Stoichiometry. The study of quantities of substances in chemical reactions

Size: px
Start display at page:

Download "Stoichiometry. The study of quantities of substances in chemical reactions"

Transcription

1 Stoichiometry The study of quantities of substances in chemical reactions

2 Interpreting Chemical Equations N H 2 2 NH 3 Particles: 1 molecule of Nitrogen reacts with 3 molecules of Hydrogen to produce 2 molecules of Ammonia (NH 3 ). Moles: 1 mole of Nitrogen reacts with 3 moles of Hydrogen to produce 2 moles of Ammonia (NH 3 ). The important thing to notice is that the coefficients determine the ratio of each reactant to each product.

3 Interpreting Chemical Equations N H 2 2 NH 3 Mass Balanced reactions must obey the law of conservation of mass. Using the mole idea you can determine the mass of species in this equation: used 1 mole N 2 = 28 g 3 mole H 2 = 6 g produced 2 moles NH 3 = 34g conditions 22.4 L of N 2 reacts with 67.2 L of H 2 to produce 44.8L of NH 3 Notice that volume of gases is NOT conserved

4 Which of the following are conserved in a chemical reaction? A. Volume of Gas B. Moles C. Mass D. # of Particles C.Mass The rearrangement of atoms during the reaction can change the # of everything else. But mass is conserved.

5 Mole-Mole Calculations N H 2 2 NH 3 Relating moles of reactants to moles of products. We do not always use full moles of reactants, or want full moles of products. We more often deal with partial moles. If this reaction started with 2 moles of N 2, how many moles of NH 3 could be produced? 1: :4 It s a simple ratio For more complicated ratios use this guide

6 Mole-Mole Calculations N H 2 2 NH 3 So if we start with.75 moles of N 2, how much ammonia is produced? How many moles of H 2 must be used? Known moles x Coefficient of what you want to find out Coefficient of what you know If we want to produce 3.18 moles of ammonia, how many moles of hydrogen do we need to use?

7 4Al + 3 O 2 2 Al 2 O 3 Write three mole ratios from this equation How many moles of Aluminum metal are needed to produce 3.7 moles of Aluminum Oxide? How many moles of O 2 are required to react completely with 14.8 moles of Al? Calculate the moles of Al 2 O 3 formed when 0.78n of O 2 react with Al.

8 Mass-Mass Calculations N H 2 2 NH 3 Our tools do not directly measure moles. The balances measure Mass (g) So we often must convert to moles from mass, and mass from moles. Solving mass-mass problems: 1. Convert the given quantity to MOLES. (Divide mass by molar mass) 2. Calculate unknown moles by multiplying by a mole ratio. (unknown/known) 3. Convert the answer in # 2 to mass. (Multiply by molar mass)

9 Mass-Mass Calculations N H 2 2 NH 3 If 8.5 grams of Nitrogen are reacted, what mass of ammonia can be produced? If 16.4 grams of Hydrogen are reacted, how many grams of Nitrogen are needed to fully react? Solving mass-mass problems: 1. Convert the given quantity to MOLES. (Divide mass by molar mass) 2. Calculate unknown moles by multiplying by a mole ratio. (unknown/known) 3. Convert the answer in # 2 to mass. (Multiply by molar mass)

10 K 2 O + H 2 O 2 KOH 1. Calculate the mass of KOH produced when 4.80 g of K 2 O is reacted. 2. How many grams of water are needed for this reaction? 3. If 50.0 g of KOH is produced, what is the mass of Water used? Solving mass-mass problems: 1. Convert the given quantity to MOLES. (Divide mass by gfm) 2. Calculate unknown moles by multiplying by a mole ratio. (unknown/known) 3. Convert the answer in # 2 to mass. (Multiply by gfm)

11 2 Al + 3 Cl 2 2 AlCl 3 If 70.9 g of Chlorine Gas are used, how many moles of Aluminum Chloride can be produced? What is the mass of the AlCl 3? Solving mass-mass problems: 1. Convert the given quantity to MOLES. (Divide mass by molar mass) 2. Calculate unknown moles by multiplying by a mole ratio. (unknown/known) 3. Convert the answer in # 2 to mass. (Multiply by molar mass)

12 Other legs of the mole wheel If given a mass of a reactant you can find # of particles produced If given the volume (@STP) of a reactant you can find the mass produced If given the # of molecules of a product you can find # molecules of reactant

13 MnO 2 2 H 2 O 2 2 H 2 O + O 2 Starting with 29.2 g of hydrogen peroxide How many molecules of Oxygen are produced? What is the volume of the Oxygen gas produced? (assume STP conditions) What mass of water is produced?

