II. FLUID INTERFACES AND CAPILLARITY

Size: px
Start display at page:

Download "II. FLUID INTERFACES AND CAPILLARITY"

Transcription

1 CONTENTS Preface vii I. INTRODUCTION 1 A. Interfaces 1 B. Colloids 4 C. The bridge to nanoscience What is nanoscience? Nanostructures and assemblies Generic nanoscience New tools of generic nanoscience The plan 22 II. FLUID INTERFACES AND CAPILLARITY 23 A. Fluid interfaces: Young s membrane model The thinness of interfaces Definition of surface tension 25 B. The surface tension of liquids Pure liquids Temperature dependence of surface tension Surface tension of solutions 29 C. Intermolecular forces and the origin of surface tension Van der Waals forces Surface tension as unbalanced intermolecular forces; the Hamaker constant Pressure deficit in the interfacial layer; Bakker s equation Components of the surface tension 41 D. Interfacial tension Experimental interfacial tension Combining rules for interfacial tension 43 E. Dynamic surface tension 46 F. Capillary hydrostatics: the Young-Laplace Equation Capillary pressure: pressure jump across a curved fluid interface The curvature of a surface Derivation of the Young-Laplace equation Boundary conditions for the Young-Laplace equation 55 G. Some solutions to the Young-Laplace equation Cylindrical surfaces; meniscus against a flat plate Axisymmetric and other surfaces 59

2 x CONTENTS 3. Nondimensionalization of the Young-Laplace equation; the Bond number Saddle-shaped surfaces 62 H. The measurement of surface and interfacial tension Geometric vs. force methods Capillary rise Sessile drop and pendant drop Du Noüy ring detachment Wilhelmy slide Langmuir film balance Drop weight (or volume) Maximum bubble pressure and dynamic surface tension The pulsating bubble surfactometer Elliptical (vibrating) jet Contracting circular jet Problems with interfacial tension measurement Spinning drop method 76 I. Forces on solids in contact with liquids: capillary interactions Liquid bridges Shared menisci 80 J. Effect of curvature on the equilibrium properties of bulk liquids: the Kelvin Effect The vapor pressure of small droplets and liquids in pores The effect of curvature on boiling point Capillary condensation Nucleation 88 K. Thin liquid films Disjoining pressure and its measurement The molecular origin of disjoining pressure The disjoining pressure isotherm The augmented Young-Laplace equation 101 SOME FUN THINGS TO DO: CHAPTER III. THERMODYNAMICS OF INTERFACIAL SYSTEMS 107 A. The thermodynamics of simple bulk systems Thermodynamic concepts The simple compressible system 108 B. The simple capillary system The work of extension Heat effects; abstract properties; definition of boundary tension 111 C. Extension to fluid-solid interfacial systems The work of area extension in fluid-solid systems Compound interfacial systems; Young s equation 116 D. Multicomponent interfacial systems The Gibbs dividing surface and adsorption 119

3 CONTENTS xi 2. Immiscible interfacial systems The measurement of adsorption The phase rule; descriptive equations for binary interfacial systems 127 E. The Gibbs adsorption equation 128 F. Surface tension of solutions Ideal-dilute capillary systems Moderately dilute capillary systems 135 G. Surface active agents (surfactants) and their solutions The structure of different types of surface active agents Solutions of non-electrolyte surfactants Solutions of electrolyte surfactants 147 H. Self-assembly of surfactant monomers in solution Formation of micelles: critical micelle concentration (CMC) Solubilization 160 I. Micelle morphology, other self-assembled structures, and concentrated surfactant solutions Micellar shape and the Critical Packing Parameter (CPP) Beyond micelles: other self-assembled structures Concentrated surfactant solutions; liquid crystalline mesophases Kinetics of micellization and other self-assembly processes 171 J. Dynamic surface tension of surfactant solutions Diffusion-controlled adsorption Finite adsorption-desorption kinetics 175 K. Insoluble (Langmuir) monolayers Formation of monolayers by spontaneous spreading Hydrodynamic consequences of monolayers: Gibbs elasticity π-a isotherms of insoluble monolayers Langmuir-Blodgett films Transport properties of monolayers 184 L. The thermodynamics of fluid-solid interfacial systems revisited The concept of interfacial energy and its measurement in fluid-solid systems Adsorption of non-polymeric molecules at the solid-liquid interface Experimental measurement of small molecule solid-liquid adsorption Adsorption of polymers at the solid-liquid interface 202 SOME FUN THINGS TO DO: CHAPTER IV. SOLID-LIQUID INTERACTIONS 214 A. Wettability and the contact angle: Young's Equation Importance of wetting; definition of contact angle 214

