STOICHIOMETRY HONORS CHEMISTRY

Size: px
Start display at page:

Download "STOICHIOMETRY HONORS CHEMISTRY"

Transcription

1 STOICHIOMETRY HONORS CHEMISTRY

2 MOLE RATIO A mole ratio is the ratio of coefficients used to compare amounts of reactants and products. 1 ZnCl 2 (aq) + 2 NaOH (aq) 1 Zn(OH) 2 (aq) + 2 NaCl (aq) What is the mole ratio of NaOH to NaCl? 2:2 or 2 moles NaOH: 2 moles NaCl What is the mole ratio of ZnCl 2 to NaCl? 1:2 or 1 mole ZnCl 2 1 mole NaCl note that the coefficient for ZnCl 2 is listed first, and the coefficient for NaCl is listed second because that is the order of the substances in the question.

3 MOLE TO MOLE 1 step conversion A mole to mole 1 step conversions uses the ratio of coefficients to compare amounts of reactants and products. 4 FeS + 7 O 2 2 Fe 2 O SO QUESTION 1: What amount in moles of O 2 will be required to produce 6.4 moles of SO? unit wanted as answer 6.4 moles SO x 7 moles O 2 = (6.4 moles SO)(7 moles O 2 ) = 11.2 mole O 2 4 moles SO 4 moles SO given in problem given unit cancel out moles SO

4 GRAM TO GRAM 3 step conversion 4 FeS + 7 O 2 2 Fe 2 O SO QUESTION 2: If grams O 2 of oxygen react, what mass of SO will be made? molar mass SO = grams O 2 x 1 mole O 2 x 4 moles SO x 48 grams SO = (15.88 grams O 2 )(1 mole O 2 )(4 moles SO)(48 g SO) = g SO g O 2 7 moles O 2 1 mole SO ( g O 2 )(7 moles O 2 )(1 mole SO) Molar mass O 2 = x x 1 x 4 x = g SO Observe the pattern of units: Grams A x 1 moles A x moles B x grams B = grams B molar mass A moles A molar mass B

5 GRAM TO MOLE 2 step conversion 4 FeS + 7 O 2 2 Fe 2 O SO QUESTION 3: If grams O 2 of oxygen react, what amount in moles of SO will be made? grams O 2 x 1 mole O 2 x 4 moles SO = (15.88 grams O 2 )(1 mole O 2 )(4 moles SO) = g O 2 7 moles O 2 ( g O 2 )(7 moles O 2 ) X 1X = 0.27 moles SO The gram to mole 2 step conversion is the same as the 3 step conversion, but excludes the third step, leaving the value in moles.

6 MOLE TO GRAM 2 step conversion 4 FeS + 7 O 2 2 Fe 2 O SO QUESTION 4: If 7.3 moles O 2 of oxygen react, what mass of SO will be made? 7.3 mol O 2 x 4 moles SO x 48 grams SO = 7.3 mole O 2 )(4 moles SO)(48 g SO) = g SO 7 moles O 2 1 mole SO 7 moles O 2 )(1 mole SO) start with mole ratio The mole to gram is a 2 step conversion. The math is the same as the 3 step conversion, but excludes the first step of converting grams to moles because the starting value is already in moles.

7 VOCABULARY LIMITING REACTANT the reactant that runs out first. The limiting reactant controls how much product that can be made because when the reactant runs out the reaction stops. EXCESS REACTANT-the reactant there is plenty of. The reactant there is leftovers of because all of the excess reactant isn t used. THEORETICAL YIELD the maximum amount of product that will be made from a chemical reaction. The theoretical yield is calculated from a grams to grams (3 step) calculation. The theoretical yield is dependent on the limiting reactant. ACTUAL YIELD the mass of product made experimentally in the lab setting. % YIELD is a mathematical comparison of how much product was made compared to how much should have been made. % yield = ACTUAL YIELD (100) THEORETIAL YIELD