14 Limiting Reagent analogy IF you have: 40 slices of turkey 28 slices of cheese 6 heads of lettuce 1 mole of tomatoes Jars of mayo and mustard 2 slices of bread How many sandwiches can you make? What limits your production of sandwiches? Bread is your limiting reagent

15 Limiting Reagent analogy Your reaction is your recipe Seldom do you have perfect amounts of each ingredient. The limiting reagent (reactant) is what determines the amount that is produced. The other ingredients are considered to be excess reagents Cheese, turkey, tomatoes

16 Limiting Reagent Definition Limiting Reactant: (a.k.a. Limiting Reagent) The substance that controls the quantity that can form In a chemical reaction. Excess Reactant: (a.k.a. excess reagent) The substance that is not used up completely in a reaction.

17 Determining Limiting Reagent 2 Na + Cl 2 2 NaCl Starting with 6.7n of Na, and 3.2n of Cl 2 How many moles of NaCl can be produced? A. Determine limiting reagent B. Use limiting reagent to determine amount of product formed. 1. Start with a known amount of one reactant. 2. Use the mole ratio to determine the amount of product. 3. Determine how much the other reactant would produce. 4. The reactant producing the LEAST is limiting.

18 2 Na + Cl 2 2 NaCl Starting with 6.70n of Na, and 3.20n of Cl 2 How many moles of NaCl can be produced? If 6.7n Na are used 6.7 x ½ = 3.35n Cl 2 needed Compare the 3.35n Cl 2 needed, to 3.20n Cl 2 you have. We have less Cl 2 than we need so Chlorine is the limiting reagent. Use the limiting reagent to determine the moles of NaCl produced. 1. Start with a known amount of one reactant. 2. Use the mole ratio to determine the amount of product. 3. Determine how much the other reactant would produce. 4. The reactant producing the LEAST is limiting.

19 2 Na + Cl 2 2 NaCl Starting with 6.70n of Na, and 3.20n of Cl 2 How many moles of NaCl can be produced? We have determined the 3.2n of Cl 2 to be limiting. 3.2n Cl 2 x 2/1 = 6.4n NaCl Now it becomes a regular mole-mole problem. You could then find the mass of NaCl produced.

20 What determines the amount of product? The limiting reagent!

21 16 Cu + S 8 8 Cu 2 S Mass Moles Starting with 1.25n Cu and.78n of S determine the moles of Copper (I) Sulfide made n of Cu 2 S What mass of Cu 2 S is made? 99.4 g of Copper sulfide

22 Mg + 2 HCl MgCl 2 + H 2 Mass moles How many grams of Hydrogen can be produced when 6.00 g of HCl is reacted with 5.00 g of Mg? 1. Convert each reactant to moles. 2. Determine limiting reagent by multiplying by the mole ratio. 3. Use limiting reagent to determine moles of product. 4. Multiply moles of product by GFM to find mass Find the volume of this STP

23 2 H 2 + O 2 2 H 2 O Mass Moles Given 40grams of Hydrogen and 90 grams of Oxygen, determine the limiting reagent. Determine the mass of water that can be produced. How much excess reagent remains?

24 Percent Yield Why don t you always get 100% on your chemistry tests? There are many possible reasons You went skiing during the important lectures. You worked on your AP history homework instead of studying for chem. Rippet is not as good as he thinks he is.

25 % Yield In Chemical Reactions we don t always get 100% of the products our equations predict. Remember the Magnesium Burning Lab? 2 Mg + O 2 2 MgO Theoretically all the Mg should have converted to MgO. In reality, some things went wrong.

26 % Yield An equation predicts the THEORETICAL YIELD When a reaction is carried out in the lab we get ACTUAL YIELD 2 Mg + O 2 2 MgO We reacted 2.5g of Mg, what mass of MgO could be produced? Assume there is unlimited O 2 from the air so Mg is the limiting reagent n of Mg x 2/2 = 0.103n MgO We only had 3.61 grams produced So we do NOT have 100% yield!