4 xii CONTENTS 2. Young s equation revisited; classification of wetting and contact angle values 216 B. Contact angle hysteresis Origins of hysteresis: roughness and heterogeneity Complexity of real surfaces: texture and scale Wenzel equation for rough surfaces Cassie-Baxter analysis of heterogeneous surfaces; composite surfaces and ultra-hydrophobicity The dynamic contact angle; Tanner s law 227 C. Methods for measuring the contact angle Optical or profile methods: contact angle goniometry Force methods: contact angle tensiometry Dynamic contact angle measurement 235 D. Relation of wetting behavior to surface chemical constitution Zisman plots; the critical surface tension The wettability series Estimates of surface energies from contact angle data or vice versa Thermodynamics of solid-liquid contact: work of adhesion, work of wetting and work of spreading; the Young-Dupré equation The promotion or retardation of wetting: practical strategies 245 E. Spreading of liquids on solid surfaces Criteria for spontaneous spreading; spreading morphology Temperature effects of wetting; heats of immersion and wetting transitions The kinetics of spreading on smooth surfaces Spreading agents; superspreaders 257 F. The relationship of wetting and spreading behavior to adhesion Definition of adhesion; adhesion mechanisms The Laws of Molecular Adhesion Practical adhesion vs. thermodynamic adhesion The importance of wetting (contact angle) to practical adhesion The optimization of thermodynamic contact adhesion Acid-base effects in adhesion Contact mechanics; the JKR method 272 G. Heterogeneous nucleation 277 H. Processes based on wettability changes or differences Detergency Flotation Selective or spherical agglomeration Offset lithographic printing 282 I. Wicking flows (capillary action) and absorbency Wicking into a single capillary tube 284

5 CONTENTS xiii 2. Wicking in porous media Practical strategies for promoting absorbency Immiscible displacement Mercury porosimitry Motion of liquid threads Surface wicking; spreading over rough or porous surfaces 295 J. Particles at interfaces Particles at solid-fluid interfaces: effects on wetting and spreading The disposition of particles at fluid interfaces Particle-assisted wetting Pickering emulsions Armored bubbles and liquid marbles Janus particles and nanoparticles at fluid interfaces 306 K. The description of solid surfaces Solid surface roughness Fractal surfaces Surface texture Measurement of surface roughness and texture by stylus profilometry 314 L. Optical techniques for surface characterization Optical microscopy Optical profilometry Confocal microscopy Electron microscopy Near-field scanning optical microscopy (NSOM) 320 M. Scanning probe microscopy (SPM) Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) 324 N. Surface area of powders, pore size distribution 331 O. Energetic characterization of solid surfaces: Inverse Gas Chromatography (IGC) 333 SOME FUN THINGS TO DO: CHAPTER V. COLLOIDAL SYSTEMS: PHENOMENOLOGY AND CHARACTERIZATION 345 A. Preliminaries Definition and classification of colloids General properties of colloidal dispersions Dense vs. dilute dispersions 349 B. Mechanisms of lyophobic colloid instability Phase segregation: the "phoretic processes" Thermodynamic criteria for stability Aggregation Coalescence Particle size disproportionation 356

6 xiv CONTENTS C. Preparation of colloid particles and colloidal dispersions Classification of preparation strategies for lyophobic colloids Top-down strategies Bottom-up strategies 365 D. Morphology of colloids: particle size, size distribution, and particle shape Description of particle size distributions Distributions based on different size variables and weighting factors Normal (Gaussian) and log-normal distributions Particle shape 382 E. Sedimentation and centrifugation Individual particle settling: Stokes law Multi-particle, wall and charge effects on sedimentation Differential sedimentation; particle size analysis Centrifugation 395 F. Brownian motion; sedimentation-diffusion equilibrium Kinetic theory and diffusion Brownian motion Sedimentation (centrifugation) diffusion equilibrium Practical retrospective regarding sedimentation and other phoretic processes 407 G. Measurement of particle size and size distribution: overview Classification of methods Microscopy 410 H. Light scattering Classical (static) light scattering Rayleigh scattering Turbidity Rayleigh-Gans-Debye (RGD) scattering Mie scattering Fraunhofer diffraction; laser diffraction Inelastic scattering: absorbance; the Raman effect Scattering from denser dispersions Dynamic Light Scattering (Photon Correlation Spectroscopy) Dynamic light scattering from denser dispersions 442 I. Aperture, chromatographic and acoustic methods for particle sizing Aperture (one-at-a-time) methods Chromatographic methods Acoustic methods 448 SOME FUN THINGS TO DO: CHAPTER 5 450

