IN BATU PAHAT DISTRICT

SUB CATCHMENT AREA DELINEATION BY POUR POINT IN BATU PAHAT DISTRICT SUB CATCHMENT AREA DELINEATION BY POUR POINT IN BATU PAHAT DISTRICT Saifullizan Mohd Bukari, Tan Lai Wai &Mustaffa Anjang Ahmad Faculty of Civil Engineering & Environmental University Tun Hussein Onn Malaysia

More information

Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia)

Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia) European Water 57: 171-177, 2017. 2017 E.W. Publications Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia) N. Dragičević *, B. Karleuša and N. Ožanić Faculty

More information

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Use of Digital Elevation Model to compute Storm Water Drainage Network Manisha Desai *1, Dr. J. N. Patel 2 *1 Ph. D. Student of

More information

Land Administration and Cadastre

Land Administration and Cadastre Geomatics play a major role in hydropower, land and water resources and other infrastructure projects. Lahmeyer International s (LI) worldwide projects require a wide range of approaches to the integration

More information

Waterborne Environmental, Inc., Leesburg, VA, USA 2. Syngenta Crop Protection, LLC, North America 3. Syngenta Crop Protection, Int.

Waterborne Environmental, Inc., Leesburg, VA, USA 2. Syngenta Crop Protection, LLC, North America 3. Syngenta Crop Protection, Int. Application of High Resolution Elevation Data (LiDAR) to Assess Natural and Anthropogenic Agricultural Features Affecting the Transport of Pesticides at Multiple Spatial Scales Josh Amos 1, Chris Holmes

More information

Application of an Enhanced, Fine-Scale SWAT Model to Target Land Management Practices for Maximizing Pollutant Reduction and Conservation Benefits

Application of an Enhanced, Fine-Scale SWAT Model to Target Land Management Practices for Maximizing Pollutant Reduction and Conservation Benefits Application of an Enhanced, Fine-Scale SWAT Model to Target Land Management Practices for Maximizing Pollutant Reduction and Conservation Benefits Amanda Flynn, Todd Redder, Joe DePinto, Derek Schlea Brian

More information

Planning Road Networks in New Cities Using GIS: The Case of New Sohag, Egypt

Planning Road Networks in New Cities Using GIS: The Case of New Sohag, Egypt Planning Road Networks in New Cities Using GIS: The Case of New Sohag, Egypt Mostafa Abdel-Bary Ebrahim, Egypt Ihab Yehya Abed-Elhafez, Kingdom of Saudi Arabia Keywords: Road network evaluation; GIS, Spatial

More information

Application of Geographical Information System (GIS) tools in watershed analysis

Application of Geographical Information System (GIS) tools in watershed analysis Application of Geographical Information System (GIS) tools in watershed analysis Paritosh Gupta 1, Damanjit S Minhas 2, Rajendra M Tamhane 1, A K Mookerjee 2 1.ESRI India New Delhi 2. LEA Associates South

More information

Spatial Units, Scaling and Aggregation (Level 1) October 2017

Spatial Units, Scaling and Aggregation (Level 1) October 2017 Spatial Units, Scaling and Aggregation (Level 1) October 2017 Overview: Spatial Units 1. Learning objectives 2. Review of Level 0 (5m) 3. Level 1 (Compilers): Presentation & group exercise Spatial units

More information

Adam Hogg Inventory Monitoring & Assessment, Ministry of Natural Resources Headwaters Workshop May 20, 2009

Adam Hogg Inventory Monitoring & Assessment, Ministry of Natural Resources Headwaters Workshop May 20, 2009 Geomatics Tools for Mapping Headwater Streams Adam Hogg Inventory Monitoring & Assessment, Ministry of Natural Resources Headwaters Workshop May 20, 2009 Outline The Challenge What is a headwater stream?