27 % Yield Actual (lab results) Theoretical (equation prediction) X 100 % Multiply by 100, then add the % sign 3.61 / 4.15 = x % = 86.9% Yield

28 CaCO 3 CaO + CO 2 What is the % Yield if 24.8 g of CaCO 3 is heated to give 13.1g of CaO? 1. Convert g CaCO 3 to moles of CaCO 3. Only 1 reactant, so it s the limiting reagent. Mole ratio is 1:1 2. Convert moles of CaO to grams CaO. 3. Use % Yield Formula: actual x 100% theoretical

29 2 Al + 3 CuSO 4 Al 2 (SO 4 ) Cu What is the % yield when 4.65g of Copper is made when 1.87g of Al reacts with excess Copper Sulfate. 1. Excess means there is plenty, the other reagent is limiting. 2. Convert grams Al to moles Al. 3. Find moles of Cu expected (multiply by mole ratio) 4. Convert moles Cu to grams Cu. 1. This is the Theoretical amount of Copper 5. Use the % Yield Formula.

30 Which balloon will have the greatest volume of gas? NaHCO 3 + HC 2 H 3 O 2 NaC 2 H 3 O 2 + CO 2 + H 2 O Reaction Mass of NaHCO 3 Moles of Acetic Acid g 0.02n g 0.02n g 0.02n g 0.02n g 0.02n

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

**continued on next page**

**continued on next page** Chapter 9 Stoichiometry Section 9.1 Introduction to Stoichiometry Standard.e.: Students know how to calculate the masses of reactant and products in a chemical reaction from the mass of one of the reactants

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Chapter 12 Stoichiometry. Mr. Mole

Chapter 12 Stoichiometry. Mr. Mole Chapter 12 Stoichiometry Mr. Mole Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double or triple the amount

More information

Notes: Stoichiometry (text Ch. 9)

Notes: Stoichiometry (text Ch. 9) Name Per. Notes: Stoichiometry (text Ch. 9) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Chapter 9. Stoichiometry. Mr. Mole. NB page 189 Chapter 9 Stoichiometry Mr. Mole NB page 189 review Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double

More information

9.2 Chemical Calcualtions. Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations. 9.3 Limiting Reagent and Percent Yield

9.2 Chemical Calcualtions. Chapter 9 Stoichiometry. 9.1 The Arithmetic of Equations. 9.2 Chemical Calculations. 9.3 Limiting Reagent and Percent Yield 9.2 Chemical Calcualtions Chapter 9 Stoichiometry 9.1 The Arithmetic of Equations 9.2 Chemical Calculations 9.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction.

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Unit 10: Stoichiometry Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Info given by a chemical equation: Chemical changes involve

More information

Chapter 9 STOICHIOMETRY

Chapter 9 STOICHIOMETRY Chapter 9 STOICHIOMETRY Section 9.1 The Arithmetic of Equations OBJECTIVE Calculate the amount of reactants required or product formed in a nonchemical process. Section 9.1 The Arithmetic of Equations

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry. Homework EC. cincochem.pbworks.com. Academic Chemistry DATE ASSIGNMENT

Stoichiometry. Homework EC. cincochem.pbworks.com. Academic Chemistry DATE ASSIGNMENT Unit 10 Resournces Name Academic Chemistry Stoichiometry Homework On-Time LATE DATE ASSIGNMENT 100 70 10.1 10.2 10.3 10.4 10.5 10.6 EC 16 cincochem.pbworks.com Stoichiometry Live in the now. Garth Algar

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Stoichiometry study of the relationships in a

Stoichiometry study of the relationships in a Note Taking Guide: Episode 801 Name Stoichiometry study of the relationships in a based on equations 2 Mg + O 2 2 MgO The in a give the for the involved in the. Ex. Problem: When elemental aluminum reacts

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry Stoichiometry The quantitative study of reactants and products in a chemical reaction 1 Stoichiometry Whether the units given for reactants or products are moles, grams, liters (for gases), or some other