7 CONTENTS xv VI. ELECTRICAL PROPERTIES OF INTERFACES 455 A. Origin of charge separation at interfaces Overview Preferential adsorption/desorption of lattice ions Specific adsorption of charged species Ionization of surface functional groups Isomorphic substitution Accumulation/depletion of electrons Interface charging in non-aqueous systems 463 B. Electric double layer formation and structure The Helmholtz model; electrostatic units The Gouy-Chapman model; Poisson-Boltzmann equation Boundary conditions to the Poisson-Boltzmann equation Double layers at spherical and cylindrical surfaces The free energy of double layer formation The Stern model; structure of the inner part of the double layer The mercury solution interface; electrocapillarity and refinements to the double layer model Oriented dipoles at the interface: the χ-potential 485 C. Electrostatic characterization of colloids by titration methods Colloid titrations Potentiometric titrations Conductometric titrations Donnan equilibrium and the suspension effect 493 D. Electrokinetics The electrokinetic phenomena The zeta potential and its interpretation Electrokinetic measurements; micro-electrophoresis Relationship of zeta potential to electrophoretic mobility Electrokinetic titrations Electro-acoustic measurements 514 E. Dielectrophoresis and optical trapping Dielectrophoresis Electrorotation and traveling wave dielectrophoresis Optical trapping; laser tweezers 520 SOME FUN THINGS TO DO: CHAPTER VII. INTERACTION BETWEEN COLLOID PARTICLES 525 A. Overview and rationale 525 B. Long-range van der Waals interactions The Hamaker (microscopic) approach Retardation The Lifshitz (macroscopic) approach Measurement of Hamaker constants 535 C. Electrostatic interactions; DLVO theory 540

8 xvi CONTENTS 1. Electrostatic repulsion between charged flat plates Electrostatic interactions between curved surfaces; the Derjaguin approximation DLVO theory: electrocratic dispersions Jar testing, the Schulze-Hardy rule and agreement with theory The Hofmeister series; ion speciation and ionic specific adsorption Repeptization Interaction between dissimilar surfaces: hetero-aggregation 558 D. Kinetics of aggregation Classification of aggregation rate processes and nomenclature Smoluchowski theory of diffusion-limited aggregation The hydrodynamic drainage effect Orthokinetic (shear flow induced) aggregation Reaction-limited (slow) aggregation; the stability ratio W Secondary minimum effects Kinetics of hetero-aggregation Measurement of early-stage aggregation kinetics (W) Surface aggregation Electrostatic stabilization and aggregation rates in apolar media 579 E. Steric stabilization and other colloid-polymer interactions Polymer adsorption and steric stabilization Thermodynamic considerations: enthalpic vs. entropic effects Fischer theory Steric repulsion plotted on DLVO coordinates Electro-steric stabilization Bridging flocculation Depletion flocculation Electrophoretic displays; electronic paper 599 F. The kinetics (and thermodynamics) of flocculation 601 G. Other non-dlvo interaction forces 603 H. Aggregate structure evolution; fractal aggregates Stages of the aggregation process Fractal aggregates The effect of particle size on aggregation phenomena; coating by nanoparticles 612 SOME FUN THINGS TO DO: CHAPTER 7 613

9 CONTENTS xvii VIII. RHEOLOGY OF DISPERSIONS 616 A. Rheology: scope and definitions 616 B. Viscometry Newton s law of viscosity Measurement of viscosity 618 C. The viscosity of colloidal dispersions Dilute dispersions; Einstein theory Denser dispersions of non-interacting particles Dilute dispersions of non-spherical particles 625 D. Non-Newtonian rheology General viscous behavior of dispersions of non-interacting particulates Fluids with a yield stress Time-dependent rheology Viscoelasticity 633 E. Electroviscous effects 637 SOME FUN THINGS TO DO: CHAPTER IX. EMULSIONS AND FOAMS 643 A. General consideration of emulsions Classification of emulsions Emulsifiers and emulsion stability Thermodynamics of emulsification/breakdown Preparation of emulsions 651 B. O/W or W/O emulsions? Rules of thumb The hydrophile-lipophile balance (HLB) and related scales Double (or multiple) emulsions 659 C. Application of emulsions Formation/breaking in situ Demulsification 663 D. Microemulsions Distinction between microemulsions and macro emulsions Phase behavior of microemulsion systems Ultra-low interfacial tension Interfacial film properties in microemulsion systems 672 E. General consideration of foams Nature and preparation of foams Stages in foam lifetime Stability mechanisms Foam behavior and foaming agents Antifoam action Froth flotation 686