More information

Mapping Water Resources and Reservoirs for Climate Resilience in Zambezi River Basin

Mapping Water Resources and Reservoirs for Climate Resilience in Zambezi River Basin Mapping Water Resources and Reservoirs for Climate Resilience in Zambezi River Basin Corné van der Sande, NEO BV Senior Advisor Earth Observation Services for Monitoring Drought and Water Resources in

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

Introduction to Geographic Information Systems (GIS): Environmental Science Focus

Introduction to Geographic Information Systems (GIS): Environmental Science Focus Introduction to Geographic Information Systems (GIS): Environmental Science Focus September 9, 2013 We will begin at 9:10 AM. Login info: Username:!cnrguest Password: gocal_bears Instructor: Domain: CAMPUS

More information

Fig 1. Steps in the EcoValue Project

Fig 1. Steps in the EcoValue Project Assessing the Social and Economic Value of Ecosystem Services in the Northern Forest Region: A Geographic Information System (GIS) Approach to Landscape Valuation Principal Investigator(s): Dr. Matthew

More information

Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data

Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data Jeffrey D. Colby Yong Wang Karen Mulcahy Department of Geography East Carolina University

More information

Data sources and classification for ecosystem accounting g

Data sources and classification for ecosystem accounting   g Data sources and classification for ecosystem accounting Ken Bagstad 23 February 2015 Wealth Accounting and the Valuation of Ecosystem Services www.wavespartnership.org Data sources and classification

More information

Basin characteristics

Basin characteristics Basin characteristics From hydrological processes at the point scale to hydrological processes throughout the space continuum: point scale à river basin The watershed characteristics (shape, length, topography,

More information

GEOGRAPHY ADVANCED LEVEL

GEOGRAPHY ADVANCED LEVEL GEOGRAPHY ADVANCED LEVEL The syllabus is based on the belief that geography makes a valuable contribution to education. This partly derives from the nature of the questions which geographers raise and

More information

Delineation of Groundwater Potential Zone on Brantas Groundwater Basin

Delineation of Groundwater Potential Zone on Brantas Groundwater Basin Delineation of Groundwater Potential Zone on Brantas Groundwater Basin Andi Rachman Putra 1, Ali Masduqi 2 1,2 Departement of Environmental Engineering, Sepuluh Nopember Institute of Technology, Indonesia

More information

Land Accounts - The Canadian Experience

Land Accounts - The Canadian Experience Land Accounts - The Canadian Experience Development of a Geospatial database to measure the effect of human activity on the environment Who is doing Land Accounts Statistics Canada (national) Component

More information

Introduction Fluvial Processes in Small Southeastern Watersheds

Introduction Fluvial Processes in Small Southeastern Watersheds Introduction Fluvial Processes in Small Southeastern Watersheds L. Allan James Scott A. Lecce Lisa Davis Southeastern Geographer, Volume 50, Number 4, Winter 2010, pp. 393-396 (Article) Published by The

More information

Nikki Sacha. NRS 509 Restoration Ecology

Nikki Sacha. NRS 509 Restoration Ecology Nikki Sacha NRS 509 Restoration Ecology There were several ways that GIS was incorporated into restoration ecology that was repeated in the eight articles that I reviewed. The first was that it served

More information

Overview of Methods. Terrestrial areas that are most important for conservation Conservation

Overview of Methods. Terrestrial areas that are most important for conservation Conservation Overview of Methods The goal of the Western Lake Erie Coastal Conservation Vision project (WLECCV) is to define where we should be working locally to optimally achieve regional conservation impact. The

More information

Height Above Nearest Drainage in Houston THE UNIVERSITY OF TEXAS AT AUSTIN

Height Above Nearest Drainage in Houston THE UNIVERSITY OF TEXAS AT AUSTIN Height Above Nearest Drainage in Houston THE UNIVERSITY OF TEXAS AT AUSTIN Jeff Yuanhe Zheng GIS in Water Resources December 2 nd, 2016 Table of Contents 1.0 Introduction... 1 2.0 Project Objective...

More information

MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING

MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING 1. Introduction The most common application of the remote sensing techniques in the rainfall-runoff studies is the estimation

More information

Geographical knowledge and understanding scope and sequence: Foundation to Year 10

Geographical knowledge and understanding scope and sequence: Foundation to Year 10 Geographical knowledge and understanding scope and sequence: Foundation to Year 10 Foundation Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year level focus People live in places Places have distinctive features

More information

UNITED NATIONS E/CONF.96/CRP. 5

UNITED NATIONS E/CONF.96/CRP. 5 UNITED NATIONS E/CONF.96/CRP. 5 ECONOMIC AND SOCIAL COUNCIL Eighth United Nations Regional Cartographic Conference for the Americas New York, 27 June -1 July 2005 Item 5 of the provisional agenda* COUNTRY

More information

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY Chad A. Whaley, Department of Earth Sciences, University of South Alabama, MobileAL, 36688. E-MAIL: caw408@jaguar1.usouthal.edu The ultimate goal of this

More information

This table connects the content provided by Education Perfect to the NSW Syllabus.