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

STOICHIOMETRY. Measurements in Chemical Reactions

STOICHIOMETRY. Measurements in Chemical Reactions STOICHIOMETRY Measurements in Chemical Reactions STOICHIOMETRY Stoichiometry is the analysis of the quantities of substances in a chemical reaction. Stoichiometric calculations depend on the MOLE-MOLE

More information

EXTRA CREDIT REMINDER

EXTRA CREDIT REMINDER EXTRA CREDIT REMINDER Due Tonight at Midnight (January 21 at 11:59 pm) via email kimberlyn.jackson@hcbe.net *** Kinesthetic: If you do not know how to use Prezi you may do a power point otherwise email

More information

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya PowerPoint to accompany Chapter 2 Stoichiometry: Calculations with Chemical Formulae and Equations Dr V Paideya Chemical Equations CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Figure 2.4 Chemical Equations

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

UNIT 9. Stoichiometry

UNIT 9. Stoichiometry UNIT 9 Stoichiometry FORMULA MASS Atomic Mass Unit (u): unit of mass for measuring atoms. (1 u = 1/12 th the mass of a carbon 12 atom) FORMULA MASS FORMULA MASS Example 2: Find the mass of one molecule

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry

Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry Name /108 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

Unit 9 Stoichiometry Notes

Unit 9 Stoichiometry Notes Unit 9 Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations to

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

Stoichiometry. Mr. Mole

Stoichiometry. Mr. Mole Stoichiometry Mr. Mole Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double or triple the amount Thus, a

More information

Chemistry Chapter 9. Unit 6 Stoichiometry

Chemistry Chapter 9. Unit 6 Stoichiometry Chemistry Chapter 9 Unit 6 Stoichiometry The arithmetic of equations Equations are recipes. They tell chemists what amounts of reactants to mix and what amounts of products to expect. What is Stoichiometry?

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place.

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Chemical Equations What is the law of conservation of mass? The law of conservation

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1 STOICHIOMETRY Engr. Yvonne Ligaya F. Musico 1 Stoichiometry The study in chemistry dealing with calculations based on balanced chemical equations. The branch of chemistry dealing with mass relationships

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

Stoichiometry World of Chemistry: Chapter 9

Stoichiometry World of Chemistry: Chapter 9 Stoichiometry World of Chemistry: Chapter 9 Chocolate Chip Cookies!! 1 cup butter 1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs 2 1/2 cups all-purpose flour 1 teaspoon

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

Stoichiometry. Goal. Calculate quantities of reactants and products needed in chemical rxns using balanced chemical equations.

Stoichiometry. Goal. Calculate quantities of reactants and products needed in chemical rxns using balanced chemical equations. Chapter 12 Stoichiometry Goal Calculate quantities of reactants and products needed in chemical rxns using balanced chemical equations. Using an Equation as a Recipe Ingredients: Frame, Seat, Wheels, Handlebar,

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

CHAPTER 9 CHEMICAL QUANTITIES

CHAPTER 9 CHEMICAL QUANTITIES Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 9 CHEMICAL QUANTITIES Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Proportional Relationships

Proportional Relationships Stoichiometry Video Proportional Relationships 2 1/4 c. flour 1 tsp. baking soda 1 tsp. salt 1 c. butter 3/4 c. sugar 3/4 c. brown sugar 1 tsp vanilla extract 2 eggs 2 c. chocolate chips Makes 5 dozen

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Chapter 5 Chemical Reactions

Chapter 5 Chemical Reactions Chapter 5 Chemical Reactions 5.1 Chemical Equations A chemical equation shows the chemical change taking place. The state of each substance is written in parentheses after the formula: s for solids, l

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS

A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS MASS AQUEOUS VOLUME ` MOLAR MASS GASEOUS VOLUME MOLES CONCENTRATION REVISION FROM LESSON 1 How many moles? 1) Jahin weighs a sample

More information

Stoichiometry Ch. 11. I. Stoichiometric Calculations

Stoichiometry Ch. 11. I. Stoichiometric Calculations Stoichiometry Ch. 11 I. Stoichiometric Calculations Background on things you NEED to know how to do: 1. Name/write correct chemical formula 2. Write chemical equations 3. Balance chemical equations 4.

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

How many molecules are in 0.25 moles of CH 4?