10 xviii CONTENTS 7. Foaming in non-aqueous media; general surface activity near a phase split 687 SOME FUN THINGS TO DO: CHAPTER X. INTERFACIAL HYDRODYNAMICS 695 A. Unbalanced forces at fluid interfaces Unbalanced normal forces Tangential force imbalances: the Marangoni effect Boundary conditions at a fluid interface 702 B. Examples of Interfacial Hydrodynamic Flows The breakup of capillary jets Steady thermocapillary flow The motion of bubbles or drops in a temperature gradient Marangoni instability in a shallow liquid pool Bénard cells 718 C. Some Practical Implications of the Marangoni Effect Marangoni effects on mass transfer Marangoni drying Marangoni patterning 733 D. The Effect of Surface Active Agents Gibbs elasticity The boundary conditions describing the effects of surfactants The effect of surfactants on bubble or droplet circulation The effect of surfactants on the stability of a pool heated from below 745 SOME FUN THINGS TO DO: CHAPTER Appendix 1: EXERCISES 753 Appendix 2: THE TOP TEN 767 Appendix 3: OTHER SOURCES 771 Index 773

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Contents XVII. Preface

Contents XVII. Preface V Preface XVII 1 General Introduction 1 1.1 Suspensions 1 1.2 Latexes 2 1.3 Emulsions 2 1.4 Suspoemulsions 3 1.5 Multiple Emulsions 3 1.6 Nanosuspensions 4 1.7 Nanoemulsions 4 1.8 Microemulsions 5 1.9

More information

Physical Chemistry of Surfaces

Physical Chemistry of Surfaces Physical Chemistry of Surfaces Fifth Edition ARTHUR W. ADAMSON Department of Chemistry, University of Southern California Los Angeles, California >) A WILEY-INTERSCIENCE PUBLICATION John Wiley &. Sons,

More information

Capillarity and Wetting Phenomena

Capillarity and Wetting Phenomena ? Pierre-Gilles de Gennes Frangoise Brochard-Wyart David Quere Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves Translated by Axel Reisinger With 177 Figures Springer Springer New York Berlin

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Colloid Science Principles, methods and applications

Colloid Science Principles, methods and applications Colloid Science Principles, methods and applications Second Edition Edited by TERENCE COSGROVE School of Chemistry, University of Bristol, Bristol, UK WILEY A John Wiley and Sons, Ltd, Publication Contents

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup Christos Ritzoulis Translated by Jonathan Rhoades INTRODUCTION TO THE PHYSICAL CHEMISTRY of FOODS CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis

More information

Intermolecular and Surface Forces

Intermolecular and Surface Forces Intermolecular and Surface Forces ThirH FHitinn '' I I 111 \J& LM* КтЛ I Km I W I 1 Jacob N. Israelachvili UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach Yoon S. Lee Scientific Information Analyst Chemical Abstracts Service A Division of the American Chemical Society Columbus, Ohio WILEY A JOHN WILEY

More information

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour Mohamed Daoud Claudine E.Williams Editors Soft Matter Physics With 177 Figures, 16 of them in colour Contents 1. Droplets: CapiUarity and Wetting 1 By F. Brochard-Wyart (With 35 figures) 1.1 Introduction

More information

ELECTROCHEMICAL SYSTEMS

ELECTROCHEMICAL SYSTEMS ELECTROCHEMICAL SYSTEMS Third Edition JOHN NEWMAN and KAREN E. THOMAS-ALYEA University of California, Berkeley ELECTROCHEMICAL SOCIETY SERIES WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION PREFACE

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

1 General Introduction

1 General Introduction 1 1 General Introduction Several classes of formulations of disperse systems are encountered in the chemical industry, including suspensions, emulsions, suspoemulsions (mixtures of suspensions and emulsions),

More information

Colloid & Interface Science Case Study Model Answers

Colloid & Interface Science Case Study Model Answers Colloid & Interface Science Case Study Model Answers Distance Learning Course in Cosmetic Science Society of Cosmetic Scientists Common Features Formulations were examples of lyophobic colloidal systems

