STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS

Size: px
Start display at page:

Download "STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS"

Transcription

1 STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS If the number of atoms is conserved in a chemical reaction, the mass must also be conserved as expected from the Law of Conservation of Mass. In the equation for the formation of water H (g) + O (g) H O(l) molecules of hydrogen and 1 molecule of oxygen combine to form molecules of water. We could also say that moles of hydrogen react with 1 mole of oxygen to form moles of water. Using the number of grams in a mole of each substance, the mass relationships in the table can be determined. The ratio of moles of hydrogen to moles of oxygen in forming water will be :1. If 10 moles of hydrogen are available, 5 moles of oxygen are required. H (g) + O (g) H O(l) molecules 1 molecule molecules mol 1 mol mol moles x (.0g/mol) 1 mole x (3.00g/mol) moles x (18.0g/mol) 4.04 g 3.00 g g Solving problems involving the masses of products and or reactants is conveniently accomplished by dimensional analysis. All numerical problems involving chemical reactions begin with a balanced equation. Example Find the mass of water produced when 10.0 grams hydrogen react with plenty of oxygen. H (g) + O (g) H O(l) Step 1: We know the amount of oxygen is in excess, so we will focus on hydrogen. Find the moles of hydrogen represented by 10.0 g by using the molar mass of H. 1mol H 10.0 g H = 4.95 mol H.0 g H Step : Find the number of moles of H O produced by 4.95 mole H. From the balanced equation, we know that for every mol H we produce mol H O. mol H O 4.95 mol H = 4.95 mol H O mol H Step 3: Find the mass of H O that contains 4.95 mol H O by using the molar mass of water g HO 4.95 mol H O = 89.1 g HO 1mol HO Most chemistry students find it is more convenient to set up all three steps in one problem. Make sure that all labels cancel except the g H O, an appropriate unit to express the mass of H O as required in the problem. 1mol H mol H O 18.0 g H O 10.0 g H = 89.1 g H O.0 g H mol H 1mol H O Molar mass Coefficients Molar Mass of H in equation of H O

2 Understanding Limiting Reactants In Unit 7, Section B.9 of your ChemCom textbook you will find a conceptual atom-counting method for finding the limiting reactant of an equation. If a combustion problem states that excess oxygen is available, we need not concern ourselves with the oxygen-to-water ratio. The mass of water produced is predicted from (and limited by) the mass of hydrogen available. Of course, in the laboratory we often deal with specified masses of each reactant, but that requires an enhanced problem-solving method. Suppose a family wants to make several chile rellenos casseroles to serve at a neighborhood party. The recipe lists required ingredients, which are itemized in the left column of the table in Figure 3. The right column represents a survey of pantry and refrigerator contents. Required Ingredients Available Ingredients Possible Casseroles 1 7-oz can whole green 7-oz cans whole green chiles chiles 1 pound Monterrey Jack 3 pounds Monterrey Jack 3 cheese Cheese 1 pound cheddar cheese 3 pounds cheddar cheese 3 3 eggs 1 dozen eggs 4 3 Tablespoons flour 5 pounds flour Many 5 oz canned evaporated milk 4 cans evaporated milk 4 Figure 3: Required Ingredients Table How many casseroles can be made? Although four casseroles can be made from the available eggs or milk, there are only enough cans of green chiles for two casseroles. In other words, the number of cans of green chiles can be called the limiting factor. After the two casseroles are prepared, cheese, eggs, flour, and milk will remain, but all the green chiles will be used. Therefore, no more casseroles can be made. In this example, the green chiles are the limiting reactant. The limiting reactant is the reactant that is consumed first and limits the amount of product that can be made. The same principle applies in determining the quantity of product that can be produced in a chemical reaction. Let s take another look at the reaction of hydrogen and oxygen to produce water, then consider what would happen if.00 mol hydrogen and.00 mol oxygen were available. How many moles of water can be produced? What is the limiting reactant? Which reactant will be in excess and by how much? H (g) + O (g) H O(l) The balanced chemical equation states that.00 mol hydrogen react with 1.00 mol oxygen. When the reaction is complete,.00 mol water are produced and 1.00 mol oxygen remains unreacted. This problem is easy to solve by inspection. A more systematic way to solve the problem is to create an SRF table, as shown in Figure 4. The table is composed of the following lines: Line 1: The balanced chemical equation is listed. Line : The Starting number of moles of each substance is listed. This would be what is available, the same as the ingredients for the casseroles. Line 3: The Reacting ratio determined from the coefficients in the balanced equation is multiplied by x, the basic amount of moles that will react. The reactants are being consumed so a minus sign is placed in front of them. The products are increasing so a plus sign is placed in front of them. Line 4: This line contains what will be left and what will be formed when the reaction is complete. The values of this line are obtained by adding lines and 3. This line will provide all the answers, in Final moles, to the problems.

