Chapter 5 Chemical Reactions Law of Conservation of Mass and Quantities 5.7 Mole Relationships in Chemical Equations

Size: px
Start display at page:

Download "Chapter 5 Chemical Reactions Law of Conservation of Mass and Quantities 5.7 Mole Relationships in Chemical Equations"

Transcription

1 Chapter 5 Chemical Reactions and Quantities Law of Conservation of Mass 5.7 Mole Relationships in Chemical Equations The Law of Conservation of Mass indicates that in an ordinary chemical reaction, Matter cannot be created or destroyed. No change in total mass occurs in a reaction. Mass of products is equal to mass of reactants. 1 Conservation of Mass 2 Reading Equations with Moles Consider the following equation: Fe(s) + 3O2(g) 2Fe2O3(s) This equation can be read in moles by placing the word moles between each coefficient and formula. + Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings Reactants 2 moles Ag + 1 moles S 2 (107.9 g) + 1(32.1 g) 27.9 = = Products 1 mole Ag2S 1 (27.9 g) = 27.9 g moles Fe + 3 Writing Mole-Mole Factors A mole-mole factor is a ratio of the moles for any two Consider the following equation: 3 H2(g) + N2(g) 2 NH3(g) substances in an equation. Fe(s) + Fe and O2 Fe and Fe2O3 O2 and Fe2O3 3O2(g) 2Fe2O3(s) moles Fe and moles Fe and and A. A mole-mole factor for H2 and N2 is 1) 3 moles N2 2) 1 mole N2 1 mole H2 3 moles H2 moles Fe moles Fe 3) 1 mole N2 2 moles H2 B. A mole-mole factor for NH3 and H2 is 1) 1 mole H2 2) 2 moles NH3 3) 3 moles N2 2 moles NH3 3 moles H2 2 moles NH

2 Calculations with Mole Factors How many moles of Fe 2 O 3 can be produced from 6.0 moles O 2? Fe(s) + 3O 2 (g) 2Fe 2 O 3 (s) Relationship: 3 mole O 2 = 2 mole Fe 2 O 3 Write a mole-mole factor to determine the moles of Fe 2 O 3. How many moles of Fe are needed for the reaction of 12.0 moles O 2? Fe(s) + 3O 2 (g) 2 Fe 2 O 3 (s) 1) 3.00 moles Fe 2) 9.00 moles Fe 3) 16.0 moles Fe 6.0 mole O 2 x 2 mole Fe 2 O 3 =.0 moles Fe 2 O 3 3 mole O Chapter 5 Chemical Reactions and Quantities 5.8 Mass Calculations for Reactions Moles to Grams Suppose we want to determine the mass (g) of NH 3 that can form from 2.50 moles N 2. N 2 (g) + 3H 2 (g) 2NH 3 (g) The plan needed would be moles N 2 moles NH 3 grams NH 3 The factors needed would be: mole factor NH 3 /N 2 and the molar mass NH Moles to Grams The setup for the solution would be: 2.50 mole N 2 x 2 moles NH 3 x 17.0 g NH 3 1 mole N 2 1 mole NH 3 given mole-mole factor molar mass = 85.0 g NH 3 How many grams of O 2 are needed to produce 0.00 mole Fe 2 O 3 in the following reaction? Fe(s) + 3O 2 (g) 2Fe 2 O 3 (s) 1) 38. g O 2 2) 19.2 g O 2 3) 1.90 g O