More information

Colloidal dispersion

Colloidal dispersion Dispersed Systems Dispersed systems consist of particulate matter, known as the dispersed phase, distributed throughout a continuous or dispersion medium. The dispersed material may range in size from

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

DEFOAMING THE SCIENCE Theory, Experiment and Applications. Peter R. Garrett. CRC Press. Taylor & Francis Group, an informa business

DEFOAMING THE SCIENCE Theory, Experiment and Applications. Peter R. Garrett. CRC Press. Taylor & Francis Group, an informa business THE SCIENCE OF DEFOAMING Theory, Experiment and Applications Peter R. Garrett @Taylor & CRC Press Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa

More information

DISPERSION OF POWDERS IN LIQUIDS AND STABILIZATION OF SUSPENSIONS

DISPERSION OF POWDERS IN LIQUIDS AND STABILIZATION OF SUSPENSIONS DISPERSION OF POWDERS IN LIQUIDS AND STABILIZATION OF SUSPENSIONS Malmö Sweden The Öresund bridge, Malmö Copenhagen DISPERSION OF POWDERS IN LIQUIDS AND STABILIZATION OF SUSPENSIONS Malmö Sweden This course

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

The Origins of Surface and Interfacial Tension

The Origins of Surface and Interfacial Tension The Origins of Surface and Interfacial Tension Imbalance of intermolecular forces exists at the liquid-air interface γ la= the surface tension that exists at the liquid-air interface Suppose we have a

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

COLLOIDAL DISPERSIONS

COLLOIDAL DISPERSIONS COLLOIDAL DISPERSIONS Marlyn D. Laksitorini Lab. of Physical Pharmacy and Biopharmaceutics Dept.Pharmaceutics Gadjah Mada School of Pharmacy References Overview 1. Type of Dispersion 2. Example of Colloidal

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

Principles of Convective Heat Transfer

Principles of Convective Heat Transfer Massoud Kaviany Principles of Convective Heat Transfer Second Edition With 378 Figures Springer Contents Series Preface Preface to the Second Edition Preface to the First Edition Acknowledgments vii ix

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Critical Micellization Concentration Determination using Surface Tension Phenomenon

Critical Micellization Concentration Determination using Surface Tension Phenomenon Critical Micellization Concentration Determination using Phenomenon 1. Introduction Surface-active agents (surfactants) were already known in ancient times, when their properties were used in everyday

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Modern Aspects of Emulsion Science

Modern Aspects of Emulsion Science Modern Aspects of Emulsion Science Edited by Bernard P. Binks Department of Chemistry, University ofhull, UK THE ROYAL SOCIETY OF CHEMISTRY Information Services Chapter 1 Emulsions - Recent Advances in

More information

Surface and Interfacial Aspects of Biomedical Polymers

Surface and Interfacial Aspects of Biomedical Polymers Surface and Interfacial Aspects of Biomedical Polymers Volume 1 Surface Chemistry and Physics Edited by Joseph D. Andrade University of Utah Salt Lake City, Utah PLENUM PRESS NEW YORK AND LONDON Contents

More information

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity Surfaces of Biomaterials Three lectures: 1.23.05 Surface Properties of Biomaterials 1.25.05 Surface Characterization 1.27.05 Surface and Protein Interactions Review Bulk Materials are described by: Chemical

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

Colloidal Particles at Liquid Interfaces: An Introduction

Colloidal Particles at Liquid Interfaces: An Introduction 1 Colloidal Particles at Liquid Interfaces: An Introduction Bernard P. Binks and Tommy S. Horozov Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK 1.1 Some Basic

More information

EMULSION AND NANOEMULSION

EMULSION AND NANOEMULSION EMULSION AND NANOEMULSION SCIENCE AND TECHNOLOGY Malmö Sweden The Öresund bridge, Malmö Copenhagen EMULSION AND NANOEMULSION SCIENCE AND TECHNOLOGY Emulsion and Nanoemulsion formation Selection of emulsifiers

More information

PHRC 4110 Pharmaceutics I

PHRC 4110 Pharmaceutics I CO01: Use interpretive tools for proper data handling CO01.01: Describe basic mathematics and statistic to interpret pharmaceutical data CO01.02: Work with exponents, powers, roots, logarithms, and antilogarithms

More information

Overview. Lecture 5 Colloidal Dispersions

Overview. Lecture 5 Colloidal Dispersions Physical Pharmacy Lecture 5 Colloidal Dispersions Assistant Lecturer in Pharmaceutics Overview Dispersed Systems Classification Colloidal Systems Properties of Colloids Optical Properties Kinetic Properties

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces.