8 Calculate the percentage yield of NaBr if 20 grams NaI and 12 g Br 2 react and form 12.3 g NaBr in the lab? 2 NaI + Br 2 2 NaBr + I 2 Start with 3 step converting grams of reactant to grams of product. 20 grams NaI x 1 mole NaI x 2 moles NaBr x grams NaBr = 13.7 g NaBr g NaI 2 mole NaI 1 mole NaBr limiting reactant molar mass NaI = molar mass NaBr = grams Br 2 x 1 mole Br 2 I x 2 moles NaBr x grams NaBr = g NaBr g Br 2 1 mole Br 2 1 mole NaBr excess reactant molar mass Br 2 = x 2 molar mass NaBr = Identify the smaller value as theoretical yield g NaBr is the smaller value, therefore the theoretical yield grams of NaBr will never be made because once 13.7 g NaBr is made the reaction runs out of NaI, therefore the reaction stops producing NaBr product. NaI is known as the limiting reactant. Solve for percent yield. ACTUAL YIELD (100) = 12.3 grams NaBr (100) = 89.8 % THEORETICAL YIELD 13.7 grams NaBr Hint: actual yield will always be given in problem, theoretical yield will always be calculated with a 3 step grams to grams conversion

9 IDENTIFY THE LIMITING REACTANT WHEN 8.7 g Na REACTS WITH 9.3 g FeCl 3? 3 Na + 1 FeBr 3 3 NaBr + Fe 8.7 grams Na x 1 mole Na x 3 moles NaBr x grams NaBr = 38.9g NaBr g Na 3 mole Na 1 mole NaBr 9.3 grams FeCl 3 x 1 mole Na x 3 moles NaBr x grams NaBr =17.7 g NaBr g FeCl 3 1 mole FeCl 3 1 mole NaBr FeCl 3 is the limiting reactant because it makes a smaller amount of product (NaBr) grams NaBr is less then 38.9 g NaBr

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop.

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop. In any type of chemical reaction, the amount of product that can be produced is determined by the reactant which is in the smallest amount. In any type of chemical reaction, the amount of product that

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

LIMITING REAGENT. Taking Stoichiometric conversions one step further

LIMITING REAGENT. Taking Stoichiometric conversions one step further LIMITING REAGENT Taking Stoichiometric conversions one step further Limiting Reagent The reactant that limits the amount of product that can be formed. The reaction will stop when all of the limiting reactant

More information

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. STOICHIOMETRY Stoikheion = element; metron = to measure STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. provides the same

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the Chapter 9 Calculations from Chemical Equations Accurate measurement and calculation of the correct dosage are important in dispensing the correct medicine to patients Introduction to General, Organic,

More information

What is stoichiometry? It comes from the Greek word stoicheion, which means element, and metron, meaning measure.

What is stoichiometry? It comes from the Greek word stoicheion, which means element, and metron, meaning measure. Stoichiometry What is stoichiometry? It comes from the Greek word stoicheion, which means element, and metron, meaning measure. It involves the mass relationships between reactants and products in a chemical

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Notes: Stoichiometry (text Ch. 9)

Notes: Stoichiometry (text Ch. 9) Name Per. Notes: Stoichiometry (text Ch. 9) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction.

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Unit 10: Stoichiometry Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Info given by a chemical equation: Chemical changes involve

More information

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry Chemistry I Chapter 9 Stoichiometry Objective Sheet Equation 1 2 C 2 H 2 (g) + 5 O 2 (g) 4 CO 2 (g) + 2 H 2 O (g), at STP C 2 H 2 (acetylene) 26 g/mol O 2 32 g/mol CO 2 44 g/mol H 2 O 18 g/mol Objectives:

More information

Chemical Quantities: Stoichiometry and the Mole

Chemical Quantities: Stoichiometry and the Mole Chemical Quantities: Stoichiometry and the Mole This is trying to summarize what we have learned up to this point: formulas, names, conversions, moles, quantities, reaction types, balancing equations,

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Stoichiometry Section 12.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1. The study of the quantitative relationships

More information

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass.

