New Pairs of Inks and Papers for Photolithography, Microcontact Printing, and Scanning Probe Nanolithography

Size: px
Start display at page:

Download "New Pairs of Inks and Papers for Photolithography, Microcontact Printing, and Scanning Probe Nanolithography"

Transcription

1 Mat. Res. Soc. Symp. Proc. Vol Materials Research Society F3.2.1 New Pairs of Inks and Papers for Photolithography, Microcontact Printing, and Scanning Probe Nanolithography Lon A. Porter, Jr., Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribbe, and Jillian M. Buriak Department of Chemistry, 1393 Brown Laboratories, Purdue University, West Lafayette, IN , U.S.A. ABSTRACT Currently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ultra large scale integration (ULSI) device fabrication, nanoelectromechanical systems (NEMS), and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. This method provides for the facile interfacing of metal nanoparticles with a group (IV) and III-IV compound semiconductor surfaces. Morphologically complex films composed of gold, platinum, and palladium nanoparticles have been prepared as a result of the immersion of germanium and gallium arsenide substrates into dilute, aqueous solutions of tetrachloraurate (III), tetrachloroplatinate (II), and tetrachloropalladate (II), respectively. Continuous metallic films form spontaneously under ambient conditions, in the absence of a fluoride source or an externally applied current. This facile electroless deposition methodology provides an alternative to complex and expensive vacuum methods of metallization, yet allows for the preparation of both thin and thick nanostructured films with control over surface morphology and deposition rate. Furthermore, precious metal films prepared in this way exhibit excellent adhesion to the underlying semiconductor substrate. The resultant films were characterized utilizing scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy (SPM). In order to apply this novel metallization method toward the development of useful technologies, patterning utilizing photolithography, microcontact printing (µcp), and scanning probe nanolithography (SPN) has been demonstrated. INTRODUCTION Patterning metallic structures with micro- and nanometer resolution for both fundamental investigations and technological applications has recently attracted considerable interest. Developments toward this end, such as dip-pen nanolithography (DPN) [1] and micro-contact printing (µ-cp) [2], employ a liquid-phase ink to pattern a solid paper substrate. These are relatively straightforward methods to execute since they operate in air, using easily accessible equipment and simple procedures. Herein, we report the patterning of new pairs of metallic or semiconducting papers with inks of aqueous noble metal salts, chosen on the basis of mixed potential arguments [3], through photolithography, µ-cp, and DPN [4]. The resulting nanoparticle films deposited from these inks demonstrate complex morphological architectures [3], which are of importance

2 F3.2.2 for the interfacing of nanoparticles with metals and semiconductors, the development of high surface area catalysts, SERS, and other uses [5,6]. EXPERIMENTAL DETAILS Substrate preparation The Ge(100) and metal foil substrates were diced into 0.5 x 0.5 cm rectangles and degreased by immersion into 4 successive baths of each of the following solvents: acetone, methanol, and deionized water. An additional soak in the above solvents was carried out with sonication for 2 min. Finally, the Ge(100) samples were soaked in scintillation vials containing the aqueous metal salts for the designated time and temperature. The metal-deposited Ge(100) substrates were then removed from the metal solution and washed with copious amounts of 18 MΩ water, ethanol, and pentane. The surfaces were subsequently blown dry with a stream of nitrogen. Photopatterned UV induced hydrogermylation After a 10 min. immersion in an aqueous solution of HF (10%), the freshly prepared hydride-terminated Ge(100) substrate was transferred to an inert atmosphere [7]. Approximately 0.1 ml of 1-dodecene, filtered through alumina to remove peroxides, was dropped onto the Ge(100) surface. A nickel micromesh grid (Internet, Inc., 25 µm feature size), serving as a contact photomask, was placed onto the Ge(100) substrate. A brass washer was employed to secure the photomask, and the surface was then exposed to a mercury vapor lamp with 254 nm radiation from a penlight source (Jelight, 9 mw/cm 2 at 2 cm). UV photoinduced hydrogermylation was accomplished within 45 min and the sample subsequently washed with copious amounts of ethanol, pentane, and methylene chloride. Following UV induced hydrogermylation, the samples were immersed into aqueous solutions of either 2 x 10-3 MHAuCl 4,2x10-3 MNa 2 PdCl 4,or2x10-2 M Na 2 PtCl 4, depending on the metal species of interest. After soaking for 30 s, the substrates were removed from the metal solution and immediately washed with copious amounts of deionized water. The samples were finally blown dry utilizing a stream of nitrogen. Microcontact printing (µ-cp) on Ge(100) Approximately 1 ml of aqueous 2 x 10-3 MNa 2 PdCl 4 was dropped onto the surface of the Ge(100) wafer fragment. Immediately, the ozone-treated PDMS stamp was forced through the PdCl 4 - solution with moderate pressure, so that direct contact with the underlying substrate was achieved. The PDMS stamp served as a barrier to mask the Ge(100) surface from the aqueous metal solution, thereby preventing nanoparticle deposition in the regions where the stamp and substrate were in direct contact. After a period of 10 min, the excess metal solution was washed away with deionized water and the substrate transferred to a water bath while maintaining contact with the PDMS stamp. While immersed in deionized water, the stamp was removed and the substrate subsequently rinsed with additional water.