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák & István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://kolloid.unideb.hu/~kolloid/

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Contact, Adhesion and Rupture of Elastic Solids

Contact, Adhesion and Rupture of Elastic Solids D. Maugis Contact, Adhesion and Rupture of Elastic Solids With 186 Figures Springer Contents г 1. Elements of Surface Physics 1 1.1 Introduction 1 1.2 Van der Waals Forces Between Molecules 3 1.2.1 The

More information

Contents. Introduction.

Contents. Introduction. Introduction. Chapter 1 Crystallography and 1.1 Crystal Lattices 1 1.2 Lattices and Unit Cells 1 1.3 Miller Indices 4 1.4 Powder X-Ray Diffraction and Bragg's Law 5 1.5 Typical Powder XRD Setup 7 1.6 Indexing

More information

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation : Dynamics of shear-induced aggregation G. Frungieri, J. Debona, M. Vanni Politecnico di Torino Dept. of Applied Science and Technology Lagrangian transport: from complex flows to complex fluids Lecce,

More information

Module 8: "Stability of Colloids" Lecture 37: "" The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template

Module 8: Stability of Colloids Lecture 37:  The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template The Lecture Contains: DLVO Theory Effect of Concentration file:///e /courses/colloid_interface_science/lecture37/37_1.htm[6/16/2012 1:02:12 PM] Studying the stability of colloids is an important topic

More information

FERROHYDRODYNAMICS R. E. ROSENSWEIG. DOVER PUBLICATIONS, INC. Mineola, New York

FERROHYDRODYNAMICS R. E. ROSENSWEIG. DOVER PUBLICATIONS, INC. Mineola, New York FERROHYDRODYNAMICS R. E. ROSENSWEIG DOVER PUBLICATIONS, INC. Mineola, New York CONTENTS Preface 1 Introduction 1.1 Scope of ferrohydrodynamics 1.2 Ferromagnetic solids 1.3 Magnetic fluids 1.4 Ferromagnetic

More information

ISO Colloidal systems Methods for zetapotential. Part 1: Electroacoustic and electrokinetic phenomena

ISO Colloidal systems Methods for zetapotential. Part 1: Electroacoustic and electrokinetic phenomena INTERNATIONAL STANDARD ISO 13099-1 First edition 2012-06-15 Colloidal systems Methods for zetapotential determination Part 1: Electroacoustic and electrokinetic phenomena Systèmes colloïdaux Méthodes de

More information

Interfacial Phenomena

Interfacial Phenomena Physical Pharmacy Lecture 4 Interfacial Phenomena Assistant Lecturer in Pharmaceutics Overview Liquid interfaces Surface tension Interfacial tension Surface free energy Measurement of tensions Spreading

More information

Review: ISO Colloidal systems Methods for zeta potential determination

Review: ISO Colloidal systems Methods for zeta potential determination Review: ISO 13099 Colloidal systems Methods for zeta potential determination Mark Bumiller mark.bumiller@horiba.com www.horiba.com/particle New ISO Standards www.iso.org Outline ISO standards Zeta potential

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Sanitary Engineering. Coagulation and Flocculation. Week 3

Sanitary Engineering. Coagulation and Flocculation. Week 3 Sanitary Engineering Coagulation and Flocculation Week 3 1 Coagulation and Flocculation Colloidal particles are too small to be removed by sedimentation or by sand filtration processes. Coagulation: Destabilization

More information

Chapter 7. Pickering Stabilisation ABSTRACT

Chapter 7. Pickering Stabilisation ABSTRACT Chapter 7 Pickering Stabilisation ABSTRACT In this chapter we investigate the interfacial properties of Pickering emulsions. Based upon findings that indicate these emulsions to be thermodynamically stable,

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Functionalized Surfaces B510 Stand: 20.10.2017 Table of contents Introduction 2 Basics 2 Surface tension 2 From wettability to the contact angle 4 The Young equation 5 Wetting

More information

Tharwat F. Tadros Applied Surfactants

Tharwat F. Tadros Applied Surfactants Tharwat F. Tadros Applied Surfactants Further Titles of Interest L. L. Schramm Emulsions, Foams, and Suspensions Fundamentals and Applications 2005 ISBN 3-527-30743-5 E. Smulders Laundry Detergents 2002