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass. Stoichiometry Before You Read Review Vocabulary Define the following terms. mole molar mass conversion factor dimensional analysis law of conservation of mass Chapter 10 Balance the following equation.

More information

**continued on next page**

**continued on next page** Chapter 9 Stoichiometry Section 9.1 Introduction to Stoichiometry Standard.e.: Students know how to calculate the masses of reactant and products in a chemical reaction from the mass of one of the reactants

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change CHAPTER 11 Table Of Contents Section 11.1 Defining Chapter 11: Section 11.2 Section 11.3 Section 11.4 Percent Yield SECTION11.1 Defining Defining Particle and Mole Relationships

More information

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry Stoichiometry The quantitative study of reactants and products in a chemical reaction 1 Stoichiometry Whether the units given for reactants or products are moles, grams, liters (for gases), or some other

More information

9.2 Chemical Calcualtions. Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations. 9.3 Limiting Reagent and Percent Yield

9.2 Chemical Calcualtions. Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations. 9.3 Limiting Reagent and Percent Yield 9.2 Chemical Calcualtions Chapter 9 Stoichiometry 9.1 The Arithmetic of Equations 9.2 Chemical Calculations 9.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

11 Stoichiometry. Section 11.1 What is stoichiometry?

11 Stoichiometry. Section 11.1 What is stoichiometry? 11 Stoichiometry Section 11.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1.. 3. 4. 5. The study of the quantitative

More information

Notes 2: Stoichiometry

Notes 2: Stoichiometry Notes 2: Stoichiometry 1.1 Defining Stoichiometry Particle and Mole Relationships Chemical reactions stop when one of the reactants is used up. Stoichiometry is the study of quantitative relationships

More information

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Chapter 9. Stoichiometry. Mr. Mole. NB page 189 Chapter 9 Stoichiometry Mr. Mole NB page 189 review Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double

More information

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq) Dealing with chemical stoichiometry Steward Fall 08 of Not including volumetric stoichiometry of Chapter 6.0x10 A 6.0x10 Mol/mol ratio from balanced equation B 6.0x10 6.0x10 s, Equations, and Moles: II

More information

Right Side NOTES ONLY

Right Side NOTES ONLY Ch. 8 Stoichiometry Title and Highlight TN Ch 8.1 Topic: EQ: Right Side NOTES ONLY Date Write Question out (left side of red line) and answer it (Highlight answer) based on from what you read. Write out

More information

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition Chemistry for Changing Times, Thirteenth Edition Lecture Outlines Chemical Accounting John Singer, Jackson Community College Chemical Sentences: Equations Chemical equations represent the sentences in

More information

Chapter 15. Solutions

Chapter 15. Solutions Chapter 15 Solutions Key Terms for this Chapter Make sure you know the meaning of these: Solution Solute Solvent Aqueous solution Solubility Saturated Unsaturated Supersaturated Concentrated Dilute 15-2

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Practice Problems Stoich!

Practice Problems Stoich! Practice Problems Stoich! Name: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE IN QUESTIONS

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

(2 x 22.4 L H 2 ) + (1 x 22.4 L O 2 ) (2 OBJECTIVES:

(2 x 22.4 L H 2 ) + (1 x 22.4 L O 2 ) (2 OBJECTIVES: Chapter 9 The calculations of quantities in a chemical reaction chemical bookkeeping Section 9.1 The Arithmetic of Equations OBJECTIVES: Calculate the amount of reactants required, or product formed, in

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chapter 9. Chemical Quantities

Chapter 9. Chemical Quantities Chapter 9 Chemical Quantities Section 9.1 Information Given by Chemical Equations A balanced chemical equation gives relative numbers (or moles) of reactant and product molecules that participate in a

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Chemical Equations. Chemical Equations

Chemical Equations. Chemical Equations Page III-4a-1 / Chapter Four Part I Lecture Notes Chemical Reactions Chapter 4 Part 1 Chemistry as Cooking! - the Chemical Reaction "Recipe" and technique leads to successful creations Must know amounts