3 Calculating the Mass of a Reactant Calculating the Mass of a Reactant The reaction between H 2 and O 2 produces 13.1 g water. How many grams of O 2 reacted? 2H 2 (g) + O 2 (g) 2H 2 O(g)? g 13.1 g The plan and factors would be g H 2 O mole H 2 O mole O 2 g O 2 mass H 2 O factor mass O 2 The setup would be: 13.1 g H 2 O x 1 mole H 2 O x 1 mole O 2 x 32.0 g O g H 2 O 2 moles H 2 O 1 mole O 2 = 11.6 g O 2 mass H 2 O factor mass O Calculating the Mass of Product Acetylene gas C 2 H 2 burns in the oxyacetylene torch for welding. How many grams of C 2 H 2 are burned if the reaction produces 75.0 g CO 2? When 18.6 g ethane gas C 2 H 6 burns in oxygen, how many grams of CO 2 are produced? 2C 2 H 2 (g) + 5O 2 (g) 1) 88.6 g C 2 H 2 2).3 g C 2 H 2 3) 22.2 g C 2 H 2 CO 2 (g) + 2H 2 O(g) 2C 2 H 6 (g) + 7O 2 (g) 18.6 g? g The plan and factors would be CO 2 (g) + 6H 2 O(g) g C 2 H 6 mole C 2 H 6 mole CO 2 g CO 2 mass C 2 H 6 factor mass CO Calculating the Mass of Product The setup would be 18.6 g C 2 H 6 x 1 mole C 2 H 6 x moles CO 2 x.0 g CO g C 2 H 6 2 moles C 2 H 6 1 mole CO 2 mass C 2 H 6 factor mass CO 2 How many grams H 2 O are produced when 35.8 g C 3 H 8 react by the following equation? C 3 H 8 (g) + 5O 2 (g) 3CO 2 (g) + H 2 O(g) g H 2 O g H 2 O g H 2 O = 5. g CO

4 Chapter 5 Chemical Reactions and Quantities 5.9 Percent Yield and Limiting Reactants Theoretical, Actual, and Percent Yield Theoretical yield The maximum amount of product, which is calculated using the balanced equation. Actual yield The amount of product obtained when the reaction takes place. Percent yield The ratio of actual yield to theoretical yield. percent yield = actual yield (g) x 100 theoretical yield (g) Calculating Percent Yield You prepared cookie dough to make 5 dozen cookies. The phone rings and you answer. While you talk, a sheet of 12 cookies burn and you throw them out. The rest of the cookies are okay. What is the percent yield of edible cookies? Theoretical yield 60 cookies possible Actual yield 8 cookies to eat Percent yield 8 cookies x 100 = 80% yield 60 cookies 21 Without proper ventilation and limited oxygen, the reaction of carbon and oxygen produces carbon monoxide. 2C(g) + O 2 (g) 2CO(g) What is the percent yield if 0.0 g CO are produced when 30.0 g O 2 are used? 1) 25.0% 2) 75.0% 3) 76.2% 22 Limiting Reactant When N 2 and 5.00 g H 2 are mixed, the reaction produces 16.0 g NH 3. What is the percent yield for the reaction? N 2 (g) + 3H 2 (g) 1) 31.3 % 2) 56.5 % 3) 80.0 % 2NH 3 (g) A limiting reactant in a chemical reaction is the substance that Is used up first. Limits the amount of product that can form and stops the reaction. 23 2

5 Reacting Amounts Reacting Amounts In a table setting, there is 1plate, 1 fork, 1 knife, and 1 spoon. Only place settings are possible. Initially Plates 5 Forks 6 Spoons Knives 7 How many table settings are possible from 5 plates, 6 forks, spoons, and 7 knives? Used Left over What is the limiting item? The limiting item is the spoon. 25 Example of An Everyday Limiting Reactant 26 Example of An Everyday Limiting Reactant How many peanut butter sandwiches could be made from 8 slices of bread and 1 jar of peanut butter? How many peanut butter sandwiches could be made from 8 slices bread and 1 tablespoon of peanut butter? With 1 tablespoon of peanut butter, only 1 sandwich could be made. The peanut butter is the limiting item. With 8 slices of bread, only sandwiches could be made. The bread is the limiting item Limiting Reactant Limiting Reactant When.00 moles H2 is mixed with 2.00 moles Cl2,how many moles of HCl can form? H2(g) + Cl2(g) 2HCl (g) HCl from H2.00 moles 2.00 moles.00 moles H2 x 2 moles HCl = 8.00 moles HCl 1 moles H2 (not possible) HCl from Cl moles Cl2 x 2 moles HCl =.00 moles HCl 1 mole Cl2 (smaller number of moles, Cl2 will be used up first)??? moles Calculate the moles of product that each reactant, H2 and Cl2, could produce. The limiting reactant is the one that produces the smallest amount of product. The limiting reactant is Cl2 because it is used up first. Thus Cl2 produces the smaller number of moles of HCl