More information

SOIL COLLOIDS PROPERTIES AND ION RINDING. CRC Press. University of Bueno Aires Buenos Aires, Argentina. Taylor & Francis Croup

SOIL COLLOIDS PROPERTIES AND ION RINDING. CRC Press. University of Bueno Aires Buenos Aires, Argentina. Taylor & Francis Croup SOIL COLLOIDS PROPERTIES AND ION RINDING Fernando V. Molina University of Bueno Aires Buenos Aires, Argentina CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the

More information

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support Monolayers Adsorption as process Adsorption of gases on solids Adsorption of solutions on solids Factors affecting the adsorption from solution Adsorption of amphiphilic molecules on solid support Adsorption

More information

INTERFACIAL PHENOMENA GRADING SCHEME

INTERFACIAL PHENOMENA GRADING SCHEME 18.357 INTERFACIAL PHENOMENA Professor John W. M. Bush Fall 2010 Office 2-346 MW 2-3:30 Phone: 253-4387 (office) Room 2-135 email: bush@math.mit.edu Office hours: after class, available upon request GRADING

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Electrostatic Forces & The Electrical Double Layer

Electrostatic Forces & The Electrical Double Layer Electrostatic Forces & The Electrical Double Layer Dry Clay Swollen Clay Repulsive electrostatics control swelling of clays in water LiquidSolid Interface; Colloids Separation techniques such as : column

More information

Methods for charge and size characterization colloidal systems

Methods for charge and size characterization colloidal systems Methods for charge and size characterization colloidal systems Content General Basics Stabino Measurement basics Applications NANO-flex Measurement basics Applications Nanoparticles Bulkphase of gold gold

More information

Microparticle Based Assays

Microparticle Based Assays Microparticle Based Assays Last Class: 1. Mass Transport : Advection Diffusion Equation 2. Boundary Phenomena 3. Physical Properties as a Function of Concentration 4. Mixing/Separation/Purification of

More information

Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions. Prepared. For

Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions. Prepared. For 1 Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions Prepared For Dr. Reza Foudazi, Ph.D. Chemical and Materials Engineering New Mexico State University By Muchu Zhou May 10, 2016

More information

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase:

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: Dispersion systems 1/20 Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: coarse dispersion (suspension), > 1 µm colloid 1 µm

More information

Surfactants role on the deformation of colliding small bubbles

Surfactants role on the deformation of colliding small bubbles Colloids and Surfaces A: Physicochemical and Engineering Aspects 156 (1999) 547 566 www.elsevier.nl/locate/colsurfa Surfactants role on the deformation of colliding small bubbles D.S. Valkovska, K.D. Danov

More information

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension.

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension. ow can we measure surface tension? Surface tension, contact angles and wettability www.wikihow.com/measure-surface-tension Measuring surface tension The Wilhelmy balance F Some methods: Wilhelmy plate

More information

Modern Chemical Enhanced Oil Recovery

Modern Chemical Enhanced Oil Recovery Modern Chemical Enhanced Oil Recovery Theory and Practice James J. Sheng, Ph. D. AMSTERDAM BOSTON «HEIDELBERG LONDON ELSEVIER NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Gulf Professional

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Single action pressing (from top)

Single action pressing (from top) www.komage.de Single action pressing (from top) Double action pressing with fixed die Typical course of the pressure during pressing and ejection (Single action) Upper punch Pressure Lower punch Time Green

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

Solid-liquid interface

Solid-liquid interface Lecture Note #9 (Spring, 2017) Solid-liquid interface Reading: Shaw, ch. 6 Contact angles and wetting Wetting: the displacement from a surface of one fluid by another. A gas is displaced by a liquid at

More information

List of Figures. between the two surfaces and A the Hamaker constant (fig. 3.4)... 54

List of Figures. between the two surfaces and A the Hamaker constant (fig. 3.4)... 54 List of Figures 1.1 Transfer of momentum between contiguous layers of fluid..... 10 1.2 Flow around a moving sphere..................... 18 1.3 Interaction between two moving spheres................ 19

More information

Particles, drops, and bubbles. Lecture 3

Particles, drops, and bubbles. Lecture 3 Particles, drops, and bubbles Lecture 3 Brownian Motion is diffusion The Einstein relation between particle size and its diffusion coefficient is: D = kt 6πηa However gravitational sedimentation tends

More information

Table of Contents Preface List of Contributors xix Chapter 1. Microfluidics: Fundamentals and Engineering Concepts 1

Table of Contents Preface List of Contributors xix Chapter 1. Microfluidics: Fundamentals and Engineering Concepts 1 Table of Contents Preface List of Contributors v xix Chapter 1. Microfluidics: Fundamentals and Engineering Concepts 1 1. Introduction 1 2. Essentials of Fluidic Transport Phenomena at Small Scales 3 2.1.