3 Line 1 H + O H O Line Starting moles 0 Line 3 Reacting moles -x -1x +x Line 4 Final moles -x -1x 0+x Figure 4 Sample SRF Table When the reaction is completed, either the hydrogen will be consumed or the oxygen will be consumed. That means that either x = 0 (hydrogen) or - 1x = 0 (oxygen) If we solve for x in both equations the smallest x value will be the limiting reactant. The larger value will represent an amount in excess of what is possible with the given ingredients. So for this example, x = 1 (hydrogen) or x = (oxygen). Since x = 1 is smallest, it is the value we choose. This step also identifies the substance that will run out first, the limiting reactant. In this case the hydrogen is the limiting reactant. Using the value of x = 1, we can determine the final amounts. The amount of product is x = (1) = moles of H O. The reactant in excess is O and it is excess by 1x = 1(1) = 1 mole of O. This method of working the problem gives the same result as the visual inspection hydrogen is the limiting reactant, and.00 mol H O are produced. The advantage of learning this method is that it works even when the coefficients become difficult to use with the visual method. Example Aluminum chloride, AlCl 3, has many uses including in deodorants and antiperspirants. It is synthesized from aluminum and chlorine. What mass of AlCl 3 can be produced if 100 g of each reactant are available? What is the limiting reactant? How many grams of the excess reactant remain? Step 1: Write the balanced equation. Al(s) + 3 Cl (g) AlCl 3 (s) Step : Set up the SRF Table. Since only moles can go into the table, the grams of each reactant will first need to be converted to moles. See Figure 4. 1 mol Al 100 g Al = 3.70 moles Al 7.0 g Al 100 g Cl 1 mol Cl 71.0 gcl = moles Cl Al(s) + 3 Cl (g) AlCl 3 (s) Starting moles Reacting moles -x -3x +x Final moles x x x Step 3: Set the Final moles equal to zero and solve for x. Choose the smallest value of x x = 0 or x = 0 x = 1.85 moles or x = 0.47 moles

4 Since x = 0.47 mol is smaller, Cl will be consumed first; it is the limiting reactant. Step 4: Determine the amount of product formed and the amount of Al remaining by substituting x = 0.47 into the corresponding equations on the Final moles line. Amount of product (AlCl 3 ): x = (0.47 mole) = 0.94 moles AlCl 3 Amount of Al remaining: 3.70 (0.47 mole) =.76 moles of Al Step 5: Convert the moles back to grams. 134 grams 0.94 moles AlCl3 = 16 grams AlCl3 formed 1 mole.76 moles Al 7.0 grams 1 mole = 74.5 grams Al left Practice Exercises 1. Acetylene burns in air to form carbon dioxide and water: C H (g) + 5 O (g) 4 CO (g) + H O(l) How many moles of CO are formed from 5.0 moles C H?. If insufficient oxygen is available, carbon monoxide can be a product of the combustion of butane: C 4 H 10 (l) + 9 O (g) 8 CO(g) + 10 H O(l). What mass of CO could be produced from 5.0 g butane? g NaNH is required for an experiment. Using the following reaction, what mass of sodium is required for reaction. Na(s) + NH 3 (g) NaNH (s) + H (g)?