3 F3.2.3 Microcontact printing (µ-cp) on Zn foil A freshly prepared PDMS stamp, soaked in deionized (18 MΩ cm) water, was pressed upon a 2 x 10-2 M aqueous solution of NaPtCl 4 for15-30s. Afterdryingthe stamp at ambient conditions (30-50% relative humidity), both the stamp and a cut piece of Zn foil were stored in a humid ( 95%) jar for 5 min. The stamp was then lightly placed upon the foil for 15 s and removed; the foil was washed with deionized water and dried under dinitrogen flow. Dip-pen nanolithography (DPN) on Ge(100) A scanning probe microscope (Nanoscope III, Digital Instruments) was used as a lithography tool for writing and tapping mode atomic force microscopy (TM-AFM) for imaging. The Si tip was dipped into an ink solution [1:10 (v:v) mixture of aqueous solution of 20 mm AuCl 4 - and acetonitrile (99.8%, Aldrich)] for 5 min and dried under ambient conditions for 5 min. The humidity during writing was held constant at 50% using home-built humidifier. The writing speed for lithography was 0.2 µm/s for writing and 1.0 µm/s for imaging. The average height of the resulting gold line is about 4 nm and the diameter is in the range of 30 nm. While the height of a solid sample, such as gold, is usually accurate, the width of the observed line is widened due to convolution artifacts, a well known issue in STM and AFM, which causes the x,y-dimensions of sample features to appear larger as they are in reality when their dimensions are in the range of the tip-curvature. In our case the same tip used for writing and imaging and is, therefore, due to wear and pollution, likely to result in a tip with enlarged curvature and decreased accuracy of the line width. DISCUSSION In order to incorporate spontaneously and rapidly formed metallic nanoparticle films (see figure 1) into complex architectures, facile and efficient patterning of these assemblies is essential. Photolithography, negative µ-cp, and DPN, are demonstrated here employing Au, Pd, and Pt salt inks with a Ge(100) paper, and Pt salts with a Zn metal paper. Figure 1. Scanning electron micrographs of various noble metal nanoparticle films deposited onto germanium, copper, and zinc substrates [4].

4 F3.2.4 Figure 2. Schematic (a) and SEM micrographs of photolithography patterning of Pd on Ge(100) (b,c). The EDS spectrum of the bright gridlines (d) confirms nanoparticles composed of Pd, whereas the Pd signal is absent from the spectrum for the squares (e). Photolithography, as shown in figure 2, was accomplished through the use of an organic monolayer resist. A hydride-terminated germanium surface was exposed to 254 UV light (15 mw cm -2 intensity) through a metal contact mask in deoxygenated 1- dodecene. The illuminated regions undergo hydrogermylation in the presence of 1- dodecene [7]. A related spatially defined functionalization approach has been shown on silicon [8]. This results in 5-25 µm-sized features of dodecyl and hydride, respectively. Upon immersion of the hydride/alkyl-terminated surface, metal deposition occurs preferentially in the hydride areas since the alkyl monolayer functions as an effective dielectric barrier (see figure 2b,c). The hydride surface oxidizes in-situ and subsequently dissolves in the aqueous medium [9]. Metal salt reduction and deposition can then occur, leading to deposition between the alkylated domains. The germanium oxide dissolves in water, leading to intimate electrical contact between the semiconductor bulk and the metal salts, thus facilitating deposition. In the case of silicon, however, the native oxide has been shown to effectively prevent metal deposition due to its insolubility in water. Microcontact printing methods, as shown in figure 3, were also utilized to prepare micro- and nanosized features on surfaces. Negative patterning results in micron-scale deposition on Ge(100). Because PdCl 4 2- is reduced slowly on the germanium oxide interface, the solution was dropped upon the surface and was immediately pressed with an oxidized, hydrophilic PDMS stamp. Gentile pressure was applied to force excess aqueous PdCl 4 2- solution from the stamp/wafer interface. After approximately ten minutes, the stamp was removed and the germanium immediately rinsed with deionized water to yield negative patterning with a spatially defined resolution on the order of 40 µm (see figure 3c). Negative patterning on rough zinc foil with an aqueous PtCl 4 2- ink using a hydrophobic, untreated PDMS stamp further demonstrates the utility of this technique (see figure 3h). The zinc foil was not pretreated in any way to reduce or flatten the material. Micron-scale lines of the deposited platinum metal film can be clearly observed, in spite of the surface roughness. Consequently, this technique is not restricted to flat surfaces and can be extended to morphologically inhomogeneous interfaces.