More information

Stoichiometry World of Chemistry: Chapter 9

Stoichiometry World of Chemistry: Chapter 9 Stoichiometry World of Chemistry: Chapter 9 Chocolate Chip Cookies!! 1 cup butter 1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs 2 1/2 cups all-purpose flour 1 teaspoon

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

CHAPTER 9: STOICHIOMETRY

CHAPTER 9: STOICHIOMETRY 9.1 Interpreting a chemical Equation CHAPTER 9: STOICHIOMETRY H 2 (g) + Cl 2 (g) 2 HCl (g) 1 molecule 1 molecule 2 molecules N 2 + 3 H 2 (g) 2 NH 3 (g) molecule(s) molecule(s) molecule(s) It follows that

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Micro World atoms & molecules Macro World grams Atomic mass is the mass of an atom in

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction: A(s) + 2B(aq) C(aq) + D(aq) Look at the data below and identify any patterns

More information

Review Package #2 Measurement and Communication The Mole Chemical Reactions and Equations Stoichiometry

Review Package #2 Measurement and Communication The Mole Chemical Reactions and Equations Stoichiometry Chemistry 11 Review Package #2 Measurement and Communication The Mole Chemical Reactions and Equations Stoichiometry 1. Measurement and Communication: A. Scientific Notation: - Conversion of numbers from

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

The coefficients of a balanced chemical equation tell us how many of each species are involved in the reaction.

The coefficients of a balanced chemical equation tell us how many of each species are involved in the reaction. Stoichiometry Chemical Equations Reactants are written on the left side of the arrow and products are written on the right side of the arrow. The Law of Conservation of Mass tells us that the number of

More information

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction A(s) + 2B(aq) C(aq) + D(aq). Look at the data below and identify any patterns

More information

INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions. Chemical Reaction Atoms are REARRANGED to form a different substance

INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions. Chemical Reaction Atoms are REARRANGED to form a different substance INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions Chemical Reaction Atoms are REARRANGED to form a different substance Changes the way atoms are joined together Atoms CANNOT be created

More information

Name. Academic Chemistry Stoichiometry Notes. Unit #10 Test Date: cincochem.pbworks.com

Name. Academic Chemistry Stoichiometry Notes. Unit #10 Test Date: cincochem.pbworks.com Name Academic Chemistry Stoichiometry Notes Unit #10 Test Date: cincochem.pbworks.com Resources Unit 10 Common Polyatomic Ions List 20 Name Common Polyatomic Ion Ions Name Ion acetate C 2 H 3 O 2 or CH3

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS Name Date Class 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in

More information

Chapter 3. Stoichiometry:

Chapter 3. Stoichiometry: Chapter 3. Stoichiometry: Watch Bozeman Videos & other videos on my website for additional help: Big Idea 1: Chemical Analysis Conservation of Atoms Balancing Equations Symbolic Representation Mole Big

More information

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq)? MgCl 2

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9. 9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.5 Calculations Involving a Limiting Reactant 9.6 Percent Yield mole-to-mole

More information

Reaction Stoichiometry and Solution Concentration Q1. FeS(S) + 2HCl(aq) FeCl2(S) + H2S(g) Q2. C6H10(g) + O2(g) CO2(g) + H2O(g) Q3.

Reaction Stoichiometry and Solution Concentration Q1. FeS(S) + 2HCl(aq) FeCl2(S) + H2S(g) Q2. C6H10(g) + O2(g) CO2(g) + H2O(g) Q3. Reaction Stoichiometry and Solution Concentration Q1. The reaction between Iron(II) sulfide and HCl is as follows; FeS (S) + 2HCl (aq) FeCl 2(S) + H 2 S (g) What will be the number of moles of each reactant

More information

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS Chemical equations are written and balanced in terms of ATOMS and MOLECULES - While chemical equations are written in terms of ATOMS and MOLECULES, that's