6 Check Calculations Limiting Reactants Using Mass Initially H 2 Reacted/ Formed Left after reaction.00 moles Cl moles 2HCl 0 mole moles moles +.00 moles 2.00 moles Excess 0 mole Limiting.00 moles If.80 moles Ca are mixed with 2.00 moles N 2, which is The limiting reactant? 3Ca(s) + N 2 (g) Ca 3 N 2 (s) moles of Ca 3 N 2 from Ca.80 moles Ca x 1 mole Ca 3 N 2 = 1.60 moles Ca 3 N 2 3 moles Ca (Ca is used up) moles of Ca 3 N 2 from N moles N 2 x 1 mole Ca 3 N 2 = 2.00 moles Ca 3 N 2 1 mole N 2 (not possible) Ca is used up when 1.60 mole Ca 3 N 2 forms. Thus, Ca is the limiting reactant Limiting Reactants Using Mass Limiting Reactants Using Mass Calculate the mass of water produced when 8.00 g H 2 and 2.0 g O 2 react? 2H 2 (g) + O 2 (g) 2H 2 O(l) Moles H 2 O from H 2 : 8.00 g H 2 x 1 mole H 2 x 2 moles H 2 O = 3.97 moles H 2 O 2.02 g H 2 2 moles H 2 (not possible) Moles H 2 O from O 2 : 2.0 g O 2 x 1 mole O 2 x 2 moles H 2 O = 1.50 moles H 2 O 32.0 g O 2 1 mole O 2 O 2 is limiting The maximum amount of product is 1.50 moles H 2 O, which is converted to grams moles H 2 O x 18.0 g H 2 O = 27.0 g H 2 O 1 mole H 2 O 3 6

Math-tastic! Lesson 9.5 Limiting Reagent & Percent Yield 2/21/2015. Identify the limiting reagent in a reaction. Limiting Reactants OBJECTIVES:

Math-tastic! Lesson 9.5 Limiting Reagent & Percent Yield 2/21/2015. Identify the limiting reagent in a reaction. Limiting Reactants OBJECTIVES: . Math-tastic! Unit 9: Math of Chemistry Part II - Stoichiometry Lesson # 9.5: Limiting Reagent & Percent Yield 121 Lesson 9.5 Limiting Reagent & Percent Yield OBJECTIVES: Identify the limiting reagent

More information

3/6/2018. Limiting Reactant. Reacting Amounts. Reacting Amounts. Limiting Reactants. Example of Everyday Limiting Reactant.

3/6/2018. Limiting Reactant. Reacting Amounts. Reacting Amounts. Limiting Reactants. Example of Everyday Limiting Reactant. Chapter 9 Lecture Limiting Reactant Chapter 9 Chemical Quantities in Reactions 9.4 Limiting Reactants Fifth Edition A limiting reactant in a chemical reaction is the substance that is used up first stops

More information

EXTRA CREDIT REMINDER

EXTRA CREDIT REMINDER EXTRA CREDIT REMINDER Due Tonight at Midnight (January 21 at 11:59 pm) via email kimberlyn.jackson@hcbe.net *** Kinesthetic: If you do not know how to use Prezi you may do a power point otherwise email

More information

Limiting Reactants. Copyright 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings

Limiting Reactants. Copyright 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings Limiting Reactants Copyright 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings Limiting Reactants Limiting Reactant used up in a reaction Determines/limits the amount of product Stops the

More information

3.9 Stoichiometric Calcs: Amounts of Reactants and Products

3.9 Stoichiometric Calcs: Amounts of Reactants and Products 3.9 Stoichiometric Calcs: Amounts of Reactants and Products Law of Conservation of Mass The Law of Conservation of Mass indicates that in an ordinary chemical reaction, Matter cannot be created nor destroyed.

More information

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another.

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another. 8/9/015 A chemical change (a chemical reaction) converts one substance into another. CHAPTER 3: PART Chemical Equations and Stoichiometry Chemical reactions involve: 1. Breaking bonds in the reactants.

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9. 9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.5 Calculations Involving a Limiting Reactant 9.6 Percent Yield mole-to-mole

More information

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages )

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages ) Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.

More information

Heat and Temperature Cut from Jan 2007 Jan 2008 Exams

Heat and Temperature Cut from Jan 2007 Jan 2008 Exams Heat and Temperature Cut from Jan 2007 Jan 2008 Exams 1. Given the balanced equation: I + I I2 Which statement describes the process represented by this equation? (1) A bond is formed as energy is absorbed.