5 F3.2.5 Figure 3. Negativeµ-CP patterning of Pd on Ge(100) (a-e) and Pt on Zn foil (f-j). Optical micrographs of the PDMS stamps employed in patterning (b,g) and SEM micrographs of patterning of Pd on Ge(100) (c) and Pt on Zn foil (h). The EDS spectrum of the bright regions (d) confirms nanoparticles composed of Pd, whereas the Pd signal is absent from the spectrum for the squares/rectangles (e). Likewise, the EDS spectrum of the bright gridlines (i) confirms nanoparticles composed of Pt, whereas the Pt signal is absent from the spectrum for the squares (j). Dip-pen nanolithography, as outlined in figure 4, was demonstrated through the writing of a 0.55 µm long gold line with a width of 30 nm and height of 10 nm through the spontaneous electroless deposition of AuCl 4 -, delivered via the AFM tip, upon an untreated Ge(100) wafer (see figure 4). Writing was accomplished at a rate of 0.2 µm/s in a constant humidity environment of 50%. Similar results were obtained with PdCl CONCLUSIONS In summary, electroless deposition of noble metal salts on semiconducting and metallic substrates leads to morphologically complex, nanostructured films that can be patterned via photolithography, µ-cp, and DPN. Current investigations in our group are focused on determining the extent of molecular contact between the metal particles and the underlying substrate as to explore their utility as nanoscale electrical contacts for

6 F3.2.6 Figure 4. Au line (550 nm long, 30 nm wide, 10 nm in height) drawn in air through DPN on a native oxide coated Ge(100) surface. interfacing a range of different organic and biomolecules, and for catalytic and sensor applications, among others. ACKNOWLDEGEMENTS Jillian M. Buriak gratefully acknowledges support from NSF for grants CHE and CHE and a predoctoral fellowship to LAP, the Purdue Research Foundation (fellowships to HCC and JMS), the Indiana Instrumentation Institute (fellowship to LAP), and the Sloan Foundation. JMB is a Cottrell Teacher-Scholar of Research Corporation ( ), and a Camille and Henry Dreyfus Teacher-Scholar ( ). The Purdue Laboratory of Chemical Nanotechnology is acknowledged for technical support and expert advice. Lindsay C. C. Elliott and Katie Jennings are thanked for help in preparing nanoparticle films. Profs. Ralph G. Nuzzo and Fred E. Lytle are thanked for providing samples for microcontact printing. Dr. Richard T. Haasch is acknowledged for the acquisition of XPS data, carried out at the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U. S. Department of Energy under grant DEFG02-96-ER REFERENCES 1. R.D.Piner,J.Zhu,F.Xu,S.Hong,andC.A.Mirkin,Science 283, 661 (1999). 2. Y.Xia,J.A.Rogers,K.E.Paul,andG.M.Whitesides,Chem. Rev. 99, 1823 (1999). 3. L. A. Porter, Jr., H. C. Choi, A. E. Ribbe, and J. M. Buriak, Nano Lett. 2,1067 (2002). 4. L.A.Porter,Jr.,H.C.Choi,J.M.Schmeltzer,A.E.Ribbe,L.C.C.Elliott,andJ.M. Buriak, Nano Lett. in press. 5. R. M. Penner, Acc. Chem. Res. 33, 78 (2000). 6. J. D. Aiken, and R. G. Finke, J. Mol. Cat. A. 145, 1 (1999). 7. K. Choi, and J. M. Buriak, Langmuir 16, 7737 (2000). 8. J. T. C. Wojtyk, M. Tomietto, R. Boukherroub, and D. D. M. Wayner, J. Am. Chem. Soc. 123, 1535 (2001). 9. F. Glockling, The Chemistry of Germanium, (Academic Press, 1969) p. 35.

Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces

Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces SUPPORTING INFORMATION. Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces Lon A. Porter, Jr., Hee Cheul Choi, Alexander E. Ribbe, and Jillian M. Buriak Department

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Au Ink for AFM Dip-Pen Nanolithography

Au Ink for AFM Dip-Pen Nanolithography Letter Au Ink for AFM Dip-Pen Nanolithography Benjamin W. Maynor, Yan Li, and Jie Liu Langmuir, 2001, 17 (9), 2575-2578 DOI: 10.1021/la001755m Downloaded from http://pubs.acs.org on January 6, 2009 Subscriber

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu (& Liying Liang) Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de;

More information

Supporting Information

Supporting Information Supporting Information Assembly and Densification of Nanowire Arrays via Shrinkage Jaehoon Bang, Jonghyun Choi, Fan Xia, Sun Sang Kwon, Ali Ashraf, Won Il Park, and SungWoo Nam*,, Department of Mechanical

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

Electrochemically Synthesized Multi-block

Electrochemically Synthesized Multi-block Electrochemically Synthesized Multi-block Nanorods Sungho Park SungKyunKwan University, Department of Chemistry & SKKU Advanced Institute of Nanotechnology (SAINT) J. Am. Chem. Soc. 2003, 125, 2282-2290

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were Supplementary Information Pd induced Pt(Ⅳ) reduction to form Pd@Pt/CNT core-shell catalyst for a more complete oxygen reduction Preparation of SH- functionalized CNT In a typical routine, the pristine

More information

Research Article Galvanic Displacement of Gallium Arsenide Surface: A Simple and Low-Cost Method to Deposit Metal Nanoparticles and Films

Research Article Galvanic Displacement of Gallium Arsenide Surface: A Simple and Low-Cost Method to Deposit Metal Nanoparticles and Films Chemistry, Article ID 78484, 8 pages http://dx.doi.org/1.1155/14/78484 Research Article Galvanic Displacement of Gallium Arsenide Surface: A Simple and Low-Cost Method to Deposit Metal Nanoparticles and

More information

I. NANOFABRICATION O AND CHARACTERIZATION Chap. 2 : Self-Assembly

I. NANOFABRICATION O AND CHARACTERIZATION Chap. 2 : Self-Assembly I. Nanofabrication and Characterization : TOC I. NANOFABRICATION O AND CHARACTERIZATION Chap. 1 : Nanolithography Chap. 2 : Self-Assembly Chap. 3 : Scanning Probe Microscopy Nanoscale fabrication requirements

More information

PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY

PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY Anca Orăşanu, Marcus R. Davidson, Robert H. Bradley Advanced Materials & Biomaterials Research Centre, School

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

SUPPORTING INFORMATION. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle

SUPPORTING INFORMATION. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle SUPPORTING INFORMATION The general fabrication process is illustrated in Figure 1. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle of 0.1. The Si was covered with

More information

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan Puntambekar, Michael L. Geier, and,,, * Mark C. Hersam Department

More information

Lecture 3. Self-assembled Monolayers (SAM)

Lecture 3. Self-assembled Monolayers (SAM) 10.524 Lecture 3. Self-assembled Monolayers (SAM) Instructor: Prof. Zhiyong Gu (Chemical Engineering & UML CHN/NCOE Nanomanufacturing Center) Lecture 3: Self-assembled Monolayers (SAMs) Table of Contents

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

2 Assistant Professor, Department of Chemical and Materials Engineering, University of Kentucky, KY, USA

2 Assistant Professor, Department of Chemical and Materials Engineering, University of Kentucky, KY, USA Synthesis and Characterization of Hydrogels Grown on Surfaces by ATRP Hariharasudhan Chirra 1, James Z. Hilt 2 1 Department of Chemical and Materials Engineering, University of Kentucky, KY, USA 40508.