This table connects the content provided by Education Perfect to the NSW Syllabus. Education Perfect Geography provides teachers with a wide range of quality, engaging and innovative content to drive positive student learning outcomes. Designed by teachers and written by our in-house

More information

Geography. Geography A. Curriculum Planner and Skills Mapping Grid GCSE Version 1 October 2012

Geography. Geography A. Curriculum Planner and Skills Mapping Grid GCSE Version 1 October 2012 Geography GCSE 2012 Geography A Curriculum Planner and Skills Mapping Grid Version 1 October 2012 www.ocr.org.uk/gcse2012 Year 10 Exam work Controlled Assessment Autumn 1 Autumn 2 Spring 1 Spring 2 Summer

More information

GIS feature extraction tools in diverse landscapes

GIS feature extraction tools in diverse landscapes CE 394K.3 GIS in Water Resources GIS feature extraction tools in diverse landscapes Final Project Anna G. Kladzyk M.S. Candidate, Expected 2015 Department of Environmental and Water Resources Engineering

More information

Investigation of the Effect of Transportation Network on Urban Growth by Using Satellite Images and Geographic Information Systems

Investigation of the Effect of Transportation Network on Urban Growth by Using Satellite Images and Geographic Information Systems Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Investigation of the Effect of Transportation Network on Urban Growth by Using Satellite Images and Geographic Information Systems

More information

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment Polish J. of Environ. Stud. Vol. 19, No. 5 (2010), 881-886 Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment Nuket Benzer* Landscape Architecture

More information

Statewide Topographic Mapping Program

Statewide Topographic Mapping Program Statewide Topographic Mapping Program February 28, 2018 www.dotd.la.gov Outline Purpose of the Statewide Topographic Mapping Program History Breakdown of R.S. 48:36 - Topographic Mapping Statewide Topographic

More information

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Alejandra Stehr 1, Oscar Link 2, Mauricio Aguayo 1 1 Centro

More information

The Use of Spatial Analysis Techniques in Mapping Potential Natural Hazard Areas: A Case Study of Taiwan.

The Use of Spatial Analysis Techniques in Mapping Potential Natural Hazard Areas: A Case Study of Taiwan. Available online at www.sciencedirect.com Procedia Environmental Sciences 10 (2011 ) 1092 1097 2011 3rd International Conference on Environmental 2011 3rd International Science Conference and Information

More information

Global reviews of wetland inventory, classification and delineation

Global reviews of wetland inventory, classification and delineation Max Finlayson Institute for Land, Water & Society Charles Sturt University Albury, Australia Global reviews of wetland inventory, classification and delineation Initiatives/meetings over two decades have

More information

An Internet-Based Integrated Resource Management System (IRMS)

An Internet-Based Integrated Resource Management System (IRMS) An Internet-Based Integrated Resource Management System (IRMS) Third Quarter Report, Year II 4/1/2000 6/30/2000 Prepared for Missouri Department of Natural Resources Missouri Department of Conservation

More information

Spanish national plan for land observation: new collaborative production system in Europe

Spanish national plan for land observation: new collaborative production system in Europe ADVANCE UNEDITED VERSION UNITED NATIONS E/CONF.103/5/Add.1 Economic and Social Affairs 9 July 2013 Tenth United Nations Regional Cartographic Conference for the Americas New York, 19-23, August 2013 Item

More information

Urban Tree Canopy Assessment Purcellville, Virginia

Urban Tree Canopy Assessment Purcellville, Virginia GLOBAL ECOSYSTEM CENTER www.systemecology.org Urban Tree Canopy Assessment Purcellville, Virginia Table of Contents 1. Project Background 2. Project Goal 3. Assessment Procedure 4. Economic Benefits 5.