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

11 Stoichiometry. Section 11.1 What is stoichiometry?

11 Stoichiometry. Section 11.1 What is stoichiometry? 11 Stoichiometry Section 11.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1.. 3. 4. 5. The study of the quantitative

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 10 Chemical Equation Calculations by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 10 1 What

More information

This reaction might be scaled up to make a larger quantity of product. For example, to make three times as much:

This reaction might be scaled up to make a larger quantity of product. For example, to make three times as much: The Limiting Reactant Problem When reactants are mixed, they are often combined in proportion: the number of moles of each reactant corresponds to the combining ratio predicted by the balanced chemical

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 3 Stoichiometry. Ratios of combination

Chapter 3 Stoichiometry. Ratios of combination Chapter 3 Stoichiometry Ratios of combination Topics Molecular and formula masses Percent composition of compounds Chemical equations Mole and molar mass Combustion analysis (Determining the formula of

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Stoichiometry The study of the numerical relationship between chemical quantities in a chemical reaction Making Pizza The number of pizzas you can make

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Stoichiometry Section 12.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1. The study of the quantitative relationships

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chem 1075 Chapter 10 Stoichiometry Lecture Notes

Chem 1075 Chapter 10 Stoichiometry Lecture Notes Chem 1075 Chapter 10 Stoichiometry Lecture Notes Slide 2 What is stoichiometry? Chemists and chemical engineers must perform calculations based on balanced chemical reactions to predict the cost of processes.

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM0 JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 014 All

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Practice Test. Moles & Stoich. Page What is the total number of nitrogen atoms in 0.25 mole of NO2 gas? (1)

Practice Test. Moles & Stoich. Page What is the total number of nitrogen atoms in 0.25 mole of NO2 gas? (1) 1. What is the total number of nitrogen atoms in 0.25 mole of NO2 gas? (1) 1.5 10 23 (3) 3.0 10 23 (2) 6.0 10 23 (4) 1.2 10 24 2. Which quantity of O2 contains exactly 3.01 10 23 molecules? (1) 0.250 mole

More information

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry Chemistry I Chapter 9 Stoichiometry Objective Sheet Equation 1 2 C 2 H 2 (g) + 5 O 2 (g) 4 CO 2 (g) + 2 H 2 O (g), at STP C 2 H 2 (acetylene) 26 g/mol O 2 32 g/mol CO 2 44 g/mol H 2 O 18 g/mol Objectives:

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Chapter 9. Stoichiometry. Mr. Mole. NB page 189 Chapter 9 Stoichiometry Mr. Mole NB page 189 review Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double

More information

CH. 12 STOICHIOMETRY

CH. 12 STOICHIOMETRY CH. 12 STOICHIOMETRY Balanced Chemical Equations Used to calculate: How much of each reactant is needed How much product will form If you know one quantity you can calculate the rest. Quantity may be in

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

Chemical Reactions and Quantities. Chapter 7

Chemical Reactions and Quantities. Chapter 7 Chemical Reactions and Quantities Chapter 7 Chemical Reactions occur Everywhere when fuel burns with oxygen in our cars to make the car move when we cook our food when we dye our hair in our bodies, chemical

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015 Math-tastic! Unit 9: Math of Chemistry Part II - Stoichiometry Lesson # 9.4: The Arithmetic of Equations Mr. Mole 87 STOICHIOMETRY is Greek for measuring elements Pronounced stoy-kee-ahm-uhtree Defined

More information

Limiting Reactants. and Percentage Yield. Section 3

Limiting Reactants. and Percentage Yield. Section 3 GO ONLINE Section 3 8E Main Ideas One reactant limits the product of a reaction. Comparing the actual and theoretical yields helps chemists determine the reaction s efficiency. 8E perform stoichiometric

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1 STOICHIOMETRY Engr. Yvonne Ligaya F. Musico 1 Stoichiometry The study in chemistry dealing with calculations based on balanced chemical equations. The branch of chemistry dealing with mass relationships

More information

Chemical Reactions and Quantities

Chemical Reactions and Quantities Chemical Reactions and Quantities Chapter 7 Some chemical reactions are simple, whereas others are quite complex However, they can all be written by chemical equations that chemists use to describe chemical