How many molecules are in 0.25 moles of CH 4? Mass Moles- Particle Particles can be atoms, molecules, ions, etc. In one mole of particles, there are 6.02x10 23 particles These particles are so small and we need so many of them to be on a human scale,

More information

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY UNIT 3 IB MATERIAL Name: BONDING, MOLES & STOICHIOMETRY ESSENTIALS: Know, Understand, and Be Able To Apply the mole concept to substances. Determine the number of particles and the amount of substance

More information

Symbols. Table 1 A set of common elements, their symbols and physical state

Symbols. Table 1 A set of common elements, their symbols and physical state Symbols Symbols are a kind of shorthand system for writing down elements and compounds. Each element has a particular one or two letter symbol. The first letter of a symbol is always capital, and if there

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Mole Conversions Worksheet

Mole Conversions Worksheet Mole Conversions Worksheet There are three mole equalities. They are: 1 mol = 6.02 x 10 particles 1 mol = g-formula-mass (periodic table) 1 mol = 22.4 L for a gas at STP Each equality can be written as

More information

Chemistry. Bridging the Gap Summer Homework. Name..

Chemistry. Bridging the Gap Summer Homework. Name.. Chemistry Bridging the Gap Summer Homework Name.. Standard Form Number Number in standard form 0.008 8 x 10-3 0.07 7 x 10-2 0.55 5.5 x 10-1 0.000052 0.048 0.0086 0.00086 0.000086 0.0000000001 0.000455

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass.

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass. Stoichiometry Before You Read Review Vocabulary Define the following terms. mole molar mass conversion factor dimensional analysis law of conservation of mass Chapter 10 Balance the following equation.

More information

Student Version Notes: Unit 5 Moles & Stoichiometry

Student Version Notes: Unit 5 Moles & Stoichiometry Name: Regents Chemistry: Mr. Palermo Student Version Notes: Unit 5 Moles & Stoichiometry Name: KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined

More information

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017 Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017 Balance the following chemical equations. Remember, it is not necessary to write "1" if the coefficient is one. 1. N 2 + H 2 NH 3 2. KClO 3 KCl +

More information

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12 Nam e: Period: Unit Goals- As you work through this unit, you should be able to: 1. Write formula equations from word equations using appropriate

More information

Stoichiometry Part 1

Stoichiometry Part 1 Stoichiometry Part 1 Formulae of simple compounds Formulae of simple compounds can be deduced from their ions/valencies but there are some that you should know off by heart. You will learn these and more

More information

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015 Math-tastic! Unit 9: Math of Chemistry Part II - Stoichiometry Lesson # 9.4: The Arithmetic of Equations Mr. Mole 87 STOICHIOMETRY is Greek for measuring elements Pronounced stoy-kee-ahm-uhtree Defined

More information

General Chemistry I The Mole Map. Dr. Koni Stone Chapter 3, clicker 3

General Chemistry I The Mole Map. Dr. Koni Stone Chapter 3, clicker 3 General Chemistry I The Mole Map Dr. Koni Stone Chapter 3, clicker 3 How many moles of sodium carbonate are in 50.5 grams of sodium carbonate? A. 106 moles B. 4.76 x 10-1 moles C. 2.10 moles D. 5.35 x

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

This is STOICHIOMETRY.

This is STOICHIOMETRY. Balanced equations represent the RATIO in which substances combine. The ratio comes from the COEFFICIENTS of the balanced equation. The combining ratio of substances in any chemical reaction is called

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

Chapter 6 and 7 Practice MC

Chapter 6 and 7 Practice MC Chapter 6 and 7 Practice MC MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Ammonium fluoride is considered which of the following? 1) A) molecular

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date»

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date» Slide 1 / 90 Stoichiometry HW Grade:«grade» Subject: Date:«date» Slide 2 / 90 1 The calculation of quantities in chemical equations is called. A B C D E accuracy and precision dimensional analysis percent

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS In all chemical reactions there is a conservation of mass, energy, and charge. (3.3a) A balanced chemical equation represents conservation

More information

Problem Solving. Limiting Reactants

Problem Solving. Limiting Reactants Skills Worksheet Problem Solving Limiting Reactants At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe

More information

(2 x 22.4 L H 2 ) + (1 x 22.4 L O 2 ) (2 OBJECTIVES:

(2 x 22.4 L H 2 ) + (1 x 22.4 L O 2 ) (2 OBJECTIVES: Chapter 9 The calculations of quantities in a chemical reaction chemical bookkeeping Section 9.1 The Arithmetic of Equations OBJECTIVES: Calculate the amount of reactants required, or product formed, in

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

Study Guide: Stoichiometry

Study Guide: Stoichiometry Name: Study Guide: Stoichiometry Period: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound

More information

AP Chemistry Unit 3- Homework Problems Gas Laws and Stoichiometry

AP Chemistry Unit 3- Homework Problems Gas Laws and Stoichiometry AP Chemistry Unit 3- Homework Problems Gas Laws and Stoichiometry STP 1. What is standard pressure for each of the following: atm, mm Hg, Torr, kpa, PSI 2. Convert each of the following: a. 700 mm Hg to

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 10 Chemical Equation Calculations by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 10 1 What

More information

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have?

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? If Sally has 4.56 x 10 34 atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? Bertha has.025 milligrams of sodium that she got from a sample of Sodium phosphate,

More information

Chemical Quantities: Stoichiometry and the Mole

Chemical Quantities: Stoichiometry and the Mole Chemical Quantities: Stoichiometry and the Mole This is trying to summarize what we have learned up to this point: formulas, names, conversions, moles, quantities, reaction types, balancing equations,

More information

LIMITING REAGENT. Taking Stoichiometric conversions one step further

LIMITING REAGENT. Taking Stoichiometric conversions one step further LIMITING REAGENT Taking Stoichiometric conversions one step further Limiting Reagent The reactant that limits the amount of product that can be formed. The reaction will stop when all of the limiting reactant

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Revision Checklist :4.3 Quantitative Chemistry

Revision Checklist :4.3 Quantitative Chemistry Revision Checklist :4.3 Quantitative Chemistry Conservation of Mass The law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages )

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages ) Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.

More information

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A:

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A: : The Mole- 6.02 x 10 23 ODE TO A MOLE I find that my heart beat goes out of control Just thinking how useful to man is the mole! So perfectly compact. What could be neater? Only occupying twenty-two and

More information

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the Chapter 9 Calculations from Chemical Equations Accurate measurement and calculation of the correct dosage are important in dispensing the correct medicine to patients Introduction to General, Organic,

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

Sample Problem Set. Limiting Reactants

Sample Problem Set. Limiting Reactants Skills Worksheet Sample Problem Set Limiting Reactants At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe

More information

Quantitative Relationships in Chemical Reactions Chapter 7

Quantitative Relationships in Chemical Reactions Chapter 7 Quantitative Relationships in Chemical Reactions Chapter 7 The burning of charcoal releases heat (thermal energy) that grills our food. But the combustion of charcoal and fossil fuels also releases CO

More information

What does this equation tell you? 1. 1 molecule of nitrogen gas reacts with 3 molecules of hydrogen gas to produce 2 molecules of ammonia gas.

What does this equation tell you? 1. 1 molecule of nitrogen gas reacts with 3 molecules of hydrogen gas to produce 2 molecules of ammonia gas. Chapter 7 Quantities in Chemical Reactions Stoichiometry For example, the Haber Process (used to make ammonia gas) is based on the following balanced equation: N 2(g) + 3H 2(g) 2NH 3(g) Stoichiometry is

More information

Learning Objectives Progress Tracker Test Date: 6.1 Stoichiometry balanced chemical equation mole ratios theoretical yield limiting reagent

Learning Objectives Progress Tracker Test Date: 6.1 Stoichiometry balanced chemical equation mole ratios theoretical yield limiting reagent Unit 6 Stoichiometry Progress Tracker Learning Objectives 6.1 Stoichiometry Test Date: Webassign Due Score 6.1 Stoichiometry Packet Progress Checks Test Readiness Checks: My webassign scores indicate I

More information

Unit 5. Chemical reactions

Unit 5. Chemical reactions Unit 5. Chemical reactions Index 1.- Physical and chemical phenomena...2 2.- What is a chemical reaction?...2 2.1. Chemical equation...2 2.2.- Balance of chemical reactions. Law of conservation of mass...3

More information