More information

Watershed Analysis Using Remote Sensing and GPS

Watershed Analysis Using Remote Sensing and GPS 25 th Annual Louisiana Remote Sensing and GIS Workshop Baton Rouge, 2009 Watershed Analysis Using Remote Sensing and GPS Warren L. Kron, Jr. Quang Tran Baton Rouge City-Parish Planning Commission José

More information

A MODEL FOR RISES AND DOWNS OF THE GREATEST LAKE ON EARTH

A MODEL FOR RISES AND DOWNS OF THE GREATEST LAKE ON EARTH A MODEL FOR RISES AND DOWNS OF THE GREATEST LAKE ON EARTH Parviz Tarikhi Iranian Remote Sensing Center, Iran May 2005 1 Figure 1: West of Novshahr in the Iranian coast of Caspian; the dam constructed to

More information

DEVELOPMENT OF FLOOD HAZARD VULNERABILITY MAP FOR ALAPPUZHA DISTRICT

DEVELOPMENT OF FLOOD HAZARD VULNERABILITY MAP FOR ALAPPUZHA DISTRICT DEVELOPMENT OF FLOOD HAZARD VULNERABILITY MAP FOR ALAPPUZHA DISTRICT Ciya Maria Roy 1, Elsa Manoj 2, Harsha Joy 3, Sarin Ravi 4, Abhinanda Roy 5 1,2,3,4 U.G. Student, Department of Civil Engineering, MITS

More information

Abstract: About the Author:

Abstract: About the Author: REMOTE SENSING AND GIS IN LAND USE PLANNING Sathees kumar P 1, Nisha Radhakrishnan 2 1 1 Ph.D Research Scholar, Department of Civil Engineering, National Institute of Technology, Tiruchirappalli- 620015,

More information

Louisiana Transportation Engineering Conference. Monday, February 12, 2007

Louisiana Transportation Engineering Conference. Monday, February 12, 2007 Louisiana Transportation Engineering Conference Monday, February 12, 2007 Agenda Project Background Goal of EIS Why Use GIS? What is GIS? How used on this Project Other site selection tools I-69 Corridor

More information

Geospatial workflows and potential applications to the Sustainable Development Goals of countries in West Asia

Geospatial workflows and potential applications to the Sustainable Development Goals of countries in West Asia Geospatial workflows and potential applications to the Sustainable Development Goals of countries in West Asia Ameer Abdulla, PhD Senior Advisor, European Topic Center for Spatial Analysis, Spain Associate

More information

Vegetation and Wildlife Habitat Mapping Study in the Upper and Middle Susitna Basin Study Plan Section 11.5

Vegetation and Wildlife Habitat Mapping Study in the Upper and Middle Susitna Basin Study Plan Section 11.5 (FERC No. 14241) Vegetation and Wildlife Habitat Mapping Study in the Upper and Middle Susitna Basin Study Plan Section 11.5 Initial Study Report Part C: Executive Summary and Section 7 Prepared for Prepared

More information

Application of Remote Sensing Techniques for Change Detection in Land Use/ Land Cover of Ratnagiri District, Maharashtra

Application of Remote Sensing Techniques for Change Detection in Land Use/ Land Cover of Ratnagiri District, Maharashtra IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 3, Issue 6 Ver. II (Nov. - Dec. 2015), PP 55-60 www.iosrjournals.org Application of Remote Sensing

More information

Remote Sensing and GIS Application in Change Detection Study Using Multi Temporal Satellite

Remote Sensing and GIS Application in Change Detection Study Using Multi Temporal Satellite Cloud Publications International Journal of Advanced Remote Sensing and GIS 2013, Volume 2, Issue 1, pp. 374-378, Article ID Tech-181 ISSN 2320-0243 Case Study Open Access Remote Sensing and GIS Application

More information

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Rajesh VijayKumar Kherde *1, Dr. Priyadarshi. H. Sawant #2 * Department of Civil Engineering,

More information

Chapter 14 The technical role of government authorities in watershed management

Chapter 14 The technical role of government authorities in watershed management Chapter 14 The technical role of government authorities in watershed management 14.1 Objectives and procedural outline 1) Purpose of this chapter as related to participatory watershed management The participatory

More information

Potential Restorable Wetlands (PRWs):

Potential Restorable Wetlands (PRWs): ASWM Webinar Sept. 17, 2014 Potential Restorable Wetlands (PRWs): Working definition: wetland hydrology and soils minus presently mapped wetlands for the re-establishment of wetlands Hydric Soil Query

More information

Phase One Development of a Comprehensive GIS for the Mentor Marsh and its Proximal Watershed

Phase One Development of a Comprehensive GIS for the Mentor Marsh and its Proximal Watershed FINAL REPORT Phase One Development of a Comprehensive GIS for the Mentor Marsh and its Proximal Watershed Lake Erie Protection Fund SG 120-99 Ohio State University Research Foundation RF 738027 December