More information

3.7 Chem. Eqs & 3.8 Balancing Chem. Eqs

3.7 Chem. Eqs & 3.8 Balancing Chem. Eqs 3.7 Chem. Eqs & 3.8 Balancing Chem. Eqs Chemical Equations A chemical equation gives the chemical formulas of the reactants on the left of the arrow and the products on the right. Reactants Product C(s)

More information

Chemical Reactions and Quantities

Chemical Reactions and Quantities Chemical Reactions and Quantities Chapter 7 Chemical Reactions occur Everywhere when fuel burns with oxygen in our cars to make the car move when we cook our food when we dye our hair in our bodies, chemical

More information

Chapter 12 Stoichiometry

Chapter 12 Stoichiometry 12.2 Chemical Calculations > Chapter 12 Stoichiometry 12.1 The Arithmetic of Equations 12.22 Chemical Calculations 12.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 1.1: Calculate the molecular mass of the following: (i) H2O (ii) CO2 (iii) CH4 Answer 1.1: (i) H2O: The molecular mass of water, H2O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen)

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya PowerPoint to accompany Chapter 2 Stoichiometry: Calculations with Chemical Formulae and Equations Dr V Paideya Chemical Equations CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Figure 2.4 Chemical Equations

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Chapter 6 Chemical Reactions: Mole and Mass Relationships

Chapter 6 Chemical Reactions: Mole and Mass Relationships Chapter 6 Chemical Reactions: Mole and Mass Relationships 6.1 The Mole and Avogadro s What is a Mole? - A Chemist s way of counting! - Cooks don t count out individual grains of sugar or rice when they

More information

Stoichiometry Ch. 11. I. Stoichiometric Calculations

Stoichiometry Ch. 11. I. Stoichiometric Calculations Stoichiometry Ch. 11 I. Stoichiometric Calculations Background on things you NEED to know how to do: 1. Name/write correct chemical formula 2. Write chemical equations 3. Balance chemical equations 4.

More information

Stoichiometry World of Chemistry: Chapter 9

Stoichiometry World of Chemistry: Chapter 9 Stoichiometry World of Chemistry: Chapter 9 Chocolate Chip Cookies!! 1 cup butter 1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs 2 1/2 cups all-purpose flour 1 teaspoon

More information

Quantitative Relationships in Chemical Reactions Chapter 7

Quantitative Relationships in Chemical Reactions Chapter 7 Quantitative Relationships in Chemical Reactions Chapter 7 The burning of charcoal releases heat (thermal energy) that grills our food. But the combustion of charcoal and fossil fuels also releases CO

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

9.1 The Arithmetic of Equations > Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations

9.1 The Arithmetic of Equations > Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations Chapter 9 Stoichiometry 9.1 The Arithmetic of Equations 9.2 Chemical Calculations 9.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

Solutions to the Extra Problems for Chapter 8

Solutions to the Extra Problems for Chapter 8 Solutions to the Extra Problems for Chapter 8. The answer is 83.4%. To figure out percent yield, you first have to determine what stoichiometry says should be made: Mass of MgCl 4.3 amu + 35.45 amu 95.

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 : Calculations with Chemical Formulas and Equations AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier Law of Conservation of Mass We may lay it down as an incontestable axiom that,

More information

Chapter 12 Stoichiometry. Mr. Mole

Chapter 12 Stoichiometry. Mr. Mole Chapter 12 Stoichiometry Mr. Mole Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double or triple the amount

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS

STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS If the number of atoms is conserved in a chemical reaction, the mass must also be conserved as expected from the

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 3. Mass Relations in Chemistry; Stoichiometry

Chapter 3. Mass Relations in Chemistry; Stoichiometry Chapter 3 Mass Relations in Chemistry; Stoichiometry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75. 1 2004 B 2 Fe(s) + 3 2 O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O 2 (g) at 2.66

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation Lecture Presentation Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community College Cottleville, MO A. 1 Mg, 2 O, and 2 H B. 2 Mg, 2 O, and

More information

HOMEWORK 11-1 (pp )

HOMEWORK 11-1 (pp ) CHAPTER 11 HOMEWORK 11-1 (pp. 333 335) VOCABULARY Define. 1. Gay-Lussac s law of combining volumes of gases 2. Avogadro s law Answer each question. 3. Write and explain the equation that expresses the

More information

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line.