More information

STUDY OF LAYERS OF METAL NANOPARTICLES ON SEMICONDUCTOR WAFERS FOR HYDROGEN DETECTION

STUDY OF LAYERS OF METAL NANOPARTICLES ON SEMICONDUCTOR WAFERS FOR HYDROGEN DETECTION STUDY OF LAYERS OF METAL NANOPARTICLES ON SEMICONDUCTOR WAFERS FOR HYDROGEN DETECTION Martin MULLER a, b, Karel ZDANSKY a, Jiri ZAVADIL a, Katerina PIKSOVA b a INSTITUTE OF PHOTONICS AND ELECTRONICS, CZECH

More information

Supporting information

Supporting information Supporting information A Facile and Large-area Fabrication Method of Superhydrophobic Self-cleaning Flourinated Polysiloxane/TiO 2 Nanocomposite Coatings with Long-term Durability Xiaofeng Ding, Shuxue

More information

MSN551 LITHOGRAPHY II

MSN551 LITHOGRAPHY II MSN551 Introduction to Micro and Nano Fabrication LITHOGRAPHY II E-Beam, Focused Ion Beam and Soft Lithography Why need electron beam lithography? Smaller features are required By electronics industry:

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

Supplementary Information:

Supplementary Information: Supplementary Information: One-Step and Rapid Synthesis of Clean and Monodisperse Dendritic Pt Nanoparticles and Their High Performance Toward Methanol Oxidation and p-nitrophenol Reduction Jun Wang, Xin-Bo

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction** Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION Materials Graphite powder (SP-1 graphite) was obtained from Bay carbon.

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 9(1) (2012), pp. 1-8 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Preparation,

More information

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution.

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 2. 1 H nuclear magnetic resonance (NMR) spectra (a) and

More information

Nano Materials and Devices

Nano Materials and Devices Nano Materials and Devices Professor Michael Austin Platform Technologies Research Institute Nano Materials and Devices Program Aim: to develop an integrated capability in nanotechnology Design and modelling

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase 1 / 5 Supporting Information for The Influence of Size-Induced Oxidation State of Platinum Nanoparticles on Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase Hailiang Wang, Yihai

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

Comparison between patterns generated by microcontact printing and dip-pen nanolithography on

Comparison between patterns generated by microcontact printing and dip-pen nanolithography on Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center December 2007 Comparison between patterns generated by microcontact printing and dip-pen nanolithography on Heeyeon

More information

Supporting information

Supporting information Supporting information Polymer-Single-Crystal@Nanoparticle Nanosandwich for Surface Enhanced Raman Spectroscopy Bin Dong, Wenda Wang, David L. Miller, Christopher Y. Li* Department of Material Science

More information

Title Single Row Nano-Tribological Printing: A novel additive manufacturing method for nanostructures

Title Single Row Nano-Tribological Printing: A novel additive manufacturing method for nanostructures Nano-Tribological Printing: A novel additive manufacturing method for nanostructures H.S. Khare, N.N. Gosvami, I. Lahouij, R.W. Carpick hkhare@seas.upenn.edu carpick@seas.upenn.edu carpick.seas.upenn.edu

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Top down and bottom up fabrication

Top down and bottom up fabrication Lecture 24 Top down and bottom up fabrication Lithography ( lithos stone / graphein to write) City of words lithograph h (Vito Acconci, 1999) 1930 s lithography press Photolithography d 2( NA) NA=numerical

More information

Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using

Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using Supporting Information Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using Step and Flash Imprint Lithography Vaibhav S. Khire, 1 Youngwoo Yi, 2 Noel A. Clark, 2 and Christopher

More information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 Under the guidance of Prof. (Ms). Sasmita Mohapatra Department

More information

Dip-Pen Lithography 1

Dip-Pen Lithography 1 Dip-Pen Lithography 1 A Brief History of Writing Instruments From Quills and Bamboos to fountain pens and brushes M. Klein and Henry W. Wynne received US patent #68445 in 1867 for an ink chamber and delivery

More information

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport Keren M. Freedy 1, Ashutosh Giri 2, Brian M. Foley 2, Matthew R. Barone 1, Patrick

More information

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM U.S. -KOREA Forums on Nanotechnology 1 CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM February 17 th 2005 Eung-Sug Lee,Jun-Ho Jeong Korea Institute of Machinery & Materials U.S. -KOREA Forums

More information

Supplementary information for:

Supplementary information for: Supplementary information for: Solvent dispersible nanoplatinum-carbon nanotube hybrids for application in homogeneous catalysis Yuhong Chen, Xueyan Zhang and Somenath Mitra* Department of Chemistry and