More information

Transactions on Information and Communications Technologies vol 18, 1998 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 18, 1998 WIT Press,   ISSN STREAM, spatial tools for river basins, environment and analysis of management options Menno Schepel Resource Analysis, Zuiderstraat 110, 2611 SJDelft, the Netherlands; e-mail: menno.schepel@resource.nl

More information

GIS = Geographic Information Systems;

GIS = Geographic Information Systems; What is GIS GIS = Geographic Information Systems; What Information are we talking about? Information about anything that has a place (e.g. locations of features, address of people) on Earth s surface,

More information

A GIS-based Approach to Watershed Analysis in Texas Author: Allison Guettner

A GIS-based Approach to Watershed Analysis in Texas Author: Allison Guettner Texas A&M University Zachry Department of Civil Engineering CVEN 658 Civil Engineering Applications of GIS Instructor: Dr. Francisco Olivera A GIS-based Approach to Watershed Analysis in Texas Author:

More information

Application of remote sensing for agricultural disasters

Application of remote sensing for agricultural disasters Application of remote sensing for agricultural disasters Bingfang Wu, Sheng Chang Institute of Remote Sensing and Digital Earth (RADI) Chinese Academy of Sciences (CAS) wubf@radi.ac.cn, changsheng@radi.ac.cn

More information

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL Dawen YANG, Eik Chay LOW and Toshio KOIKE Department of

More information

Use of Geospatial data for disaster managements

Use of Geospatial data for disaster managements Use of Geospatial data for disaster managements Source: http://alertsystemsgroup.com Instructor : Professor Dr. Yuji Murayama Teaching Assistant : Manjula Ranagalage What is GIS? A powerful set of tools

More information

Geo-spatial Analysis for Prediction of River Floods

Geo-spatial Analysis for Prediction of River Floods Geo-spatial Analysis for Prediction of River Floods Abstract. Due to the serious climate change, severe weather conditions constantly change the environment s phenomena. Floods turned out to be one of

More information

GIS Solutions in Natural Resource Management: Balancing the Technical- Political Equation

GIS Solutions in Natural Resource Management: Balancing the Technical- Political Equation GIS Solutions in Natural Resource Management: Balancing the Technical- Political Equation Stan Morain, Editor SUB Gdttlngen 7 208 520 309 98 A14447 0NW0RD PRESS V? % \

More information

Manitoba s Elevation (LiDAR) & Imagery Datasets. Acquisition Plans & Opportunities for Collaboration

Manitoba s Elevation (LiDAR) & Imagery Datasets. Acquisition Plans & Opportunities for Collaboration Manitoba s Elevation (LiDAR) & Imagery Datasets Acquisition Plans & Opportunities for Collaboration Manitoba Planning Conference May 2017 Presentation Outline Manitoba s Elevation (LiDAR) and Imagery Datasets

More information

Overview of Remote Sensing in Natural Resources Mapping

Overview of Remote Sensing in Natural Resources Mapping Overview of Remote Sensing in Natural Resources Mapping What is remote sensing? Why remote sensing? Examples of remote sensing in natural resources mapping Class goals What is Remote Sensing A remote sensing

More information

Birch Creek Geomorphic Assessment and Action Plan

Birch Creek Geomorphic Assessment and Action Plan Birch Creek Geomorphic Assessment and Action Plan Jim Webster Tim Hanrahan, PhD, CFM Jesse Schwartz, PhD Zach Hill January 22, 2015 White Eagle Grange This Project is a First Step in Strategy Planning

More information

13 Watershed Delineation & Modeling

13 Watershed Delineation & Modeling Module 4 (L12 - L18): Watershed Modeling Standard modeling approaches and classifications, system concept for watershed modeling, overall description of different hydrologic processes, modeling of rainfall,

More information

ENV208/ENV508 Applied GIS. Week 1: What is GIS?

ENV208/ENV508 Applied GIS. Week 1: What is GIS? ENV208/ENV508 Applied GIS Week 1: What is GIS? 1 WHAT IS GIS? A GIS integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information.

More information

Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI

Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI Deciding Alternative Land Use Options in a Watershed Using GIS Source: Anita Prakash

More information

Civil Engineering Journal

Civil Engineering Journal Available online at www.civilejournal.org Civil Engineering Journal Vol. 1, No. 2, December, 2015 Comparative Study of Landsat and Aster Data by Morphometric Analysis Sujit Kumar a*, Tapasi Bhandary b

More information