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 12 STOICHIOMETRY Chapter Test B A. Matching Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 1. 2. 3. 4. 5. Column A the substance

More information

Stoichiometry. Mr. Mole

Stoichiometry. Mr. Mole Stoichiometry Mr. Mole Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double or triple the amount Thus, a

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

Chapter 4: Chemical and Solution Stoichiometry

Chapter 4: Chemical and Solution Stoichiometry Chapter 4: Chemical and Solution Stoichiometry (Sections 4.1-4.4) 1 Reaction Stoichiometry The coefficients in a balanced chemical equation specify the relative amounts in moles of each of the substances

More information

7 Chemical Reactions and Quantities Practice Problems

7 Chemical Reactions and Quantities Practice Problems 7 Chemical Reactions and Quantities Practice Problems I m trying a different set up for the practice problems. This still contains the practice problems you need to master for the test. I ve organized

More information

Stoichiometry. The study of quantities of substances in chemical reactions

Stoichiometry. The study of quantities of substances in chemical reactions Stoichiometry The study of quantities of substances in chemical reactions Interpreting Chemical Equations N 2 + 3 H 2 2 NH 3 Particles: 1 molecule of Nitrogen reacts with 3 molecules of Hydrogen to produce

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

UNIT 9. Stoichiometry

UNIT 9. Stoichiometry UNIT 9 Stoichiometry FORMULA MASS Atomic Mass Unit (u): unit of mass for measuring atoms. (1 u = 1/12 th the mass of a carbon 12 atom) FORMULA MASS FORMULA MASS Example 2: Find the mass of one molecule

More information

Chemistry 11. Unit 7 - Stoichiometry

Chemistry 11. Unit 7 - Stoichiometry 1 Chemistry 11 Unit 7 - Stoichiometry 2 1. Coefficients of chemical equations In chapter 6, we have learned how to balance a chemical reaction by considering the laws of conservation of atoms and charges.

More information

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol)

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol) Avogadro s Number and the Mole Molecular weight: The sum of atomic weights of all atoms in a molecule. Formula weight: The sum of atomic weights of all atoms in one formula unit of any compound. Mole:

More information

Kinetic energy is the energy of motion (of particles). Potential energy involves stored energy (energy locked up in chemical bonds)

Kinetic energy is the energy of motion (of particles). Potential energy involves stored energy (energy locked up in chemical bonds) Enthalpy (H) Enthalpy (H) is the total energy amount (Epotential + Ekinetic) of a system during a chemical reaction under constant temperature and pressure conditions. Kinetic energy is the energy of motion

More information

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place.

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Chemical Equations What is the law of conservation of mass? The law of conservation

More information

CONSIDER THE FOLLOWING REACTIONS

CONSIDER THE FOLLOWING REACTIONS CONSIDER THE FOLLOWING REACTIONS BaCl 2 + MgSO 4 BaSO 4 + MgCl 2 2KI + Pb(NO3)2 PbI2 + 2KNO3 Fe + H20 (g) Fe2O3 + H2 All reactions have two reactants yielding the reaction. WHAT IS A LIMITING REACTANT?

More information

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances Chang, R. 2002. Chemistry 7 th ed. Singapore: McGraw-Hill. A chemical equation uses

More information

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry Stoichiometry The quantitative study of reactants and products in a chemical reaction 1 Stoichiometry Whether the units given for reactants or products are moles, grams, liters (for gases), or some other

More information

Example Exercise 10.1 Interpreting Chemical Equation Calculations

Example Exercise 10.1 Interpreting Chemical Equation Calculations Example Exercise 10.1 Interpreting Chemical Equation Calculations Given the chemical equation for the combustion of methane, CH 4, balance the equation and interpret the coefficients in terms of (a) moles

More information

How many molecules are in 0.25 moles of CH 4?