5 4. Heating CaCO 3 yields CaO and CO. Write the balanced equation. Calculate the mass of CaCO 3 consumed when 4.65 g of CaO forms. 5. In the synthesis of sodium amide (NaNH ), what is the maximum mass of NaNH possible if 50.0 g of Na and 50.0 g NH 3 were used? Na(l) + NH 3 (g) NaNH (s) + H (g) 6. The fuel methanol, CH 3 OH, can be made directly from carbon monoxide (CO) and hydrogen (H ). a. Write a balanced equation for the reaction. b. Calculate the maximum mass of methanol if one starts with 5.75 g CO and 10.0 g H. c. Which reactant is the limiting reactant? 7. Aspirin (C 9 H 8 O 4 ) is synthesized in the laboratory from salicylic acid (C 7 H 6 O 3 ) and acetic anhydride (C 4 H 6 O 3 ): C 7 H 6 O 3 (s) + C 4 H 6 O 3 (l) C 9 H 8 O 4 (s) + CH 3 COOH(l) a. What is the theoretical yield of aspirin if you started with 15.0 g salicylic acid and 15.0 g acetic anhydride? b. Which reactant is the limiting reactant?

6 HW_STOICH KEY 1) 50mol CO ) molar mass of butane = 58.14g/mol => mol butane => 0.344mol CO => 9.6g CO 3) molar mass of NaNH = 39.0g/mol => mol NaNH => mol Na => 8.84g Na 4) CaCO 3 à CaO + CO a. 4.65gCaO => 0.089molCaO => 0.089mol CaCO3 => g/mol x 0.089mol = 8.30gCaCO 3 5) 84.7g NaNH 6) CO(g) + H (g) à CH 3 OH(l) 0.05mol or 6.56g 7) 0.109mol = 19.5g

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another.

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another. 8/9/015 A chemical change (a chemical reaction) converts one substance into another. CHAPTER 3: PART Chemical Equations and Stoichiometry Chemical reactions involve: 1. Breaking bonds in the reactants.

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

11 Stoichiometry. Section 11.1 What is stoichiometry?

11 Stoichiometry. Section 11.1 What is stoichiometry? 11 Stoichiometry Section 11.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1.. 3. 4. 5. The study of the quantitative

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Stoichiometry Section 12.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1. The study of the quantitative relationships

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Limiting Reactants. and Percentage Yield. Section 3

Limiting Reactants. and Percentage Yield. Section 3 GO ONLINE Section 3 8E Main Ideas One reactant limits the product of a reaction. Comparing the actual and theoretical yields helps chemists determine the reaction s efficiency. 8E perform stoichiometric

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in terms of interacting

More information

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction.

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Unit 10: Stoichiometry Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Info given by a chemical equation: Chemical changes involve

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

CHM101 Lab Stoichiometry Grading Rubric

CHM101 Lab Stoichiometry Grading Rubric Spring 2017 Name CHM101 Lab Stoichiometry Grading Rubric Criteria Points possible Points earned Lab Report Q1 (work and units shown) 2 Q2 (work and units shown) 1.5 Q3 (work and units shown) 2.5 Q4 (reaction

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Stoichiometry The study of the numerical relationship between chemical quantities in a chemical reaction Making Pizza The number of pizzas you can make

More information

STOICHIOMETRY ANALOGY

STOICHIOMETRY ANALOGY STOICHIOMETRY ANALOGY Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation. Stoichiometry allows chemists to predict how much of a reactant

More information

Stoichiometry World of Chemistry: Chapter 9

Stoichiometry World of Chemistry: Chapter 9 Stoichiometry World of Chemistry: Chapter 9 Chocolate Chip Cookies!! 1 cup butter 1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs 2 1/2 cups all-purpose flour 1 teaspoon

More information

How many molecules are in 0.25 moles of CH 4?

How many molecules are in 0.25 moles of CH 4? Mass Moles- Particle Particles can be atoms, molecules, ions, etc. In one mole of particles, there are 6.02x10 23 particles These particles are so small and we need so many of them to be on a human scale,

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

**continued on next page**

**continued on next page** Chapter 9 Stoichiometry Section 9.1 Introduction to Stoichiometry Standard.e.: Students know how to calculate the masses of reactant and products in a chemical reaction from the mass of one of the reactants

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry

Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry Name /108 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Previous Chapter Table of Contents Next Chapter Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Section 2.1: The Atomic Mass The atomic mass is the mass of 1 atom. Atoms are

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Reading Assignments: Chapter 3 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005 Mass Relationships in Chemical Reactions Or Related topics in other textbooks. Consultation outside lecture room: Office

More information

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place.