More information

Thermodynamics of Surfaces and Capillary Systems

Thermodynamics of Surfaces and Capillary Systems CHEMICAL ENGINEERING SERIES CHEMICAL THERMODYNAMICS SET Volume 7 Thermodynamics of Surfaces and Capillary Systems Michel Soustelle Thermodynamics of Surfaces and Capillary Systems Chemical Thermodynamics

More information

PROPERTIES OF POLYMERS

PROPERTIES OF POLYMERS PROPERTIES OF POLYMERS THEIR CORRELATION WITH CHEMICAL STRUCTURE; THEIR NUMERICAL ESTIMATION AND PREDICTION FROM ADDITIVE GROUP CONTRIBUTIONS Third, completely revised edition By D.W. VÄN KREVELEN Professor-Emeritus,

More information

Towards hydrodynamic simulations of wet particle systems

Towards hydrodynamic simulations of wet particle systems The 7th World Congress on Particle Technology (WCPT7) Towards hydrodynamic simulations of wet particle systems Sudeshna Roy a*, Stefan Luding a, Thomas Weinhart a a Faculty of Engineering Technology, MESA+,

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Surfaces and Interfaces Defining of interfacial region Types of interfaces: surface vs interface Surface

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important Mats Larsson 1, Adrian Hill 2, and John Duffy 2 1 Malvern

More information

26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013

26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013 26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013 Classes: Thurs, 6-9 pm; Ball Hall Room 208 Professor: Dr. B. Budhlall Office: Ball Hall 203B, Phone: 978-934-3414 Email: Bridgette_Budhlall@uml.edu

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Foams: Basic Principles

Foams: Basic Principles 1 Foams: Basic Principles Downloaded via 148.251.232.83 on January 23, 2019 at 01:03:46 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. Laurier

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

An Introduction to Chemical Kinetics

An Introduction to Chemical Kinetics An Introduction to Chemical Kinetics Michel Soustelle WWILEY Table of Contents Preface xvii PART 1. BASIC CONCEPTS OF CHEMICAL KINETICS 1 Chapter 1. Chemical Reaction and Kinetic Quantities 3 1.1. The

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Surfaces and Interfaces Defining of interfacial region Types

More information

Electrophoretic Light Scattering Overview

Electrophoretic Light Scattering Overview Electrophoretic Light Scattering Overview When an electric field is applied across an electrolytic solution, charged particles suspended in the electrolyte are attracted towards the electrode of opposite

More information

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal

More information

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces Out-class reading: Levine p. 387-390 13.2 Curved interfaces https://news.cnblogs.com/n/559867/ 8.2.1 Some interesting phenomena 8.2.1 Some interesting phenomena Provided by Prof. Yu-Peng GUO of Jilin

More information

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

Fluid Flow, Heat Transfer and Boiling in Micro-Channels L.P. Yarin A. Mosyak G. Hetsroni Fluid Flow, Heat Transfer and Boiling in Micro-Channels 4Q Springer 1 Introduction 1 1.1 General Overview 1 1.2 Scope and Contents of Part 1 2 1.3 Scope and Contents of

More information

CHAPTER 10. Characteristics of the Surfaces of Biomaterials

CHAPTER 10. Characteristics of the Surfaces of Biomaterials CHAPTER 10 Characteristics of the Surfaces of Biomaterials 10.1 Surface Characteristics Related to Chemical Bonding 10.2 Surface Chemistry Related to Bonding of Biological Molecules 10.3 Porosity 10.4

More information

Surface Tension and its measurements

Surface Tension and its measurements Surface Tension and its measurements Surface Tension Surface tension is a fundamental property by which the gas liquid interfaces are characterized. The zone between a gaseous phase and a liquid phase

More information

Biomaterial Scaffolds

Biomaterial Scaffolds Biomaterial Scaffolds Biomaterial Properties Surface properties Bulk properties Biological properties Types of Biomaterials Biological materials Synthetic materials Surface Properties The body reads the

More information