More information

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Electronic Supplementary Information A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Matthew J. Carnie, a Cecile Charbonneau, a Matthew L. Davies, b Joel Troughton,

More information

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Supporting Information Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Terefe G. Habteyes, Scott Dhuey, Erin Wood, Daniel Gargas, Stefano Cabrini, P. James

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer SUHAILA SEPEAI, A.W.AZHARI, SALEEM H.ZAIDI, K.SOPIAN Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600

More information

Homogeneous Electrochemical Assay for Protein Kinase Activity

Homogeneous Electrochemical Assay for Protein Kinase Activity Homogeneous Electrochemical Assay for Protein Kinase Activity Ik-Soo Shin,,, Rohit Chand, Sang Wook Lee, Hyun-Woo Rhee, Yong-Sang Kim, * and Jong-In Hong* Corresponding Author *Prof. Dr. J.-I. Hong, Department

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light

Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light Xinchen Wang*, Kazuhiko Maeda, Xiufang Chen, Kazuhiro Takanabe, Kazunari

More information

Gold Nanosponges (AuNS): A Versatile Nanostructure for Surface- Enhanced Raman Spectroscopic Detection of Small Molecules and Biomolecules

Gold Nanosponges (AuNS): A Versatile Nanostructure for Surface- Enhanced Raman Spectroscopic Detection of Small Molecules and Biomolecules Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Material for Analyst Gold Nanosponges (AuNS): A Versatile Nanostructure

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

fibrinogen nanofibrils

fibrinogen nanofibrils Title: Controlled self-assembly and templated metallization of fibrinogen nanofibrils Gang Wei, Jörg Reichert, and Klaus D. Jandt Institute of Materials Science & Technology (IMT), Chair in Materials Science,

More information

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope Kentaro Sasaki, Keiji Ueno and Atsushi Koma Department of Chemistry, The University of Tokyo,

More information

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Supplementary Information Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Zhen Liu, Selcuk Poyraz, Yang Liu, Xinyu Zhang* Department of Polymer and Fiber Engineering, Auburn

More information

Paper presentation. M S Bootha Raju Date: 28/11/09

Paper presentation. M S Bootha Raju Date: 28/11/09 Paper presentation M S Bootha Raju Date: 28/11/09 Photoemission Spectroscopy and Atomic Force Microscopy Investigation of Vapor-Phase Codeposited Silver/Poly(3-hexylthiophene) Composites L. Scudiero, Haoyan

More information

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5.

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized

More information

Nanostructures Fabrication Methods

Nanostructures Fabrication Methods Nanostructures Fabrication Methods bottom-up methods ( atom by atom ) In the bottom-up approach, atoms, molecules and even nanoparticles themselves can be used as the building blocks for the creation of

More information

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction Supplementary Information Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction Neil P. Dasgupta 1 ǂ, Chong Liu 1,2 ǂ, Sean Andrews 1,2, Fritz B. Prinz

More information

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Section Micro and Nano Technologies RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Assoc. Prof. Ersin Kayahan 1,2,3 1 Kocaeli University, Electro-optic and Sys. Eng. Umuttepe, 41380, Kocaeli-Turkey

More information

Nanoscale Patterning of Self-assembled Monolayers using DNA Nanostructure Templates

Nanoscale Patterning of Self-assembled Monolayers using DNA Nanostructure Templates Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Nanoscale Patterning of Self-assembled Monolayers using DNA Nanostructure Templates Sumedh P. Surwade,

More information

A nanoscale perspective on the effect of acid washing of carbon catalyst supports

A nanoscale perspective on the effect of acid washing of carbon catalyst supports A nanoscale perspective on the effect of acid washing of carbon catalyst supports Emir Bouleghlimat, Philip R. Davies, Robert J. Davies, Jiri Kulahvy, David J. Morgan, School of Chemistry, Cardiff University

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Revealing High Fidelity of Nanomolding Process by Extracting the Information from AFM Image with Systematic Artifacts

Revealing High Fidelity of Nanomolding Process by Extracting the Information from AFM Image with Systematic Artifacts Revealing High Fidelity of Nanomolding Process by Extracting the Information from AFM Image with Systematic Artifacts Sajal Biring* Department of Electronics Engineering and Organic Electronics Research

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information High-k Polymer/Graphene Oxide Dielectrics for Low-Voltage Flexible Nonvolatile