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Chemical Equations What is the law of conservation of mass? The law of conservation

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

EXTRA CREDIT REMINDER

EXTRA CREDIT REMINDER EXTRA CREDIT REMINDER Due Tonight at Midnight (January 21 at 11:59 pm) via email kimberlyn.jackson@hcbe.net *** Kinesthetic: If you do not know how to use Prezi you may do a power point otherwise email

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

STOICHIOMETRY. Measurements in Chemical Reactions

STOICHIOMETRY. Measurements in Chemical Reactions STOICHIOMETRY Measurements in Chemical Reactions STOICHIOMETRY Stoichiometry is the analysis of the quantities of substances in a chemical reaction. Stoichiometric calculations depend on the MOLE-MOLE

More information

Student Version Notes: Unit 5 Moles & Stoichiometry

Student Version Notes: Unit 5 Moles & Stoichiometry Name: Regents Chemistry: Mr. Palermo Student Version Notes: Unit 5 Moles & Stoichiometry Name: KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

Chapter 3 Stoichiometry. Ratios of combination

Chapter 3 Stoichiometry. Ratios of combination Chapter 3 Stoichiometry Ratios of combination Topics Molecular and formula masses Percent composition of compounds Chemical equations Mole and molar mass Combustion analysis (Determining the formula of

More information

AP Chemistry Chapter 3. Stoichiometry

AP Chemistry Chapter 3. Stoichiometry AP Chemistry Chapter 3 Stoichiometry Stoichiometry Is the study of the quantities of substances consumed and produced in chemical reactions Derived from the Greek words stoicheion meaning element and metron

More information

I hope you aren't going to tear open the package and count the nails. We agree that. mass of nails = 1340 g g = g

I hope you aren't going to tear open the package and count the nails. We agree that. mass of nails = 1340 g g = g The Mole Concept Counting by weighing The size of molecule is so small that it is physically difficult if not impossible to directly count out molecules. this problem is solved using a common trick. Atoms

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

Chemical Reactions. Chapter 17

Chemical Reactions. Chapter 17 Chemical Reactions Chapter 17 Chemical Equations C+O 2 CO 2 C (s) +O 2 (g) CO 2 (g) Reactants on left, products on right Each are balanced because same number of atoms of reactants as products Some equations

More information

Chapter 3 The Mole and Stoichiometry

Chapter 3 The Mole and Stoichiometry Chapter 3 The Mole and Stoichiometry Chemistry, 7 th Edition International Student Version Brady/Jespersen/Hyslop Brady/Jespersen/Hyslop Chemistry7E, Copyright 015 John Wiley & Sons, Inc. All Rights Reserved

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound

More information

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring STOICHIOMETRY Greek: Stoicheon = element metron = element measuring Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemical elements stand to one another

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

CHM101 Lab Stoichiometry Grading Rubric

CHM101 Lab Stoichiometry Grading Rubric Name CHM101 Lab Stoichiometry Grading Rubric Criteria Points possible Points earned Lab Report Q1 (work and units shown) 3 Q2 (work and units shown) 2 Q3 (work and units shown) 3 Q4 (work and units shown)

More information

CH 221 Chapter Four Part I Concept Guide

CH 221 Chapter Four Part I Concept Guide 1. Balancing Chemical Equations CH 221 Chapter Four Part I Concept Guide Description When chlorine gas, Cl 2, is added to solid phosphorus, P 4, a reaction occurs to produce liquid phosphorus trichloride,

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed.