More information

Chapter 10. Chemical Calculations and Chemical Equations

Chapter 10. Chemical Calculations and Chemical Equations Chapter 10 Chemical Calculations and Chemical Equations Chapter 10 Equation Stoichiometry Tip-off - The calculation calls for you to convert from amount of one substance to amount of another, both of which

More information

Moles Homework Unit 6

Moles Homework Unit 6 VOCABULARY For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help you remember the word. Explain the word as if you were explaining

More information

O 2. Cl 2. SbCl 3. NaBr. NaCl

O 2. Cl 2. SbCl 3. NaBr. NaCl Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations 6.6 The Mole 1. Mg + O 2 à MgO Mg, O 2, and MgO are there? Mg: MgO? Mg O 2 MgO O 2:Mg? 2. Sb + Cl 2 à SbCl 3 Sb Cl 2 SbCl 3 Sb: Cl 2? 3. NaBr +

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chapter 9 STOICHIOMETRY

Chapter 9 STOICHIOMETRY Chapter 9 STOICHIOMETRY Section 9.1 The Arithmetic of Equations OBJECTIVE Calculate the amount of reactants required or product formed in a nonchemical process. Section 9.1 The Arithmetic of Equations

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

If you're given a mass percent, you can use it as a conversion factor between the element and the compound

If you're given a mass percent, you can use it as a conversion factor between the element and the compound Announcements Wednesday, September 23, 2009 MasteringChemistry due dates (all at 11:59 pm): Ch 3: Fri, Sep 25 Exam 1: next Mon, Sep 28. 20-25 multiple choice questions Short answer (naming, chemical equations)

More information

Limiting Reactants and Percent Yield

Limiting Reactants and Percent Yield Limiting Reactants and Percent Yield What is a Limiting Reactant? o It is the reactant in a reaction that determines how much product can be made. o It is whatever reactant you have the least amount of.

More information

CONSIDER THE FOLLOWING REACTIONS

CONSIDER THE FOLLOWING REACTIONS CONSIDER THE FOLLOWING REACTIONS BaCl 2 + MgSO 4 BaSO 4 + MgCl 2 2KI + Pb(NO3)2 PbI2 + 2KNO3 Fe + H20 (g) Fe2O3 + H2 All reactions have two reactants yielding the reaction. WHAT IS A LIMITING REACTANT?

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 9 REVIEW Stoichiometry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. The coefficients in a chemical equation represent the (a) masses in grams of all reactants

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

Practice Packet Unit 6: Moles & Stoichiometry

Practice Packet Unit 6: Moles & Stoichiometry Regents Chemistry: Mr. Palermo Practice Packet Unit 6: Moles & Stoichiometry 1 LESSON 1: Moles and Molar Mass 1. Put an M if the substance is molecular/covalent, an I if ionic under the formula listed.

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Chapter 12 Stoichiometry. Mr. Mole

Chapter 12 Stoichiometry. Mr. Mole Chapter 12 Stoichiometry Mr. Mole Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double or triple the amount

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Stoichiometry. A. The Meaning of Coefficients in a Reaction Equation 1. Consider the following reaction: 200 H O H 2 O or

Stoichiometry. A. The Meaning of Coefficients in a Reaction Equation 1. Consider the following reaction: 200 H O H 2 O or Stoichiometry A. The Meaning of Coefficients in a Reaction Equation 1. Consider the following reaction: 2H 2 + O 2 2H 2 O The coefficients in the equation tell us that two hydrogen molecules react with

More information

Chemistry B11 Chapter 5 Chemical reactions

Chemistry B11 Chapter 5 Chemical reactions Chapter 5 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl A + BC AC +

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g CHAPTER Practice Questions.1 1 Mg, O, H and Cl (on each side).. BaCl (aq) + Al (SO ) (aq) BaSO (s) + AlCl (aq).5 0.15 mol 106 g mol 1 = 1. g 15.0 g Fe O mol Fe 55.8 g mol Fe = 10.9 g 1 159.7 g mol FeO

More information

Chemistry I Notes Unit 7: Stoichiometry Notes

Chemistry I Notes Unit 7: Stoichiometry Notes Chemistry I Notes Unit 7: Stoichiometry Notes Stoichiometry Relating Mass to Numbers of Atoms The Mole The mole is the SI unit for amount of substance. A mole (abbreviated mol) is the amount of a substance

More information

Unit 10: Stoichiometry Funsheets. Part A: Balanced Chemical Equations- Balance the following chemical equations.