More information

Introduction to Photolithography

Introduction to Photolithography http://www.ichaus.de/news/72 Introduction to Photolithography Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Visualizing the bi-directional electron transfer in

More information

Supplementary Information. For. A Universal Method for Preparing Functional ITO Electrodes with Ultrahigh Stability

Supplementary Information. For. A Universal Method for Preparing Functional ITO Electrodes with Ultrahigh Stability Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information For A Universal Method for Preparing Functional ITO Electrodes with Ultrahigh

More information

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system Supporting information for -Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system Amit Saha, John Leazer* and Rajender S. Varma* Sustainable Technology

More information

Diamond-like-carbon (DLC) master creation for use in soft lithography using the Atomic Force Microscope (AFM)

Diamond-like-carbon (DLC) master creation for use in soft lithography using the Atomic Force Microscope (AFM) Diamond-like-carbon (DLC) master creation for use in soft lithography using the Atomic Force Microscope (AFM) Author Watson, Gregory, Myhra, S., Watson, Jolanta Published 2007 Journal Title Journal of

More information

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES CHAPTER 3 FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES Au NPs with ~ 15 nm were prepared by citrate reduction of HAuCl 4

More information

Supporting Information

Supporting Information Supporting Information A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals Haitao Zhang, Byung-Ryool Hyun, Frank W. Wise, Richard D. Robinson * Department of Materials

More information

Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold

Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold 1878 Chem. Mater. 2004, 16, 1878-1883 Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold Eun K. Seo, Jung W. Lee, Hyung M. Sung-Suh, and Myung M. Sung* Department of Chemistry,

More information

Supporting Information

Supporting Information Supporting Information General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility Chan Luo 1,2 *, Aung Ko Ko Kyaw 1, Louis A. Perez 3, Shrayesh Patel

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Selective Diels-Alder cycloaddition on semiconducting single-walled carbon nanotubes for potential separation application Jiao-Tong Sun, Lu-Yang Zhao, Chun-Yan Hong,

More information

Depressing the hydrogenation and decomposition. nanoparticles on oxygen functionalized. carbon nanofibers. Supporting Information

Depressing the hydrogenation and decomposition. nanoparticles on oxygen functionalized. carbon nanofibers. Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Depressing the hydrogenation and decomposition reaction in H 2 O 2 synthesis

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2004

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2004 Supporting Information for Angew. Chem. Int. Ed. Z53009 Wiley-VCH 2004 69451 Weinheim, Germany Shear Patterning of Microdominos: A New Class of Procedures for Making Micro- and Nanostructures ** Byron

More information

An Optimal Substrate Design for SERS: Dual-Scale Diamond-Shaped Gold Nano-Structures Fabricated via Interference Lithography

An Optimal Substrate Design for SERS: Dual-Scale Diamond-Shaped Gold Nano-Structures Fabricated via Interference Lithography Supporting Information An Optimal Substrate Design for SERS: Dual-Scale Diamond-Shaped Gold Nano-Structures Fabricated via Interference Lithography Hyo-Jin Ahn a, Pradheep Thiyagarajan a, Lin Jia b, Sun-I

More information

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Zinc Oxide-Black Phosphorus Composites for Ultrasensitive

More information

Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor

Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor Supporting Information Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor Tsukuru Minamiki, Tsuyoshi Minami,*, Petr Koutnik, Pavel Anzenbacher, Jr., and Shizuo Tokito

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process MEEN 489-500 Nanoscale Issues in Manufacturing Lithography Lecture 1: The Lithographic Process 1 Discuss Reading Assignment 1 1 Introducing Nano 2 2 Size Matters 3 3 Interlude One-The Fundamental Science

More information

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Dr. E. A. Leone BACKGRUND ne trend in the electronic packaging industry

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF)

Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF) Journal of the Korean Physical Society, Vol. 33, No. 5, November 1998, pp. 579 583 Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF) Baikil Choi and Hyeongtag Jeon School

More information

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction Xiaohong Xie, Siguo Chen*, Wei Ding, Yao Nie, and Zidong Wei* Experimental

More information

Electronic supplementary information

Electronic supplementary information Electronic supplementary information Multi-Scale Structured, Superhydrophobic and Wide-Angle, Antireflective Coating in the Near-Infrared Region Kelly C. Camargo,, * Alexandre F. Michels, Fabiano S. Rodembusch,

More information