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed. Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements Brady & Senese, 5th Ed. Index 3.1 The mole conveniently links mass to number of atoms or molecules 3.2 Chemical formulas

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Matter Matter is anything that has mass and takes up space 2 Composition of Matter Atom number of protons = atomic number (Z)

More information

Chemical Quantities: Stoichiometry. UNIT 4: Ch. 12 Ms. Kiely, Coral Gables Senior High

Chemical Quantities: Stoichiometry. UNIT 4: Ch. 12 Ms. Kiely, Coral Gables Senior High Chemical Quantities: Stoichiometry UNIT 4: Ch. 12 Ms. Kiely, Coral Gables Senior High 1 BELL RINGER How many moles are in 62.0g of hydrogen gas? ANSWER How many moles are in 62.0g of hydrogen gas? 30.7

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Stoichiometry. The study of quantities of substances in chemical reactions

Stoichiometry. The study of quantities of substances in chemical reactions Stoichiometry The study of quantities of substances in chemical reactions Interpreting Chemical Equations N 2 + 3 H 2 2 NH 3 Particles: 1 molecule of Nitrogen reacts with 3 molecules of Hydrogen to produce

More information

Stoichiometry Dr. M. E. Bridge

Stoichiometry Dr. M. E. Bridge Preliminary Chemistry Course Stoichiometry Dr. M. E. Bridge What is stoichiometry? The meaning of the word: The word stoichiometry comes from two Greek words: stoichon(meaning element ) and metron(meaning

More information

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry Stoichiometry The quantitative study of reactants and products in a chemical reaction 1 Stoichiometry Whether the units given for reactants or products are moles, grams, liters (for gases), or some other

More information

Laboratory Chemistry Emergency Plan Days 6-10

Laboratory Chemistry Emergency Plan Days 6-10 Laboratory Chemistry Emergency Plan Days 6-10 Day 4: Day 5: Reference: Skill Building Topic 9 A Quantitative Understanding of Formulas Skill Building Topic 10 Understanding Mass Relationships in Chemical

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

Ch 9 Stoichiometry Practice Test

Ch 9 Stoichiometry Practice Test Ch 9 Stoichiometry Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A balanced chemical equation allows one to determine the a. mole ratio

More information

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1 STOICHIOMETRY Engr. Yvonne Ligaya F. Musico 1 Stoichiometry The study in chemistry dealing with calculations based on balanced chemical equations. The branch of chemistry dealing with mass relationships

More information

If you're given a mass percent, you can use it as a conversion factor between the element and the compound

If you're given a mass percent, you can use it as a conversion factor between the element and the compound Announcements Wednesday, September 23, 2009 MasteringChemistry due dates (all at 11:59 pm): Ch 3: Fri, Sep 25 Exam 1: next Mon, Sep 28. 20-25 multiple choice questions Short answer (naming, chemical equations)

More information

Chapter 3 C 2 H 4 O2. Mass Relationships, Stoichiometry and Chemical Formulas. Announcements. Learning Objectives. C x H y Oz

Chapter 3 C 2 H 4 O2. Mass Relationships, Stoichiometry and Chemical Formulas. Announcements. Learning Objectives. C x H y Oz Announcements HOUR EXAM 1 --Want me to do recitation again? July 18 6-7:30PM --Skip Combustion Analysis & Isomers (p.82-83 in Principles of Chemistry Text) See me if you donʼt understand! Chapter 3 Relationships,

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Chemistry. Chapter 17

Chemistry. Chapter 17 Chemistry Chapter 17 Chemical Equations C+O 2 CO 2 C (s) +O 2 (g) CO 2 (g) Reactants on left, products on right Each are balanced because same number of atoms of reactants as products Balancing Chemical

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

Chapter 9. Chemical Quantities

Chapter 9. Chemical Quantities Chapter 9 Chemical Quantities Section 9.1 Information Given by Chemical Equations A balanced chemical equation gives relative numbers (or moles) of reactant and product molecules that participate in a

More information

7 Chemical Reactions and Quantities Practice Problems

7 Chemical Reactions and Quantities Practice Problems 7 Chemical Reactions and Quantities Practice Problems I m trying a different set up for the practice problems. This still contains the practice problems you need to master for the test. I ve organized

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

Stoichiometry. Chapter 3

Stoichiometry. Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry: The study of quantities of materials consumed and produced in chemical reactions. In macroworld, we can count objects by weighing assuming

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

Chapter 3. Mass Relations in Chemistry; Stoichiometry

Chapter 3. Mass Relations in Chemistry; Stoichiometry Chapter 3 Mass Relations in Chemistry; Stoichiometry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following