Unit 10: Stoichiometry Funsheets. Part A: Balanced Chemical Equations- Balance the following chemical equations. Unit 10: Stoichiometry Funsheets Part A: Balanced Chemical Equations- Balance the following chemical equations. 1) Al + Cl 2 AlCl 3 2) Mg(ClO) 2 MgCl 2 + O 2 3) FeCl 3 + LiOH Fe(OH) 3 + LiCl 4) Na + O

More information

Reacting Masses and Volumes Thursday 09/24/15

Reacting Masses and Volumes Thursday 09/24/15 Reacting Masses and Volumes Thursday 09/24/15 Agenda Start Topic 1.3 Reacting Masses and Volume Topic 1.3 Reacting masses and volumes Quiz next Wednesday on Topic 1.2: Stoichiometry Study guide and practice

More information

Practice Packet Unit 7: Moles & Stoichiometry

Practice Packet Unit 7: Moles & Stoichiometry PRACTICE PACKET: Unit 7 Moles & Stoichiometry Regents Chemistry: Practice Packet Unit 7: Moles & Stoichiometry Vocabulary: Lesson 1: Lesson 6: Lesson 2: Lesson 4A: Lesson 4B: Lesson 3: Lesson 5: www.chempride.weebly.com

More information

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line.

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 12 STOICHIOMETRY Chapter Test B A. Matching Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 1. 2. 3. 4. 5. Column A the substance

More information

Chapter 3. Chapter 3

Chapter 3. Chapter 3 Chapter 3 Mass Relationships In Chemical Reactions Chapter 3 Measuring atomic and molecular masses Mass spectrometry The mole Scaling molecular mass to a size we can weigh Chemical formulas Experimentally

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

Chem 1075 Chapter 10 Stoichiometry Lecture Notes

Chem 1075 Chapter 10 Stoichiometry Lecture Notes Chem 1075 Chapter 10 Stoichiometry Lecture Notes Slide 2 What is stoichiometry? Chemists and chemical engineers must perform calculations based on balanced chemical reactions to predict the cost of processes.

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 9 Chemical Quantities Information

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

Chapter 9. Slide 1. Chemical Quantities. Slide 2. Table of Contents

Chapter 9. Slide 1. Chemical Quantities. Slide 2. Table of Contents 1 Chapter 9 Chemical Quantities 2 Chapter 9 Table of Contents 9.1 Information Given by Chemical Equations 9.2 9.3 3 Copyright Cengage Learning. All rights reserved 2 Section 9.1 Information Given by Chemical

More information

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015 Math-tastic! Unit 9: Math of Chemistry Part II - Stoichiometry Lesson # 9.4: The Arithmetic of Equations Mr. Mole 87 STOICHIOMETRY is Greek for measuring elements Pronounced stoy-kee-ahm-uhtree Defined

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction A(s) + 2B(aq) C(aq) + D(aq). Look at the data below and identify any patterns

More information

Chapter 9 STOICHIOMETRY

Chapter 9 STOICHIOMETRY Chapter 9 STOICHIOMETRY Section 9.1: Introduction to Stoichiometry Stoichiometry: the calculation of quantities in chemical equations From Greek: Stoikheion = element Metron = to measure It s the bookkeeping

More information

Composition stoichiometry the relative ratios of different elements within one particular compound or molecule

Composition stoichiometry the relative ratios of different elements within one particular compound or molecule Chapter 2: Composition stoichiometry the relative ratios of different elements within one particular compound or molecule : Reaction stoichiometry the relative ratios between different substances as they

More information