How many molecules are in 0.25 moles of CH 4? Mass Moles- Particle Particles can be atoms, molecules, ions, etc. In one mole of particles, there are 6.02x10 23 particles These particles are so small and we need so many of them to be on a human scale,

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5

phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5 phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5 phet: Molarity 1. Adjust moles of solute while leaving volume constant. What happens to molarity when you increase

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

Proportional Relationships

Proportional Relationships Stoichiometry Video Proportional Relationships 2 1/4 c. flour 1 tsp. baking soda 1 tsp. salt 1 c. butter 3/4 c. sugar 3/4 c. brown sugar 1 tsp vanilla extract 2 eggs 2 c. chocolate chips Makes 5 dozen

More information

CHAPTER 9: STOICHIOMETRY

CHAPTER 9: STOICHIOMETRY 9.1 Interpreting a chemical Equation CHAPTER 9: STOICHIOMETRY H 2 (g) + Cl 2 (g) 2 HCl (g) 1 molecule 1 molecule 2 molecules N 2 + 3 H 2 (g) 2 NH 3 (g) molecule(s) molecule(s) molecule(s) It follows that

More information

Notes 2: Stoichiometry

Notes 2: Stoichiometry Notes 2: Stoichiometry 1.1 Defining Stoichiometry Particle and Mole Relationships Chemical reactions stop when one of the reactants is used up. Stoichiometry is the study of quantitative relationships

More information

9.2 Chemical Calcualtions. Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations. 9.3 Limiting Reagent and Percent Yield

9.2 Chemical Calcualtions. Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations. 9.3 Limiting Reagent and Percent Yield 9.2 Chemical Calcualtions Chapter 9 Stoichiometry 9.1 The Arithmetic of Equations 9.2 Chemical Calculations 9.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Date. Period CHEMICAL FORMULAS AND EQUATIONS. " \3molHJ( lmolni 25.0^-23.1^, = 1.9kg ^ : Form WS A. Name

Date. Period CHEMICAL FORMULAS AND EQUATIONS.  \3molHJ( lmolni 25.0^-23.1^, = 1.9kg ^ : Form WS A. Name : Form WS5. 12. 1A You drop a piece of zinc into a beaker of hydrochloric acid. It begins to bubble furiously, but eventually it stops. You drop another piece of sale circular zinc into the acid. The bubbling

More information

Notes: Stoichiometry (text Ch. 9)

Notes: Stoichiometry (text Ch. 9) Name Per. Notes: Stoichiometry (text Ch. 9) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry Chapter 3 : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2

More information

STOICHIOMETRY HONORS CHEMISTRY

STOICHIOMETRY HONORS CHEMISTRY STOICHIOMETRY HONORS CHEMISTRY MOLE RATIO A mole ratio is the ratio of coefficients used to compare amounts of reactants and products. 1 ZnCl 2 (aq) + 2 NaOH (aq) 1 Zn(OH) 2 (aq) + 2 NaCl (aq) What is

More information

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. STOICHIOMETRY Stoikheion = element; metron = to measure STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. provides the same

More information

Chapter 9 STOICHIOMETRY

Chapter 9 STOICHIOMETRY Chapter 9 STOICHIOMETRY Section 9.1 The Arithmetic of Equations OBJECTIVE Calculate the amount of reactants required or product formed in a nonchemical process. Section 9.1 The Arithmetic of Equations

More information

AP Chemistry Chapter 3. Stoichiometry

AP Chemistry Chapter 3. Stoichiometry AP Chemistry Chapter 3 Stoichiometry Stoichiometry Is the study of the quantities of substances consumed and produced in chemical reactions Derived from the Greek words stoicheion meaning element and metron

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

10 Enthalpy changes Answers to Activity and Practice questions

10 Enthalpy changes Answers to Activity and Practice questions Page 150 151 Activity: Measuring the enthalpy change for the reaction of zinc with copper sulfate solution 1 The graph should have: axes with scales and labels points plotted accurately a clean, smooth

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS Name Date Class 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

CHEMISTRY 101 Hour Exam II. Dr. D. DeCoste T.A (30 pts.) 16 (15 pts.) 17 (15 pts.) Total (60 pts)

CHEMISTRY 101 Hour Exam II. Dr. D. DeCoste T.A (30 pts.) 16 (15 pts.) 17 (15 pts.) Total (60 pts) CHEMISTRY 1 Hour Exam II March 16, 017 Dr. D. DeCoste Name Signature T.A. This exam contains 17 questions on 5 numbered pages. Check now to make sure you have a complete exam. You have one hour and thirty

More information