More information

Quantitative Composition of Compounds

Quantitative Composition of Compounds Chapter 7 Quantitative Composition of Compounds Making new chemicals is much like following a recipe from a cook book... 1 cup of flour + 2 eggs + ½ tsp baking powder 5 pancakes except you don t get to

More information

CHAPTER 1 STOICHIOMETRY

CHAPTER 1 STOICHIOMETRY CHAPTER 1 STOICHIOMETRY Introduction Chemistry A Molecular Science (CAMS), the first half of this two-course sequence, stressed bonding, structure, and reactivity. The material was qualitative and stressed

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms CHAPTER 3: Quantitative Relationships in Chemical Reactions Stoichiometry: Greek for measure elements Stoichiometry involves calculations based on chemical formulas and chemical equations (reactions) quantitative.

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

CHAPTER 9: STOICHIOMETRY

CHAPTER 9: STOICHIOMETRY 9.1 Interpreting a chemical Equation CHAPTER 9: STOICHIOMETRY H 2 (g) + Cl 2 (g) 2 HCl (g) 1 molecule 1 molecule 2 molecules N 2 + 3 H 2 (g) 2 NH 3 (g) molecule(s) molecule(s) molecule(s) It follows that

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

Quantities in Chemical Reactions

Quantities in Chemical Reactions Quantities in Chemical Reactions 6-1 6.1 The Meaning of a Balanced Equation C 3 H 8(g) + 5 O 2(g) 3 CO 2(g) + 4 H 2 O (g) The balanced equation tells us: 1 molecule of propane reacts with 5 molecules of

More information

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY UNIT 3 IB MATERIAL Name: BONDING, MOLES & STOICHIOMETRY ESSENTIALS: Know, Understand, and Be Able To Apply the mole concept to substances. Determine the number of particles and the amount of substance

More information

The coefficients of a balanced chemical equation tell us how many of each species are involved in the reaction.

The coefficients of a balanced chemical equation tell us how many of each species are involved in the reaction. Stoichiometry Chemical Equations Reactants are written on the left side of the arrow and products are written on the right side of the arrow. The Law of Conservation of Mass tells us that the number of

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS In all chemical reactions there is a conservation of mass, energy, and charge. (3.3a) A balanced chemical equation represents conservation

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

UNIT 6 STOICHIOMETRY 1

UNIT 6 STOICHIOMETRY 1 UNIT 6 STOICHIOMETRY 1 There are three ways to measure matter count (number of particles representative particles) mass (grams) volume (Liters) Mole unit for amt of matter relating these quantities 2 Representative

More information

Chemical equations and reaction stoichiometry

Chemical equations and reaction stoichiometry Chemical equations and reaction stoichiometry Chemical Equations reaction stoichiometry: quantitative relationships among substances as y participate in chemical reactions. O C O O O O C O O O Chemical

More information

CH. 12 STOICHIOMETRY

CH. 12 STOICHIOMETRY CH. 12 STOICHIOMETRY Balanced Chemical Equations Used to calculate: How much of each reactant is needed How much product will form If you know one quantity you can calculate the rest. Quantity may be in

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3 Chemical Equations Chemical equations are concise representations of chemical reactions. Chapter 3 : Calculations with Chemical Formulas and Equations Law of Conservation of Mass Anatomy of a Chemical

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

PERCENT POTASSIUM CHLORATE IN A MIXTURE - Worksheet

PERCENT POTASSIUM CHLORATE IN A MIXTURE - Worksheet 35 PERCENT POTASSIUM CHLORATE IN A MIXTURE - Worksheet This lab will introduce the concept of reaction stoichiometry. We will use the mole ratios in a balanced chemical equation to calculate the amount

More information

Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry

Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry The stoichiometric coefficients in the chemical reaction equation Is (1 for C 7 H 16, 11 for O 2 and so on). Another way to

More information

7.1. What Is Stoichiometry? SECTION. Key Terms

7.1. What Is Stoichiometry? SECTION. Key Terms SECTION 7.1 What Is Stoichiometry? Key Terms stoichiometry mole ratio stoichiometry the study of the quantitative relationships among the amounts of reactants used and the amounts of products formed in

More information